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Estimations of time and number share many similarities in both non-humans and man.
The primary focus of this review is on the development of time and number sense
across infancy and childhood, and neuropsychological findings as they relate to time and
number discrimination in infants and adults. Discussion of these findings is couched
within a mode-control model of timing and counting which assumes time and number
share a common magnitude representation system. A basic sense of time and number
likely serves as the foundation for advanced numerical and temporal competence, and
aspects of higher cognition—this will be discussed as it relates to typical childhood, and
certain developmental disorders, including autism spectrum disorder. Directions for future
research in the developmental neuroscience of time and number (NEUTIN) will also be
highlighted.
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INTRODUCTION
The interval timing and numerical abilities identified in non-
human animals, human infants, and children may represent bio-
logical and developmental precursors of adults’ highly developed
computational abilities (Buhusi and Cordes, 2011; Lustig, 2011;
Williams, 2011). For instance, at the perceptual level, non-humans
and infants appear capable of making magnitude estimates of dura-
tion, numerosity and area (i.e., that a given stimulus is presented
for “more” time than another, or contains “more” elements—this
basic ability is the focus of our review). The ability to imagine
events in the future (which must by implication, require some
form of internal time sense) has been postulated to be related to
our ability to “anticipate future mental processes and motivational
and emotional states” (Pezzulo and Rigoli, 2011:1), and adults at
least appear able to comprehend metaphysical and higher concepts
of time and space (e.g., imagining the size of the galaxy, or how
long it has been around). It seems parsimonious to suppose that
the basic ability to represent time, space and numerosity is a basic
developmental “building block” for math ability, and abstract
mental representations and concepts of metaphysical time and
space (see Casasanto and Boroditsky, 2008).

The processing of sensory information according to its spatial,
temporal, and numerical properties is a requirement of the cen-
tral nervous system. Navon (1978) “considered the issue of how
we apprehend stimuli that vary along several dimensions. We may
often overlook some aspects, and sometimes be unable to ignore
others” (1978:3). He suggested that time occupies the dominant
dimension, followed by space. In non-humans and humans, there
are a variety of interaction effects between our estimates of time,
space, and number, and these have been taken as support for
mode-control models of (sensory) time and number perception

(e.g., Meck and Church, 1983), and those that suppose our abil-
ity to make sense of time, space, and numerosity develops from
a single magnitude processing system (A Theory of Magnitude,
ATOM; Walsh, 2003). In fact, in humans at least, they are most
likely component processes in a cognitive system: a “raw sub-
strate” magnitude estimate of time and number is likely processed
by some ordinal magnitude comparator (which is recruited to
make “how much” or “more than and less than” judgments) that
apparently deals with many different dimensions (time, space,
numerosity, loudness and luminance, and even emotional expres-
sion; e.g., see Smith and Sera, 1992; Holmes and Lourenco, 2009).
Although ATOM assumes that “time and quantity estimation
operate on similar and partly shared accumulation principles” of
the type described in the mode-control model, these two forms
of account (Meck and Church, 1983; Walsh, 2003) may be the-
oretically dissociated at the developmental level—for instance,
the mode-control model assumes numerosity is the product of
an internal (primitive) count, which is “built in,” and accord-
ing to ATOM, numerosity is acquired by learning associations
between magnitudes of different dimensions, as “specializations
for time, space and quantity develop from a single magnitude sys-
tem operating from birth” (2003:484). ATOM does not describe
the nature of a shared accumulation system as the mode-control
model does. ATOM grounds the ontogeny of multi-dimension
magnitude estimation abilities on the basis of the need for action,
and the translation from sensory to motor, and this is germane
to infant development (i.e., Piaget’s sensorimotor stage from 0 to
2 years). It is reasoned in ATOM that the infant is born with a
“one-bit” magnitude system, and number sense is mapped onto
the magnitude system, which is argued to have a spatial basis
(given its emphasis for action).
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The primary focus of our review is how we develop the abil-
ity to integrate (or “stitch together”) representations of duration
and numerosity magnitudes, operating at the level of processing
incoming sensory input, couched within the influential “mode-
control” approach (Meck and Church, 1983). This assumes the
substrate for time and number judgments can be represented by
an “accumulated” magnitude, and there is quantitative equiva-
lence between an estimate of number and a unit of time (Meck
et al., 1985)—space (area) will also be discussed but to a lesser
extent (but see Gallistel, 1989). Accordingly, we refer to “time”
(time sense) as the ability to estimate duration magnitude in the
seconds to minutes range, and “number” (number sense) as the
ability to estimate non-symbolic numerosity (i.e., number of dots
in an array).

There are three main areas of coverage in this review:

1. We discuss animal findings relating to the neuroscience of
time and number sense (NEUTIN), and comparable human
studies of time, space, and number magnitude estimation
in infants and adults. We also highlight cross-dimensional
interaction effects (e.g., between time, space, and number) in
non-humans and humans.

2. We review the “mini-evolution” of the development of time
and number sense in infancy and childhood. We also com-
ment on the correspondence between number sense and
more advanced numerical abilities (symbolic representations
of number, counting, math ability), and how children are
considered to develop higher-order concepts of time, speed,
distance and space.

3. Children with developmental disabilities, particularly those
with difficulties as they relate to time and number abilities
(developmental dyscalculia, autism, attention-deficit hyperac-
tivity disorder, Down and Williams syndrome) will also be
discussed. Studying the atypical development of NEUTIN has
the potential to developmentally tease apart the aforemen-
tioned accounts, but also to improve understanding of these
disorders and their therapeutic and educational remediation.
With the exception of Williams and Down syndrome (which
have a genetic basis), the disorders included in this review
are characterized on the basis of observable behavioral (rather
than biomedical) features, and as such, it is useful to know
the extent of sensitivity and adaption to time, numerosity and
space in these populations—as these types of impairments
might contribute to clinical symptoms (and have a “knock-on”
effect in development; see also Williams, 2011).

BASIC APPROACH TO TEMPORAL AND NUMERICAL
INTEGRATION
The psychological process of actively representing time and num-
ber magnitude estimations (see Meck et al., 1985), and the
form this integration may take, is expected to be among the
premier topics to unite systems, cellular, computational, and
cognitive neuroscience for the foreseeable future (Meck, 2003).
Temporal processing has been a topic of interest since the dawn
of modern experimental psychology—perhaps as a function of
its ties to philosophy and physics involving the investigation of
absolute vs. relative time perception (Myers, 1971; Wackermann,

2008; Buhusi and Meck, 2009a,b; Lustig, 2011) as well as the
impressive ability of humans and other animals to learn and
adapt to the temporal and numerical qualities of environmental
events (Skinner, 1938; Gibbon, 1977; Gibbon et al., 1997). The
mode-control model (for time and number) is related to “scalar
expectancy theory” (SET; for time only, Gibbon et al., 1984).
These types of accounts were stimulated by studies of rodents
(and pigeons) operating on fixed-interval schedules (an event
occurs at a fixed period in time). With training, rats and pigeons
demonstrate “expectancy” (or anticipation) of an event around
the time it is scheduled (Church and Gibbon, 1982; Roberts and
Boisvert, 1998), and the accuracy of their temporal expectancies
(duration judgment) can be neuropsychologically manipulated
(e.g., by pharmacological agents, task load, sensory qualities; e.g.,
see Meck, 1983, 1996). Their behavioral expectancies conform to
the scalar property (discussed in the next section). Animals also
appear to perform “superstitious behaviors” (Skinner, 1948) or
sequences of actions to “count” (or parse) the passage of time
(Killeen and Fetterman, 1988). Rats, pigeons, and monkeys can
also discriminate the number of entities in a set when non-
numerical dimensions (such as surface area, density, perimeter,
duration, and rate) are strictly controlled for, and their per-
formance reflects the use of similar analog representations of
number to those of adult humans (e.g., Fetterman and MacEwen,
1989; Brannon and Terrace, 1998, 2000; Emmerton, 1998). These
animals can also be trained to press a lever a specific number of
times (fixed-ratio schedules), and appear sensitive to the rate of
reinforcement (rate is defined as number divided by time)—there
is also evidence that certain animals can perform simple arith-
metic reasoning (addition, subtraction; see Gallistel and Gelman,
2000 for a fuller discussion).

MODE-CONTROL MODEL OF MECK AND CHURCH (1983)
The mode-control model of counting and timing (see Figure 1;
Meck and Church, 1983) was developed to account for such find-
ings, and provides a unified theory of numerosity and timing by
positing the existence of a functioning isomorphism (formal cor-
respondence) between number and duration. It assumes a similar
functional network operates to process either time or number
(see; Meck et al., 1985; Church and Broadbent, 1990; Meck, 1997;
Carey, 1998, 2001; Gelman and Cordes, 2001; Nieder et al., 2002;
Nieder and Miller, 2003, 2004a,b; Pessoa and Desimone, 2003).
In this account, “pulses” are accumulated (or integrated) to pro-
vide a given estimate of magnitude, and this is then compared
to some stored (or remembered) criterion tally (of a given dura-
tion or number). Rats show similarities in their discrimination
of continuous (time) or segmented (number) signals such that
1-s segmented signal is equivalent to 200 ms of continuous sig-
nal (this has been referred to as a “quantal unit”; Meck et al.,
1985). This type of organization (in particular, the required com-
parison between current and stored magnitude estimates) may
also facilitate arithmetic processing of basic time and number
magnitudes (see Gallistel and Gelman, 2000), as an alternative to
cross-dimensional statistical learning process that are proposed in
ATOM (Walsh, 2003).

The way the integration mechanism is applied in the model is
that at the onset of a relevant stimulus pulses are directed into an
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FIGURE 1 | The information-processing “mode-control” model of timing

and counting. A pacemaker emits pulses which are gated into an
accumulator; it is a counter if operating in the event mode, and a clock
if operating in the run mode (see text for details). The current

accumulator value can be held in working memory and compared to a
previous accumulator value stored in reference memory. A decision
process determines the appropriate response [adapted from Meck and
Church (1983)].

accumulator by a “mode switch” that allows pulses to flow (into
the accumulator) in one of three different modes (run and stop
modes for time, and an event mode for number) depending on
the nature of the stimulus (see, Church and Meck, 1984; Meck
et al., 1985; Broadbent et al., 1993; Meck, 1997). There is no mode
nor accumulation process detailing the comparable process for
space (although this is not to say the model might not be able
to be adapted to do so). “An animal may be said to be timing if
the duration of an event serves as a discriminative stimulus; an
animal may be said to be counting if the number of events serves
as a discriminative stimulus” (Meck and Church, 1983: 320).

A word of caution should be given here to the term “count-
ing.” As it relates to the mode-control model, “counting” refers to
non-symbolic numerosity accumulation. In the human literature,
“counting” typically refers to related symbolic number represen-
tations (and related cognitive processes; e.g., Wynn, 1990). We
shall highlight the development of symbolic counting abilities in
children later.

EVENT MODE
The magnitude estimation of number occurs in the event mode,
when the mode-control model is assumed to be a model of
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(non-symbolic) counting. In this mode, discrete numerosities are
represented by the linear magnitude of a “batch” of pulses from
a pacemaker accumulated upon stimulus onset. (Borrowing the
analogy of Gallistel and Gelman, 2000; akin to adding a discrete
cupful of liquid to a container all at once; n.b. in the experiments
by Meck and Church, 1983, 1985, number was signaled by a series
of pulses).

RUN MODE
The magnitude estimation of time occurs in run mode. In the
model time is represented as the linear magnitude of pacemaker
pulses that are accumulated over the course of stimulus dura-
tion. (Akin to pouring liquid in from a continuous free-flowing
source).

TEMPORAL INTEGRATION
Represents the numerosity of events or objects collected in the
accumulator (a total tally) and thus constitutes this model’s pro-
posed numeron, just as this same temporal integration process
represents duration when pulses are gated through the switch in
the run mode. (Akin to the scale on the container measuring how
much liquid it contains; see Gallistel and Gelman, 2000).

A further point to note, is that according to mode-control
models, if timing pulses are counted when a “neural network”
is running (i.e., the ON signal is true) then percentage of time
the “neural network” is in use can be calculated by comparing
the total count with the elapsed time. This calculation is sim-
ple even though the “neural network” may start and stop many
times during the monitoring. In order to do this, the counter must
have a switch input, as well as its normal count input. You con-
nect the neural network’s ON signal to the switch and a source of
clock pulses to the normal count input, making the measurements
within the counter.

FOUR PHYLOGENIC SIMILARITIES IN TIME AND
NUMBER SENSE THAT THE MODE-CONTROL MODEL
CAN ACCOUNT FOR
The mode-control model is successful as it can accommodate four
fundamental phylogenic (and ontogenetic) similarities common
to both time and number sense (e.g., Meck et al., 1985; Fetterman,
1993; Roberts, 1995, 2002; Roberts et al., 1995, 2000; Roberts and
Boisvert, 1998), which we shall outline. Another strength of this
model (see also, Gibbon, 1977; Gibbon et al., 1984) is that the
shape of obtained time and number psychophysical discrimina-
tion functions correspond to functioning of the various aspects of
the model (Figure 1; see Allman and Meck, 2012 for a fuller dis-
cussion), and these types of indices are informative with respect
to the typical and atypical development of NEUTIN. For example,
on a bisection task (where two “anchor” exemplars are trained,
and intermediates are classified) non-humans and humans reveal
a subjective mid-point between the geometric and arithmetic
mean of the “anchor” (smallest and largest) stimuli (durations,
numerosities, line length; see, Church and Deluty, 1977; Meck,
1983; Allan and Gibbon, 1991; Wearden, 1991; Wearden and
Ferrara, 1995, 1996; McCormack et al., 1999; Melgire et al., 2005;
Droit-Volet et al., 2008; Penney et al., 2008; Kopec and Brody,
2010).

1. Both time and number transfer to novel stimuli, and oper-
ate simultaneously in a similar manner. Rats trained to press
one lever in response to a “short,” 2-s, 2-pulse tone sequence
and another lever in response to a “long” 8-s, 8-pulse tone
sequence reveal they have represented both time and num-
ber properties of these compound stimuli (second/pulse).
For instance, rats’ will continue to use the “short” response
when presented with a novel 4-s, 2-pulse sequence and use
the “long” response for a novel 4-s, 8-pulse tone sequence.
Similarly, they will respond “short” in response to a new 2-s, 4-
pulse sequence and “long” to a new 8-s, 4-pulse sequence. In
other words, there appears a correspondence and “meaning”
to their nature (Meck and Church, 1983).

2. Magnitude estimations of time and number are transferable
to an equivalent extent, such that the contents of an accu-
mulator in the “event” (count) mode can be compared to a
stored value in “run” (time) mode. Timing and counting in
rats also transfers to a similar extent between different stim-
ulus modalities (i.e., auditory to cutaneous) suggesting that
amodal estimates of time and number can be extracted from
many types of events (Meck and Church, 1983).

3. Certain pharmacological agents; particularly those that modu-
late dopaminergic, glutamatergic and cholinergic systems, can
influence time and number estimations in equivalent ways.
The produced magnitude estimate is modulated in a dose-
dependent manner by administration of indirect dopamine
agonists such as amphetamine and cocaine, which produces
an overestimation of both duration and number. Dopamine
antagonists (e.g., haloperidol) have the opposite effect, effec-
tively producing an underestimation of time and number
(e.g., Meck, 1983, 1996; Meck and Church, 1987; Meck and
Williams, 1997; Matell et al., 2004, 2006; Lustig and Meck,
2005; Cheng et al., 2006, 2008).

4. Time and number have identical discriminability and appear
bound to the scalar property. For instance, rats reveal
equivalent sensitivity to a proportional 4:1 ratio of counts
and times (Meck and Church, 1983). This reflects the
use of analog mental representations that obey the psy-
chophysical tenets of Weber’s law, found in other forms
of perception (Moyer and Landauer, 1967; Buckley and
Gilman, 1974). “The ‘scalar property’ refers to the fact
that the variance (or ‘noisiness’) of a cardinal memory
magnitude representation is proportional to the objective
magnitude (bigger = noisier). When mental magnitudes
have scalar variability, the discriminability of values obeys
Weber’s law, because the degree of overlap between repre-
sentations remains constant when the ratio of the means
is held constant. Thus the amount by which two scalar
quantities must differ in order to meet a constant crite-
rion of discriminability is proportional to their magnitude”
(Weber’s law; Whalen et al., 1999:130). Thus “the over-
lap between two [magnitude] distributions with scalar vari-
ability is determined by the ratio of their means” (Cordes
et al., 2001:698). The mode-control model accommodates
the scalar property at the level of memory distribution
(rather than through variance in the pulse accumulation
process).

Frontiers in Integrative Neuroscience www.frontiersin.org March 2012 | Volume 6 | Article 7 | 4

http://www.frontiersin.org/Integrative_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Integrative_Neuroscience/archive


Allman et al. Neuroscience of time and number

NON-SYMBOLIC “SENSE” OF NUMBER AND TIME
The mode control model is specifically designed to explain time
and number magnitude estimates in animals (see Meck and
Church, 1983; Meck et al., 1985), but may provide a useful frame
of reference for understanding the development of non-symbolic
counting and timing processes in non-verbal infants, young chil-
dren, and adults (e.g., Gallistel and Gelman, 1992; Wynn, 1992,
1995, 1996, 1998; Broadbent et al., 1993; Roberts and Mitchell,
1994; Roberts, 1995; Meck, 1997; Breukelaar and Dalrymple-
Alford, 1998; Wynn and Chiang, 1998; Dehaene et al., 1999; Xu
and Spelke, 2000; Spelke, 2000; Wynn et al., 2002; Brannon and
Roitman, 2003; Xu, 2003; Cordes et al., 2007).

IN INFANCY
Evidence of a primitive time and number sense in early devel-
opment includes reports that very young infants (and in some
cases, newborns) can discriminate small numbers of syllables
and tones (Bijeljac-Babic et al., 1993; van Marle and Wynn,
2006), simple dots (Starkey and Cooper, 1980; Antell and Keating,
1983), moving objects and collections of objects (van Loosbroek
and Smitsman, 1990; Wynn et al., 2002), can enumerate het-
erogeneous arrays of objects as well homogeneous arrays (e.g.,
Strauss and Curtis, 1981; Feigenson, 2005), and can discrimi-
nate between numerosity with the same precision in all modalities
(Feigenson, 2007). Infants have also been shown to repre-
sent small numerical quantities across modalities (Jordan and
Brannon, 2006), and discriminate between large numerosities
(Lipton and Spelke, 2003). It even appears that “nuisance” task-
irrelevant sensory information may improve infants’ numerical
precision (Jordan et al., 2008). Infants also show interchange-
ability between numerosities of different dimensions such as
between two-or three drumbeats and two-or three objects, even
when duration is controlled for (Starkey et al., 1983; Kobayashi
et al., 2004; Feron et al., 2006; Izard et al., 2009). Collectively
these studies suggest that an innate form of abstraction exists
between different types of the same numerical magnitude
in early life.

As it relates to time sense, infants possess sensitivity to tem-
poral rhythm (Trehub and Thorpe, 1989) and are able to syn-
chronize and adapt their sucking behavior (and other forms of
motor activity) with the tempo of an external stimulus (Bobin-
Bègue et al., 2006). There is also evidence to suggest that infants
attend to the temporal features of stimuli in their environment
(Clifton, 1974; Jusczyk et al., 1983). For example, by 2 months of
age, infants are sensitive to the duration of sounds that differ by
less than 1-s (Jusczyk et al., 1983), and similar results have been
obtained for speech sounds (Eimas and Miller, 1980).

Lourenco and Longo (2010) revealed that 9-month-old infants
can (bi-directionally) transfer learned associations (a map-
ping between stimulus color and relative magnitude) between
greater/lesser durations, size and numerosity. This points to a
(at least partly) shared general magnitude representation system,
and is consistent with both the mode-control model (although
it was not adapted for space) and ATOM. These findings reveal,
“representations of magnitude information are (at least partially)
abstracted from the specific dimensions” (Lourenco and Longo,
2010:873). They lean away from the mode-control model as

findings suggest, “the relation between number and time is only
one type of association in a more general system of magnitude
representation” (Lourenco and Longo, 2010:79).

Perhaps the most striking support for the mode-control
approach is evidence from young infants that magnitude esti-
mates of time and number show scalar variability. Recall that in
the mode-control model, ratio dependency (a larger ratio dif-
ference is easier to discriminate) is explained due to (a decrease
in) the noisiness of stored time and number magnitude estima-
tions (i.e., their spread is reduced, so they overlap less). ATOM
acknowledges that the scalar property is a quality of multisensory
perception. Intriguingly, the scalar property is also a quality of
early social interactions for the infant (e.g., Stern and Gibbon,
1978; Jaffe et al., 2001). Like our other senses, it appears time
and number sense is based on ratio (rather than absolute) dif-
ferences (in magnitude). Furthermore, this appears to be honed
during the first year of life (e.g., there are quantitative develop-
mental changes between 6- and 10-months of age in both time
and number sense). These findings endorse a common system of
magnitude representation between time and number (in the con-
text of the mode-control model; Church and Meck, 1983; Gallistel
and Gelman, 2000).

For instance, Xu and Spelke (2000) as well as Xu et al. (2005)
report that 6-month-old infants can discriminate visual numeri-
cal arrays that differ by a 1:2 ratio (e.g., 8 vs. 16 dots) even when
contour length (density, surface area, etc) is controlled for, but
these infants do not discriminate visual arrays that differ by a 2:3
ratio (e.g., 16 vs. 24 dots). Although this pattern of results has
also been obtained when numerosity is signaled by sequences of
tones (which must be integrated across time, Lipton and Spelke,
2003), and actions (Wood and Spelke, 2005) a recent study in
6-month olds has revealed numerical sensitivity to ratios includ-
ing 2:3, 1:3, 1:4, but only if tested under certain arrangements
(Libertus and Brannon, 2010). Moreover, individual differences
in preference for a numerically changing display are stable, and
the sensitivity to detect (ratio) numerical change at 6-months of
age is predictive of numerical change detection scores at 9-months
of age (Libertus and Brannon, 2010). Cordes and Brannon (2009)
examined the ability of 7-month-old infants to compare small
and large number sets under a variety of ratio conditions (e.g.,
1:2 and 1:4), and report that small and large number sets could
both be discriminated given a fourfold, but not a twofold change
in number. In contrast, Wood and Spelke (2005) report that 1:2
ratio dependence in 6-month olds holds for larger numbers of
actions (greater than 4), but not for small numbers of actions (less
than 4). We shall extend our discussion of small vs. large numbers
in a later section.

There are a handful of studies that have behaviorally assessed
duration discrimination thresholds in infants between 4- and 10-
months of age (Brannon et al., 2004a, 2008; van Marle and Wynn,
2006; Provasi et al., 2011). For example, van Marle and Wynn
(2006) revealed 6-month-old infants can discriminate between
durations of 2- and 4-s, but not between 3-s and 4.5-s. That is to
say, typical 10-month-old infants can discriminate between dura-
tions (time) that differ according to a 1:2 ratio, as 6-month olds
can, in addition to a 2:3 ratio, which 6-month-old infants cannot
(as is the case for number, see Brannon et al., 2007).
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Support for the idea that other dimensions (i.e., space) are
also represented as noisy magnitudes, and perhaps a shared rep-
resentational currency is provided by Brannon et al. (2006).
These authors report that 6-month infants reveal the same ratio-
dependency when discriminating size/area (i.e., 1:2, but not 2:3)
as for time and number. To-date, it is unknown whether preci-
sion for area similarly increases with age (e.g., by 10 months). In
addition, Möhring et al. (2012) revealed the same 1:2–2:3 ratio
improvements between infants 6- and 10-months of age when
discriminating different speeds (time/distance).

Given that psychophysical functions superimpose (with scalar
variability), it appears young infants possess similar subjective
sensitivity for different dimensions (i.e., time, number, area,
line-length, speed), which supports the idea that all quanti-
ties (continuous or not) are represented by analog magnitudes
with scalar variability, and the ability to represent magnitudes
improves according to a developmental trajectory set into motion
in early life.

IN CHILDHOOD
Sensitivity for time and number sense, perhaps not surprisingly,
continues to improve during childhood (we shall go on to discuss
findings as they relate to time and number in children sepa-
rately). For instance, Halberda and Feigenson (2008) revealed a
marked improvement in the performance of 3-and 6-old year-
old children during number discrimination from a 3:4 ratio
to 5:6 with increasing age (adults were as high as 10:11), and
between the ages of 5–7 years, children become able to discrimi-
nate number with increasing precision (e.g., see, Huntley-Fenner
and Cannon, 2000; Huntley-Fenner, 2001). Four-year-old chil-
dren can accurately select the visual array of dots that corresponds
numerically to a sequence of sounds while younger children can-
not (Mix et al., 1996). Siegler and Booth (2004) report age-related
changes between 6 and 8 years of age in children’s represen-
tation of the “mental number line” (described in more detail
later). Specifically, younger children reveal logarithmic spacing
and older children linear spacing between numbers. Logarithmic
spacing (noise independent of magnitude) is inconsistent with
the scalar property (noise proportional to magnitude), and afore-
mentioned non-human and infant findings demonstrating simple
arithmetic reasoning (see Gibbon and Church, 1981; Brannon
et al., 2001).

Droit-Volet et al. (2003) employed a bisection task with
5-and 8-year-old children (and adults), which required selective
attention to either time or number when they were both simulta-
neously presented (ignore one dimension). They report that for
younger children, number interferes with time, but time does
not interfere with number (an effect attenuated in older chil-
dren; but present in adults, Dormal et al., 2006). Droit-Volet and
colleagues subsequently examined time, number and line-length,
with number and line-length presented sequentially (through
time) and non-sequentially (Droit-Volet et al., 2008). During
non-sequential presentation, the obtained psychophysical func-
tions for number and line-length were comparable in both 5- and
8-year olds, but there was a relatively larger subjective mid-point,
and index of reduced sensitivity, for timing functions from all
children. Moreover, when number and line-length were presented

sequentially, these dimensional differences disappeared. They
interpreted their results in the context of the mode-control model
and the pulse accumulation process for time, which is suited to
sequential magnitude estimation. They contend that this type
of processing demands attentional and working memory abili-
ties (and are themselves components of these models; Figure 1)
and this system is “tapped into” during sequential presentation
of other dimensions (e.g., line-length, however the model is not
presently designed to accommodate such dimensions).

DEVELOPMENT OF TEMPORAL COMPETENCE IN CHILDHOOD
Correspondences between age-related changes in sensitivity to
different dimensions suggests that between the ages of 5- and
8-years old, sensitivity for time lags behind sensitivity for num-
ber (Droit-Volet et al., 2003); time appears to be a dimension
that younger children may find less salient and less likely to
attend to (Gautier and Droit-Volet, 2002). In fact, it is his-
torically considered in developmental psychology (Piaget, 1946;
Fraisse, 1967; Ornstein, 1969) that children are not equipped
with temporal abilities; instead these derive from superior abil-
ities in the processing of other dimensions (e.g., speed, num-
ber; although studies highlighted in this review have since
rebutted this).

For instance, the timing functions obtained with 3-, 5- and
8-year-old children reveal (the scalar property, and) temporal
judgments become more precise across development, which may
be related to attentional and working memory function (see,
Droit-Volet and Wearden, 2001; McCormack et al., 2004; Rattat
and Droit-Volet, 2005; Wearden, 2005; Droit-Volet and Meck,
2007; Droit-Volet et al., 2007).

Theoretical and computer modeling (in the context of scalar
expectancy theory; Gibbon et al., 1984) of temporal magnitude
data from children, tends to support the notion that various
components of the mode-control model, particularly “reference
memory” and attention, undergo age-related changes (see Droit-
Volet and Wearden, 2001; Droit-Volet et al., 2001; Droit-Volet,
2002, 2003a,b). As such, the development of psychological vari-
ables closely associated with “timing ability” (e.g., attention,
memory), may also play a role in the development of timing per-
formance across childhood and old age (e.g., Lustig and Meck,
2001, 2011; Lustig et al., 2005). Modeling of the timing functions
from children (interpreted within the context of scalar expectancy
theory) has also suggested that younger children make more ran-
dom responses than older children (i.e., between 3- and 8-years
old; Droit-Volet and Wearden, 2001).

Recently, Zélanti and Droit-Volet (2011) revealed discrimi-
nations between relatively small temporal magnitudes are eas-
ier than larger ones, and there are age-related improvements
(between 5- and 9-years of age), with temporal sensitivity improv-
ing earlier for the short than for the long durations. Age-
related improvements for “shorter” durations were predictive of
the development of the span of short-term memory, whereas
improved competence for “longer” durations was related to the
development of attention and executive functions. However only
age, and no cognitive abilities, were found to predict individ-
ual differences in time discrimination between the shortest and
longest durations.
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It has also been reported the psychophysical timing functions
of children aged 3-, 5- and to a lesser extent 8- year olds, become
flatter (less sensitive) when interval timing is either interrupted
or tested after a (e.g., 24-h) retention delay. Rattat and Droit-
Volet (2005) also reveal an interruption task tends to lengthen
the subjective magnitude estimation, particularly in 5-year olds,
which they attributed to stored representations of trained tempo-
ral magnitudes in memory. Furthermore, temporal estimations
in children are inflated if the stimulus is bigger or brighter
(Levin, 1977, 1979, 1982). This represents known properties of
the psychophysiological modulation of time perception in adults
(Gibbon et al., 1997; Buhusi and Meck, 2005). Children also tend
to overestimate time on perception tasks, and under-reproduce a
given duration, and their duration judgments are less stable (see
Block et al., 1999).

It has been proposed that children under the age of 8 years, do
not tend to spontaneously count while timing (Wilkening et al.,
1987), and Clément and Droit-Volet (2006) report that temporal
magnitude estimations of 5-year olds display the scalar property
in both counting and non-counting conditions, but by 8-years
and adulthood, counting during timing results in a violation
the scalar property (see also, Hinton and Rao, 2004). This find-
ing can be explained according to the mode-control approach.
“Counting is a multistep process, with the number of steps pro-
portional to the numerosity counted. If there is some probability
of error (either skipping an item or counting it twice) at every
step, then the more steps there are, the greater the expected
accumulation of miscounts. The variability in counts from this
source should, however. . .grow in proportion to the square root
of the numerosity. . .discriminations should get relatively better
as numerosities increase. That is, the discrimination of 30 from
20 should be more accurate than the discrimination of 3 from 2,
contrary to Weber’s law” (Cordes et al., 2001:699).

Lustig and Meck (2011) demonstrated that 8-year-old chil-
dren (and younger and older adults), showed “typical” sensory
modality asymmetry for durations signaled by either “sights”
or “sounds.” Usually it is found that a magnitude estimation
for time can be influenced by the modality, such that a given
stimulus duration (i.e., 5-s) is perceived as a longer if it is sig-
naled by a sound rather than a light (Wearden et al., 1998;
Penney et al., 2000). It is assumed by the mode-control model
that the clock runs faster for auditory stimuli as they cap-
ture and hold attention relatively automatically—thus they are
more efficient at holding the switch closed, allowing larger pulse
accumulations (see Figure 1)—whereas attending to visual stim-
uli requires controlled attention (Meck, 1984). In addition, a
memory distribution (of a given duration) may be composed
of “mixed-modality” memories, such that there might be a
bias by skew of over-represented modality (see Chen and Yeh,
2009; Gu and Meck, 2011). Lustig and Meck (2011) report
children tend to overestimate auditory stimuli compared to
adults (they are comparable for visual stimuli). “Auditory stimuli
are disadvantaged relative to visual stimuli in children’s long-
term memory and age-related declines in attention” (Lustig and
Meck, 2011:2). In a separate study, Droit-Volet et al. (2004)
report that 5-year olds have greater variability in their judg-
ments of visual stimuli than auditory ones, indicating improved

developmental temporal sensitivity for “sounds” rather than
“sights.”

It has also been reported that although 3-year-old children can
“time” an event, they have difficulty timing the duration between
events (Droit, 1994). Young children are also found to base their
ability to estimate duration through action (Droit, 1995) or an
external “ticking” clock (Droit, 1994), but this is reduced by
around age five, and they seem aware of temporal rules govern-
ing their behavior (Droit et al., 1990; Pouthas et al., 1990). It has
also been reported that 3-year olds produce more accurate tem-
poral magnitude estimates when they are asked to press harder
than press longer, and press for longer and harder when asked
to press harder. Droit-Volet and Rattat (1999) reveal five-and-a-
half-year olds are able to transfer a target duration across different
actions, but 3 year-olds cannot, suggesting children do not dis-
sociate time from action, or develop abstract concepts of time,
until around 5 years of age. This is consistent with ATOM which
emphasizes a single magnitude system arose from the need for
action. According to Droit-Volet (1998) “children’s feeling that
something is resisting them through their action may be the first
step toward the understanding of duration” (1998:247).

THE DEVELOPMENT OF NUMERICAL ABILITY AND
SYMBOLIC NUMBER ACROSS INFANCY AND CHILDHOOD
As has been discussed, there is much evidence to support the
idea that a primitive time and number sense (at least) is onto-
genetically “built in,” but there is much debate as to the form
this may play in numerical development. In fact, preverbal count-
ing may be a precursor to verbal counting abilities, as the basic
number sense may provide the basis for the verbal system and
arithmetic computation (Gallistel and Gelman, 1992). There are
some comparative findings with non-humans to suggest that ani-
mals can learn to map symbolic Arabic digits (1–9) to objects and
appropriately make use of this knowledge through symbolic label-
ing (e.g., see, Matsuzawa, 1985; Washburn and Rumbaugh, 1991;
Brannon and Terrace, 1998, 2000; Pepperberg, 2006). “A more
controversial question is whether there is ontogenetic continuity
in numerical cognition” (Brannon, 2002:224). We shall now high-
light children’s development of counting and symbolic number
representation.

The mode-control approach has been influential in the debate
surrounding the foundations of numerical thinking and verbal
counting ability during human development (e.g., Gallistel, 1990;
Starkey et al., 1990; Wynn, 1990; Gallistel and Gelman, 1992;
Dehaene et al., 1999; Grondin et al., 1999; Whalen et al., 1999;
Brannon et al., 2001). Instead of using the representational con-
vention whereby (symbolic) numbers are used to represent linear
magnitudes, the mode-control model supposes the nervous sys-
tem uses numerosity magnitudes to represent symbolic number.
Accordingly, numerate individuals are presumed to have learned
to map magnitudes of basic number sense to number words and
numerals (i.e., from non-symbolic to symbolic; see Gallistel and
Gelman, 2000). ATOM supposes, “when we later learn about
[symbolic] number, the scaling mechanisms used for [all contin-
uous] dimensions with action-relevant magnitude information
will be co-opted in development for the scaling of [symbolic
discrete] number” (Bueti and Walsh, 2009:1836).
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IN INFANCY
Although the aforementioned findings support the notion that
the ability to represent and compare numerosity appears early in
development, other studies suggest that infants attend to contin-
uous spatial dimensions such as surface area and contour length
rather than number per se (Clearfield and Mix, 1999; Feigenson
et al., 2002), challenging the notion that numerical represen-
tation is present in infancy (see, Mix et al., 2002; Newcombe,
2002). An alternative view is numerical competence in infancy
is the product of an automated system for tracking and reason-
ing about small numbers of (non-numerical) “object files” or
object-tracking mechanisms (e.g., Kahneman et al., 1992; Trick
and Pylyshyn, 1994). By this form of account, object-file represen-
tations (rather than analog magnitudes) form the foundation of
the verbal counting system (see, Carey, 1998, 2001; Spelke, 2000;
Le Corre and Carey, 2007, 2008).

In support of this view, Feigenson et al. (2002) report that
10- and 12-month-old infants use object-file (size) rather than
numerical ratio to track sequentially hidden objects, as they can
compare representations of objects, and make ordinal “more” or
“less” judgments—but only when the magnitudes were relatively
small and within the limits (of about four items) of the “object-
file” system (i.e., 1 vs. 2, or 2 vs. 3; but not 4 vs. 6). However
Brannon (2002) has revealed that the ability to make ordinal
number judgments develops between 9- and 11-months of age,
even for numerosities that exceed the bounds of the object-file
system (see also Dehaene and Changeux, 1993). Discrepancies
between small and large numerosities may also reflect different
conditions that direct young infants attention to number (Xu,
2003; Feigenson et al., 2004; Wood and Spelke, 2005).

The “magic number four” has been taken as evidence that
infants ability to numerate small numbers is related to “subitiz-
ing” (Trick and Pylyshyn, 1994), and that symbolic (verbal)
representations of number provide the basis for developing a
(non-symbolic) understanding of numerosity (rather than the
other way around, as supposed by the mode-control model).
Of course, this type of account is at odds with aforementioned
findings that infants can discriminate between large numerosi-
ties (with a large ratio difference), and can successfully reason
about the “magical disappearance” of a large number (specifically,
a collection) of objects (Chiang and Wynn, 2000).

Essentially, the dichotomy between small and larger numbers
speaks to the issue of whether they are represented by the same
or different cognitive system (see Buhusi and Cordes, 2011; Hyde,
2011), and was first addressed by Jevons (1871): are numerosi-
ties less than the “magic number four” processed as individual
entities (subitizing, effectively filling in pockets of space), while
larger numbers are represented through the approximate number
system? (ANS; Feigenson et al., 2004). Alternatively, all magni-
tudes (small and large; as proposed by the mode-control model)
may be represented by a single system, such as ANS (Gallistel and
Gelman, 2000; Cordes et al., 2001; Cordes and Brannon, 2009),
with the accumulated magnitude representing a cardinal value.
However it has been cautioned that “accurate theories of numer-
ical cognition must take seriously the notion that, under many
conditions, small numbers are represented as arrays of numeri-
cally distinct individuals, not as sets with approximate cardinal

values” (Hyde and Spelke, 2012:13). Of course, if numerosities
below the “magic number” are integers rather than real-valued
magnitudes, they should violate scalar variability.

McCrink and Wynn (2004) examined infants’ numerical com-
putation explicitly using large numbers, and found that 9-month
olds appear to conduct arithmetic operations (addition and
subtraction) over estimates of numerical magnitude, further sup-
porting the idea that number sense supports numerical manipu-
lations and operations.

IN CHILDHOOD
A puzzling inconsistency is that infants are often purported to
possess numerical abilities that young children do not seem capa-
ble of when tested in explicit choice paradigms (Huttenlocher
et al., 1994; Mix et al., 1996, 2002; Newcombe, 2002). For exam-
ple, Huttenlocher et al. (1994) showed that children younger than
3 years of age could not predict the numerical outcome of a
nonverbal addition and subtraction task. Four-year-old children
could accurately select the visual array of dots that corresponded
numerically to a sequence of sounds while younger children per-
formed at chance. These accounts of numerical development
suggest that children gradually develop the ability to form and
manipulate abstract representations of number.

Cantlon et al. (2010) report that 3-year-old children appear to
represent analog numerical magnitudes when enumerating sets
of objects, even those within the “magic number four” subitizing
range, and numerical judgments were influenced by area. These
authors observed ratio-dependence (scalar variance) for num-
bers both within and beyond the “magic number four” subitizing
range. Young children in this study also appeared to preferentially
attend to number over area.

Piaget (1952) reports abstract knowledge of arithmetic
requires considerable learning (i.e., is not “built-in”) and does not
emerge until a child is between 4 and 7 years of age, but studies
have since revealed young children (between one-and-a-half-year
to four years of age) master number conversion (e.g., see Gelman
and Gallistel, 1978; Starkey, 1992), and preschool children pos-
sess an abstract representation of number and simple addition
(Brannon and Van de Walle, 2001; Barth et al., 2005).

Spelke (2000) attributes the acquisition of mathematical skills
to object knowledge (permanence through space and time)
and numerosity, and it has been asserted that children must
“possess a magnitude-based estimation system for representing
numerosities that also supports procedures for numerical com-
putation” (McCrink and Wynn, 2004:776). Despite the infamous
(debunked) “clever Hans” demonstrations—the horse that appar-
ently had mastered symbolic calculation—it has been revealed
in children at least, that basic number sense (and numerosity
estimation) is related to math ability and the development of
mathematical intelligence (e.g., Carey, 1998, 2001; Gallistel and
Gelman, 2000; Gelman and Gallistel, 2004).

Booth and Siegler (2006, 2008) report an association between
5-year-old children’s school math achievement and linear (as
opposed to logarithmic) sequencing of symbolic (Arabic) num-
bers along a spatial schematic number line—this suggests the
spatial arrangement of numerical representations affects math
abilities (Siegler and Ramani, 2009). The ability to quickly make
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ordinal comparisons between symbolic numbers also appears to
be related to arithmetic calculation in older children (6–10-year
olds; e.g., De Smedt et al., 2009).

Recently, Libertus et al. (2011a) reported that the acuity
(sensitivity) of preschoolers’ number sense was predictive of
school math ability, even prior to the onset of formal math-
ematics instruction, and controlling for age and verbal skills.
There are other studies that report stable individual differences in
school-based math ability (verbal counting, ordinal comparison,
arithmetic) in young children early into their formal educa-
tion (Jordan et al., 2006, 2007, 2008, 2009). Collectively, these
studies provide evidence that a primitive number sense lays the
foundation for more advanced numerical abilities.

By 3 years of age, children appear to have mastery of some parts
of the one to ten count sequence (Wynn, 1992), and between the
ages of three-and-a-half and four and-a-half children are skilled
with the decade count order (10, 20, 30, etc; Fuson, 1992). Also,
behavioral response times reveal marked age-related changes and
improves between the ages of 2 and 7 years (Huntley-Fenner and
Cannon, 2000; Huntley-Fenner, 2001). By the age of 5 years, not
all children have developed the ability to link symbolic symbols
with non-symbolic quantities (Lipton and Spelke, 2005).

A related line of research examines how counting typi-
cally becomes related to determining numerosity (cardinal word
principle)—this may be related to one-to-one correspondence
between items and number tags (Gelman and Gallistel, 1978; Mix
et al., 2011). In other words, children need to learn how count,
but also why we count (and that the last count represents a mag-
nitude estimate). The fact that small numerosities (<4) can be
determined without counting (“subitizing”) may be at the root
of developing this knowledge. The representation of the words
“one,” “two, “three, “four” is progressive, but for other number
words the child needs to understand the equivalence between the
order of the words in the counting list and the successive numbers
that are related by the function “+1” (see Carey, 2004). In much
the same way, two, 2, and •• are equivalent in their “two-ness.”

Wynn (1990) revealed that children aged between 2- and
3-years old generalize counting such that they can count sounds,
actions and objects. This is informative as the number of objects
might be determined by counting them in any order, but actions
and sounds must be counted in a certain order (i.e., when they
occur). If asked “how many” after counting, children younger
than 3-years of age are unable to produce an estimation of mag-
nitude that corresponds to the last number counted, whereas
children older than 3-years can. Moreover, if required to “give-
a-number” (i.e., perform an action a certain number of times),
children over 3-years of age will count as they perform the task,
whereas younger children do not (they tend to give only one or
two; see also Zur and Gelman, 2004).

It has been postulated that acquiring symbolic language
enables children to become able to make conceptual inferences
(e.g., see Spelke, 2011), by allowing them to selectively attend
to relevant information (e.g., Sandhofer and Smith, 1999). This
has led some researchers to propose that the numerical con-
cepts demonstrated by infants are not obviously related to the
later numerical concepts exhibited by preschool children as they
begin to count verbally (Mix, 1999; Mix et al., 2002; Newcombe,

2002; Rousselle et al., 2004). In a study of how children judge
the numerical equivalence of arrays of objects, Mix (1999) found
that children gradually develop the ability to identify numerical
equivalence. Children between 3- and 4-years of age could recog-
nize numerical equivalence among homogeneous arrays in which
elements were similar to one another, but could not reliably recog-
nize numerical equivalence among heterogeneous arrays, which
was only found in 5-year olds. The ability to identify numerical
equivalence for heterogeneous arrays was correlated with chil-
dren’s verbal counting ability, independent of age. Mix (1999)
argues that number words allow children to acquire abstract
number concepts, even within the context of a nonverbal match-
ing task (see also Mix et al., 1996)—children become better able to
ignore superficial object features as they master the verbal count-
ing system because number words embody abstract numerical
categories. In other words, children gradually develop the abil-
ity to represent number as they acquire linguistic and symbolic
knowledge. Previous studies of numerical cognition that required
verbal identification of the number of objects in an array have
obtained similar results (Von Gast, 1957; Siegel, 1974).

Since Piaget (1952) studies using the number conservation
task, it is well known that children before the age of 6 or 7 years
will judge the number of counters in two parallel rows to be equal
if the counters are arranged opposite to each other (i.e., in one-to-
one correspondence), but a longer (or shorter) row (e.g., created
by spreading out/pushing together the counters) is consistently
judged to have more (or less counters, respectively; see also Mix
et al., 2011). In ATOM, Walsh (2003:486) points out “is perhaps
maladaptive for an infant brain not to use a common metric [for
different magnitudes] as it is difficult for an older child to unbind
these three elements [time, space, and quantity],” and is highly
dependent upon the ability to learn associations between them.

MAGNITUDE ESTIMATION IN ADULTHOOD
As it relates to number (and time) sense, it is found in both non-
humans and adults, that the speed and accuracy of estimates
of magnitude can be influenced by distance and size effects
(see Rumbaugh et al., 1987; Washburn, 1994; Brannon and
Terrace, 2000; Brannon and Roitman, 2003). Of course, this
relates to ratio-dependence (the scalar property); the ability to
discriminate two numbers improves as the numerical distance
between them increases, and sensitivity worsens as numerical
size increases. These effects are obtained for both non-symbolic
and symbolic number. Typically it is observed that temporal
estimation in adults conforms to the scalar property, to both
short and large durations (for a review see, Meck, 2003; Buhusi
and Meck, 2005).

In a seminal paper, Moyer and Landauer (1967) report that
during a task of symbolic Arabic number discrimination, “deci-
sion time was an approximately linear inverse function of the
numerical distance between the two stimulus digits” (as for other
dimensions) and when describing the data, “a reasonable fit is
of the same general class as those usually found to describe
. . . differences between physical quantities such as pitch and line-
length” (Moyer and Landauer, 1967:1520).

When required to press a response key a certain number of
times, there is scalar variability of adults pressing for small and
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large numbers, both within and beyond the subitizing range,
however this effect is abolished when participants are asked
to verbally count their presses out loud (Cordes et al., 2001).
Whalen et al. (1999) report proportionality (scalar variability)
between the number of taps generated following a specific request
(i.e., 7–25).

As it pertains to the “two process” theories of number devel-
opment, Revkin et al. (2008) report disproportionately higher
sensitivity for numbers in the subitizing range (1–4) than for
larger numbers in adults (see also, Trick and Pylyshyn, 1994).
The authors reconcile the violation of Weber’s law by suggesting
“that in the small-number range, variables other than the ratio
between stimuli (possibly variables relating to spatial arrange-
ment or to other perceptual factors) boost number discriminabil-
ity” and this “seems hard to separate from the original subitizing
hypothesis” (Revkin et al., 2008:613). In adults, Dormal and
Pesenti (2007) found that space influences number judgments,
but number does not influence spatial judgments, and Roitman
et al. (2007) report “short/few” and “long/many” classifications
transfer between time and number, with improved sensitivity
for number. Temporal judgments can also be biased by spatial-
numerical associations of response code (SNARC-type) effects
(Dehaene, 1997). Human findings have revealed: greater Arabic
digits (Oliveri et al., 2008); larger stimuli (Xuan et al., 2007); visu-
alized forwards motion (Vicario et al., 2007); visuomotor shifts to
the right (Frassinetti et al., 2009) and greater distances (DeLong,
1981; Sarrazin et al., 2004) are associated with longer estimated
durations (see also, Nicholls et al., 2011b). Secondary tasks tend
to disrupt temporal magnitude estimates, but only mental arith-
metic is impaired by a temporal task (Brown, 1997). It has also
been recently reported that adults’ ability to estimate time is
somewhat predictive of their mathematical intelligence (Kramer
et al., 2011).

Numerical magnitudes (i.e., 1–10) appear spatially organized
from left to right, and this phenomenon is referred to as the
mental number line (see de Hevia et al., 2008), and is believed
to correspond to the orienting of visual attention. It has been
considered that the mere presentation of symbolic digits can
impose a spatial attentional bias (i.e., left for a small num-
ber), and this shift modulates time judgments (Oliveri et al.,
2008). It has been recently reported that it is the process of
comparing size differences between numerical cues, rather than
the size of the number itself, which appears to bias time esti-
mation (Vicario, 2011). The subjective mid-point during num-
ber bisection has also been found to vary as a function of
spatial attention to the mental number line, i.e., presenting stim-
uli in near and far space (Longo and Lourenco, 2010), turn-
ing one’s head to the left or right also modulates (smaller or
larger, respectively) random number generation (Loetscher et al.,
2008), and the left and hand rights respond faster (during an
odd/even number discrimination) to smaller and larger num-
bers (respectively, Dehaene et al., 1993). Space and number
effects are also found when there is no lateralized (left/right)
response (Casarotti et al., 2007) or if events are presented in an
orthogonal arrangement (Nicholls et al., 2008; see also Nicholls
et al., 2011a). It is not beyond the scope of possibility that
(SNARC-type) spatial mappings might be related to a cultural

bias (i.e., in the Western world) to read across (and scale) from
left to right, and the correspondence to left-lateralized language
systems.

It has been suggested that spontaneous cross-modal inter-
action effects might not be as profuse in adulthood as during
infancy and childhood (see Walsh, 2003; Izard et al., 2009)—it
might make developmental sense to be equipped with a general
magnitude estimator to facilitate comparing functionally equiv-
alent co-varying quantities (e.g., to learn relations between size,
weight and length). Any such effects are also taken as support for a
general magnitude system, one in which unidirectional asymme-
tries exist between different dimensions. However, it is important
to note that stimulus magnitude effects (intensity, size, number,
emotional valence) are precisely known to bias interval time per-
ception, and pulse accumulation, and so caution should be taken
before attributing them to a more generalized process. This is par-
ticularly important from a developmental perspective, when the
attempt is essentially to establish “which comes first?” (see also,
Ansari, 2008).

DIFFERENCES IN DEVELOPMENTAL DISABILITIES
Various findings examining the relative development of time and
number sense in pediatric developmental disorder populations
have emerged. These may shed light on some of the questions
surrounding the typical development of NEUTIN. For instance,
Spaepen et al. (2011) report that deaf individuals (who live in a
remote Nicaraguan culture) who lack a language for number (i.e.,
no sign language) employ gestures to represent number, but have
markedly reduced accuracy in “how many” and “give a number”
type tasks for large numerosities (i.e., over three).

DEVELOPMENTAL DYSCALCULIA
Problems with mathematics may readily present in educational
environments with academic demands, and thus (at-risk) school-
aged children may be identified as having mathematics disorder
or developmental dyscalculia. This is one of the most well defined
disabilities as it may thus relate to number sense. This is a dis-
order of numerical competence and arithmetical skill, such as
retrieval of antithetic facts and dependence on finger count-
ing when attempting number problems, in children of normal
intelligence with no neurological injuries (see Temple, 1992).

Children who experience difficulties with mathematics reveal
differences on number-comparison tasks with both symbolic
and non-symbolic stimuli. This may suggest problems linking
symbolic and approximate, to non-symbolic numerical represen-
tations. For example, Rousselle and Noël (2007) tested number
magnitude estimates in children with mathematic learning dis-
abilities. They report impairments in Arabic number comparison,
number writing and trans-coding of tokens into Arabic numerals
(symbolic number), but intact abilities for addition and sub-
traction (non-symbolic number). Furthermore, those with math-
ematical disability revealed a propensity to represent number
magnitude over physical size (on a Stroop task), and they report
a larger numerical distance effect. Ashkenazi et al. (2009) report
a larger numerical distance and size effects for double-digit num-
bers, and interpret their findings to difficulties with subitizing and
counting in this population (see Henik et al., 2011).
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Ashkenazi and Henik (2010) administered a physical line and
symbolic number bisection task to adults with developmental
dyscalculia, and revealed affected individuals show a greater (than
typical) tendency to underestimate the subjective mid-point (and
reveal an absence of a typical bias for line bisection). They discuss
their findings within the context of differences in the development
of the mental number line, and an over-reliance on logarithmic
(rather than linear) spacing (see also Geary et al., 2007).

Collectively, these findings were taken as evidence that chil-
dren with mathematics disabilities do have a basic number sense
(numerosity) but may experience problems relating numerical
magnitudes to symbols (see also Landerl et al., 2004; Butterworth,
2010).

WILLIAMS AND DOWN SYNDROME
It has been revealed that young children (around 3 years old) with
Williams syndrome (WS) are able to enumerate small numbers in
dot arrays, but only when they differ by the 1:2 but not 2:3 ratio-
requirement (Van Herwegen et al., 2008). O’Hearn et al. (2011)
examined individuals with WS on a visual counting task, and
asked them “how many?” (cardinality principle) with a rapidly
presented array of dots. Those with WS revealed comparatively
normal performance in the counting task, but were only able to
(rapidly) accurately enumerate a (comparatively) smaller magni-
tude, even when arrays were presented for a longer period. These
findings were taken as evidence for a limited subitizing system in
WS (i.e., a “magic number three”). Ansari et al. (2005) reported
the ability of children with WS to understand cardinality was pre-
dicted by their verbal language scores. That is, affected children
may use language (rather than visuo-spatial skills, as is typical) to
develop the cardinality principle (for a review, see O’Hearn and
Luna, 2009). It has also been reported that individuals with WS
may experience specific difficulties with the “mental number line”
(number-space interaction effects) as they are less accurate on
tasks such as “is five closer to nine or six?” (O’Hearn and Landau,
2007; see also, Krajcsi et al., 2009).

In an attempt to examine whether numerosity relies upon
approximate estimates of magnitude (visuo-spatial) and symbolic
number upon verbally mediated language processes, Paterson
et al. (2006) made direct comparisons between WS (charac-
teristically aspects of language are spared, but spatial abilities
are impaired) and Down syndrome (DS; spatial spared, aspects
of language impaired). On a task displaying small numbers of
objects, they report infants with DS are impaired in their ability to
discriminate small numerosities, but infants with WS are not. On
a non-symbolic numerical distance task (using dot arrays) with
affected older children and adults, they report those with WS do
not reveal an expected distance effect, but those with DS do, sug-
gestive of impaired analog numerical magnitude representation in
WS (but not DS). They also report WS impairments on a variety
of other tasks, particularly those that require mental manipula-
tion of numbers, such as putting them in order (rote counting
was generally in tact). This pattern was interpreted as a problem
linking non-symbolic and symbolic forms of number in WS.

Children with Down syndrome display difficulties on counting
and cardinal number tests (i.e., reporting “how many”; Gelman
and Cohen, 1988), and may be less likely to notice violations

of counting principles (Porter, 1999). For example, Nye et al.
(2001) required children with DS to verbally count items in a set,
and select a certain number of items (i.e., cardinality). Children
with DS produced shorter count sequences and could count
smaller sets. Camos (2009) required children with DS to enumer-
ate large numerosities (dot arrays) that they were able to do with
a 1:2 ratio, but not a 2:3 ratio (comparison participants showed
age-related ratio improvements).

ADHD AND AUTISM SPECTRUM DISORDER
It has been reported (Zentall et al., 1994) that children with
attention deficit hyperactivity disorder (ADHD) reveal lower (and
slower) problem solving for math concepts on timed arithmetic
tests, and the authors attributed these findings to difficulties
with spatio-temporal organization. Kaufmann and Neurk, 2008
(see also 2006) tested 9- to 12-year-old children with ADHD
on a variety of number tasks, including; placing an Arabic digit
on an analogue scale, number discrimination at a range of dis-
tances, counting, non-symbolic (dot) enumeration (so-called
“core” number abilities) and simple and complex mental and
written calculation; and report particular difficulties with the
first two in children with ADHD, particularly when numeri-
cal distance is small (the remainder were not affected). There
is a variety of evidence to suggest individuals with ADHD also
experience pathophysiological differences in temporal processing
(see Barkley et al., 1997; Gooch et al., 2011; Allman and Meck,
2012). For instance, Valko et al. (2010) report impairments on
reproduced temporal magnitude estimates (in the supra-seconds
range) and temporal discrimination (in the sub-seconds range),
and age-related changes between children and adults with ADHD.

The question of whether there is disordered processing of the
temporal quality of information in autism spectrum disorder,
and the extent to which this may impact the autistic behav-
ioral phenotype, is beginning to be studied (Allman, 2011; Falter
and Noreika, 2011), but has much anecdotal and clinical sup-
port. Although in their infancy, there are at least some empirical
grounds (see also Szelag et al., 2004; Martin et al., 2009; Allman
et al., 2011; Kwakye et al., 2011; but see Wallace and Happé, 2008;
Jones et al., 2009a) and published commentaries supporting the
temporal deficit hypothesis of autism (Boucher, 2001; Wimpory,
2002; Allman and DeLeon, 2009; Allman, 2011).

For example, Allman et al. (2011) report the timing func-
tions across a wide age range (7–17 years) of affected individuals,
and reveal (using a bisection task) potentially characteristic dif-
ferences in the location of the subjective mid-point—which is
found to be somewhat predictive of diagnostic communication
and working memory impairment for shorter durations. They
also reveal poorer temporal sensitivity for longer durations. These
authors make modeling comparisons with previous reports from
typically developing children (Droit-Volet and Wearden, 2001)
and report that those with autism spectrum disorder appear to
have more variable temporal memories, to an extent comparable
with typically developing 5 year olds; and were likely to truncate
(shorten) the “anchor” durations, to an extent that was compara-
ble with typically developing 3 year olds. This lends support to the
claim that time sense may be developmentally delayed in affected
individuals, and may even contribute to diagnostic symptoms.
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Assuming this is indeed the case in autism spectrum disor-
der, it might be conjectured that there may be relative differ-
ences and/or insensitivities in the “run” and “event” modes in
the magnitude accumulation system (in a mode-control model).
Presumably, given the shared mechanism but different mode of
representation between basic time and number estimation, a fault
operating in one mode (i.e., run) might produce a compensatory
over-reliance upon using the other mode (i.e., event). Of course,
we might also expect both time and number sense to be impaired
if there are central problems in the function of the integration sys-
tem, or if magnitude estimation is a more “generalized” process
(i.e., ATOM).

If an atypically developing child finds it difficult to make
sense of events according to their temporal properties, an adap-
tive strategy might be to use their numerical (or other stimulus)
properties instead. As it pertains to oddities with number, it is
common for children with autism spectrum disorder to have pre-
occupations for symbolic numbers; assigning numbers as labels
for objects, events and animate beings; knowing how many parts
there are to objects or events, and their order or calendrical
quality. To-date it is unknown whether there is preserved num-
ber sense (i.e., ANS) and typical magnitude interaction effects
(i.e., “mental number line”) in this disorder, and like Williams
syndrome, perhaps these individuals “over” rely upon rote for-
mal instruction, and symbolic numerical processing (although
individuals may also have language problems, unlike in WS).
Although not characteristic of the disorder per se, for a review
of mathematical ability in autism spectrum disorders see Chiang
and Lin (2007) and Jones et al. (2009b).

Intriguingly with respect to posited deficits in temporal pro-
cessing in autism spectrum disorder, and an compensation on
symbolic number (or other dimensions), it is not uncommon
for affected individuals to have unusual interests in timetables,
calendars, and routines, which might serve as useful “external”
temporal supports (e.g., Lalli et al., 1994). There is evidence
that children and teenagers with autism spectrum disorder reveal
impairments in higher-order temporal cognition (Boucher et al.,
2007), including the ability to 1) think about past or future
changes of think about a current situation; 2) understand that
entities change over time but are still the same thing; 3) compre-
hend that successive events are part of a unitary process, which is
not attributable to non-temporal cognitive factors such as inabil-
ities with inferencing or generativity, motivation or attention.
Parents of children with autism spectrum disorder (like parents
of children with attention-deficit hyperactivity disorder) tend to
describe them as having a “poor” sense of time (Barkley et al.,
1997; Allman et al., 2011). At face value, these studies endorse a
developmental association between a basic time sense and higher
concepts and adaptability to time.

It is curious to wonder whether differences with time (and
number) are somehow related to the outstanding skills of savants,
which fall into five categories; mathematics (human calculator),
calendar calculating and music (external representations of time),
art and mechanical or spatial skills; particularly as these relate to
different analog modes of stimulus representation (i.e., number,
time, and length; see Droit-Volet et al., 2008; also González-
Garrido et al., 2002; Thioux et al., 2006).

NEUROSCIENCE OF TIME AND NUMBER ABILITY (NEUTIN)
Although researchers have identified particular brain areas that
function as neural integrators, and thus would likely serve good
candidates for the supposed pulse accumulation process (of the
type described by the mode-control model), a full explanation of
how neurons integrate time and number is still lacking (Matell
et al., 2003, 2011; Matell and Meck, 2004; Meck, 2006a,b; Meck
et al., 2008; Coull et al., 2011). As it relates to making magni-
tude estimates, the basal ganglia, prefrontal cortex and inferior
and posterior parietal cortex are usually recruited on tasks exam-
ining number and time magnitude estimation (Breukelaar and
Dalrymple-Alford, 1999; Casini and Ivry, 1999; Rao et al., 2001;
Macar et al., 2002; Hinton et al., 2004; Buhusi and Meck, 2005;
Pouthas et al., 2005; Jahanshahi et al., 2006) and these findings
tend to support comparative findings from animals (Schubotz
et al., 2000; Schubotz and von Cramon, 2001). Although, as we
have highlighted, there is much support for the idea that magni-
tudes of different dimensions (at least partly) share a common
basis, they can be dissociated in adults with left-and right lat-
eralized parietal lesions, who reveal selective impairments with
number and time. For instance Cappelletti et al. (2011) report a
patient with left lesion displayed otherwise intact temporal pro-
cessing that was influenced by irrelevant numbers, which them-
selves could not be adequately processed; and a patient with a
right lesion revealed impaired time estimation that could be mod-
ulated by preserved numerical processing (neither patient showed
numerical processing could be influenced by time). The same
patient with the right parietal lesion had previously been reported
to show impaired temporal processing (a tendency to underesti-
mate duration), but intact spatial and numerical processing and
number-time interaction effects (i.e., small numbers perceived
as shorter, long numbers perceived as longer; Cappelletti et al.,
2009).

Evidence from electrophysiological recordings in animals
reveals neurons (single cells) with periodical firing patterns, those
tuned to specific magnitudes, and neurons with monotonically
increasing firing as a function of increases in magnitude, for both
time and number (e.g., see Nieder et al., 2002; Matell et al., 2003;
Nieder, 2004; Nieder and Miller, 2004b; Dehaene and Brannon,
2010). For instance, Nieder et al. (2002) revealed individual neu-
rons in monkey prefrontal cortex appear to code for specific
cardinal numerosities, and revealed size and distance effects (at
least partly accounted for by the mode-control model). It is also
revealed that neurons in the intraparietal sulcus (IPS) are active
before those in prefrontal cortex, suggesting number might be
represented in the parietal cortex and sent to PFC for further
processing (e.g., number related responses). In monkeys trained
to perform a temporal comparison task, neurons in intraparietal
regions were tuned to the temporal durations of the comparison
stimuli (Leon and Shadlen, 2003).

ATOM (Walsh, 2003; Bueti and Walsh, 2009) supposes the
parietal cortex is the “seat” of the generalized magnitude sys-
tem, as this region is often recruited during spatial (Sereno et al.,
2001; Pinel et al., 2004), numerical (Dehaene et al., 1999; Piazza
et al., 2007) and temporal (Maquet et al., 1996; Leon and Shadlen,
2003) processing. This shared neural basis (parietal cortex) of
the representation of number (numerical value) and size (size of
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digits; see Dehaene et al., 2003; Fias et al., 2003; Pinel et al., 2004;
Kadosh et al., 2005) is undoubtedly reflected in behavioral simi-
larities between magnitude estimation judgments between time
and number, and other quantities (i.e., line length). It is often
found that number (with its symbolic connotations to language)
and number tasks that require calculation (held to use verbal
coding), involve left or bilateral parietal cortex, while time and
space activates the right parietal cortex. In other words, “dimen-
sions may have become lateralized from one another due to
their output—number requires verbal representations, and time
and space are more important for coordinating action” (Walsh,
2003:485). Cohen and Dehaene (1996) have suggested both (left
and right) inferior parietal cortices are necessary for analogue
magnitude representation.

As it relates to time sense, the striatal beat frequency (SBF)
model (Matell and Meck, 2004) is a neurobiological instantia-
tion of the pulse accumulator model of scalar expectancy theory
(Gibbon et al., 1984; see Meck et al., 2008; Coull et al., 2011).
Oscillatory neural inputs from the activity of large areas of cortex
constitute the time code, and patterns of oscillatory activity are
detected by striatal medium spiny neurons (input cells of the basal
ganglia). The memory stage of the model (of the type described
by the mode-control model) is attributed to the adjustment of
cortico-striatal weights (which become “tuned”), and is assumed
to depend upon the same neural representation of a specific stim-
ulus as working memory (see Lustig and Meck, 2005; Lustig et al.,
2005). From a computational perspective, it has recently been
proposed that “chains of integrators constructed from mecha-
nisms exhibiting a range of intrinsic time constraints (ranging
from slow protein synthesis to rapidly ramping neural firing rates)
may. . .perform interval timing” (Simen et al., 2011:1). In this
account, magnitude estimates of time (in the seconds-to-minutes
range) are mediated by chains of leaky accumulators.

IN INFANCY
Recall that time and number discrimination in infancy shows
ratio-dependent improvements between 6- and 10-months of age
(e.g., Brannon et al., 2007; Cordes and Brannon, 2009; Cantlon
et al., 2010). The same pattern of results has also been found in
electrophysiological recordings from infant brains. For instance,
Libertus et al. (2009) demonstrated 7-month-old infants are able
to detect novel numerosities (following habituation to a standard
number). The magnitude of the “spike” of the deviant-triggered
(“odd-ball”) amplitude produced in the brain to the unexpected
change in numerosity (or duration, to be discussed) constitutes
an event-related potential (ERP). These authors report that the
ERP varied in accordance to changes in number—specifically, the
greater the relative difference between numerosities (1:3 ratio vs.
1:2 ratio) rather than their absolute difference, the bigger the ERP.
Additionally, Hyde and Spelke (2011) recorded ERP’s from 6- to
7.5-month-old infants and also obtained evidence that represen-
tation of large numerosities in infants are approximate and ratio-
dependent. Specifically, large numbers evoked a (mid-latency
parietal) ERP that was dependent upon stimulus numerosity,
whereas small numbers evoked an (occipital-temporal) ERP that
was dependent upon the cardinal value of stimuli (i.e., not ratio-
dependent). This finding was interpreted as support for the idea

that there might be different cognitive systems for small and large
numerosities.

In a recent study, Libertus et al. (2011b) observed that follow-
ing steady-state repetition of the same numerosity, a proportional
change in numerosity produced a proportion change in elec-
trophysiological entrainment (Weber’s law). Moreover, neural
entrainment predicted infants’ number discrimination measured
behaviorally 2 months later. Hyde et al. (2010) showed the latency
of the ERP after a change in shape (space) occurred much later
(i.e., after 5–8 s) compared to when number was changed (i.e.,
after 2–5 s) in 6-month-old infants. Further, they report a right
lateralized response to number changes (see also Izard et al.,
2008). This is in contrast to other reports that have found bilateral
activity (Cantlon et al., 2006). As it may relate to the development
of a “two-part” number system and the “magic number four,”
Hyde and Spelke (2011) report that 6-month olds display patterns
of electrical brain activity which follows the scalar property (i.e.,
the ERP scaled with the ratio between numbers), but only for the
processing of larger, but not smaller numbers (i.e., those in the
subitizing range).

In relation to time sense, Brannon et al. (2008) employed
a timing-interval oddball paradigm coupled with electrophysi-
ological recording in 10-month-old infants, and examined the
amplitude to an time-interval triggered (“odd-ball”) spike to
deviations in duration, comparing infants’ performance with a
group of adults. The peak magnitude of the ERP has been shown
to vary as a function of the standard to deviant ratio in both
infants and adults (1:2, 2:3: 1:3, and 1:4; Brannon et al., 2008).
Moreover, when ratio was held constant and absolute values were
made to vary, the ERP did not vary. That is, the “hallmark”
scalar property is also obtained in the firing patterns of neurons
coding for time (see also, Brannon et al., 2004b). Infants also
revealed a slight right lateralization in the ERP for time magnitude
estimation.

IN CHILDHOOD
Electrophysiological studies in children suggest that number pro-
cessing in the inferior parietal cortex begins as a right-lateralized
process and the left hemisphere gradually takes over, while right-
lateralized activity does not show such age-related changes (e.g.,
Ansari and Dhital, 2006). More recently, Heine et al. (2011) stud-
ied elementary school children (around 7 years of age) on a non-
symbolic number discrimination task using a range of numerical
magnitudes, both within and beyond the subitizing range. They
report late parietal ERP’s that were proportionally affected by the
relative distance between the magnitudes, and which were more
right- than left-lateralized, including those in the subitizing range.
Temple and Posner (1998) have shown that the brain activity asso-
ciated with symbolic number discrimination shows little change
between the age of 5-years and adulthood. They report that while
the reaction times for numerical comparisons of Arabic numerals
and dot arrays dropped threefold between 5 years and adult-
hood, the numerical distance ERP effects and the loci of activity
remained constant between children and adults. The consistency
in patterns of brain activity is impressive given that dramatic
changes in numerical language and skill occur between 5 and 20
years of age.

Frontiers in Integrative Neuroscience www.frontiersin.org March 2012 | Volume 6 | Article 7 | 13

http://www.frontiersin.org/Integrative_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Integrative_Neuroscience/archive


Allman et al. Neuroscience of time and number

It has been revealed through functional neuroimaging (fMRI)
that young children can discriminate between numerical val-
ues across different notation systems, both symbolic and non-
symbolic, and recruit the same parts of the brain as adults when
doing so (occipitio-temporal and parietal cortex), plus a few
regions more (inferior frontal; e.g., Cantlon et al., 2009). For
instance, Cantlon et al. (2006) tested non-symbolic and area dis-
crimination in 4-year olds, and revealed similar IPS activation to
number as in adults.

This approach also reveals age-related fronto-parietal shifts
in number processing, of basic and advanced numerical tasks
(Ansari and Dhital, 2006; Ansari, 2008; Holloway and Ansari,
2010). The decreasing involvement of prefrontal cortex is
assumed to reflect a developmental disengagement of domain-
general processes related to executive control and working mem-
ory (Ansari et al., 2005; Rivera et al., 2005). These findings can
be taken as support for the idea that a core neural system inte-
grates notation-independent numerical representations, and that
mental arithmetic may have functional specialization on the left
inferior parietal cortex.

Kaufmann et al. (2006, 2008) have reported neural overlap
between non-symbolic numerical and spatial processing in chil-
dren around 8 years old (using hand and finger stimuli). In
contrast to adults, children reveal increased activity in bilateral
supramarginal gyrus, post-and-precentral gyrus, and anterior-
lateral portions of the IPS. Cantlon et al. (2011) attempted to
measure activity to symbols (numbers and letters, and a variety
of other comparison stimuli), and compared to adults, children
reveal comparable left-lateralized mid-fusiform/inferior temporal
gyrus activity for both letters and numbers.

As pertains to developmental disabilities, individuals with
developmental dyscalculia also present with presumed neuropsy-
chological damage to the IPS, thus providing additional support
for this neurological locus in numerical processing and abstract
number. It has been thought this disorder may characterize a
deficit with the “mental number line” (Bachot et al., 2005)
or in the linking between non-symbolic magnitude and sym-
bolic notation (Rubinsten and Henik, 2005; Rousselle and Noël,
2007). Kaufmann et al. (2009) reveal that during non-symbolic
number processing, children with dyscalculia reveal stronger acti-
vations in the left inferior parietal cortex and reduced deacti-
vations in the right inferior parietal cortex, perhaps suggestive
of an impaired number sense and compensatory neural activity.
However, Mussolin et al. (2009) required affected children aged
9–11 years old to identify the larger numeral in a pair (with a
variety of numerical distances; i.e., 2 vs. 4; 2 vs. 8) and report
that affected children show absence of typical numerical distance
effect modulations of the IPS (as typical children do). They also
observed other differences between typical and dyscalculic chil-
dren: typically there is stronger right intraparietal sulcus (IPS;
and right middle frontal gyrus) activation for small than large
numerical distances, while children with dyscalculia show left
supramarginal gyrus and middle frontal gyrus activation; affected
children also revealed postcentral gyrus activation for number in
contrast to color comparison.

It has been revealed that older children (10–15 years) with
ADHD show decreased activation on a time discrimination task

contrasted by a temporal order task in right dorsolateral and
inferior frontal cortex, and right anterior cingulate into SMA
(Smith et al., 2008). There is unpublished fMRI data to suggest
that children with autism spectrum disorder reveal differences
in activity in cortico-cerebellar and cortico-striatal circuits when
timing relatively short (2-s) and longer (8-s) durations: children
with autism may recruit a “longer” timing system for shorter
durations (Allman et al., in preparation).

IN ADULTS
Electrophysiological recordings in adults have revealed the mag-
nitude of an ERP is proportional to the ratio of the difference
between temporal and numerical magnitudes (scalar property).
As it relates to time estimation, there has been much specula-
tion as to whether brain rhythms may serve as the “tick” of a
clock (Treisman, 1984). This includes alpha and theta rhythms,
and event-related de-synchronizations. Perhaps the most oft cited
is the slow negative wave called the contingent negative varia-
tion (CNV; for a discussion, see Pouthas, 2003). However it has
recently been suggested that rather than being directly implicated
in the accumulation process, the CNV likely represents time-based
decision and response processes (van Rijn et al., 2011).

Szucs and Soltesz (2007) were able to dissociate ERP’s associ-
ated with both facilitation and interference on the (number-size)
numerical Stroop paradigm (i.e., judge number magnitude with
physically smaller and bigger Arabic digits). “In a nutshell, in
the numerical task we found an ERP facilitation effect related
to perceptual processing” (Szucs and Soltesz, 2007:3196). They
also report that number had a slower processing speed than size,
and an ERP numerical distance effect which was stronger over
right (than left) parietal regions. The timing of the ERP was also
associated with distance effects, and occurred at the same time
as the Stroop facilitation effect, “suggesting the facilitation effect
appeared when numerical information was just being evaluated
or was already available. . .Most probably, the faster processed
irrelevant size information could prime and accelerate the pro-
cessing of the slower processed numerical information in the
common magnitude representation” system (Szucs and Soltesz,
2007:3197).

As it relates to numerical processing, Libertus et al. (2007)
employed non-symbolic (dots) and symbolic (Arabic digits;
1–10) numbers and required adults to judge whether the pre-
sented number was less/more than five. For symbolic numbers,
they report distance-related ERP modulation across parietal and
temporal-occipital regions, and greater right-lateralized posterior
positive ERP’s for symbolic digits closer to the comparison (5;
than those further apart, e.g., 9), however this was not found
small non-symbolic number distances; and ERP’s increased as
numerosity increased (size effect). With a greater range of values
(8–30) they did obtain similar ERP distance effects as symbolic
digits (indicative of input-notation independence).

As it relates to the question of the “magic number four,” there
is evidence that small and large number processing can be dissoci-
ated in adults at the electrophysiological level with respect to both
pattern and time: small cardinal numbers (within the ‘subitizing’
range) invoke an early visuo-spatial attentional component, and
the ERP is largest for three objects, then two, then one; while
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larger numbers modulate a mid-latency component in the right
intraparietal region that is sensitive to ratios. In the same study,
Hyde and Spelke (2012) also report lateralization effects, and
identified several distinct loci, for small and large non-symbolic
numbers. The authors surmised a single system represents all
numerosities, but is constrained by cognitive processes related
to the limits of an early attentional selection processes; small
numbers (e.g., four objects) might be selected (by attentional
processing) as a group, but larger numbers likely require (more
demanding) parallel processing.

In a procedure combining electrophysiological and fMRI, it
has been shown that patterns of cortical activity are attributable
to the input of symbolic notation (verbal or Arabic). For instance,
bilateral extrastriate cortices and a left-lateralized precentral
region are more activated during verbal (than Arabic) numbers,
while activity in right fusiform gyrus (the “expert” area), bilateral
inferior parietal and frontal regions is greater for Arabic (than
verbal) notation. Bilateral activation along the interparietal sul-
cus and precuneus that corresponds to numerical distance was
also noted (Pinel et al., 2001). This is consistent with a basic
notation-independent system of magnitude (see also, Piazza et al.,
2007). Piazza et al. (2004) report the percent signal change of
IPS response to deviant numerosities increased with the dispar-
ity between the habituated and deviant numerosities. The general
conclusion of this study was that the IPS responds to changes in
the numerical quantity of a stimulus even when explicit com-
parison of stimuli is not required and regardless of whether the
stimuli involve Arabic numerals or dot arrays (but see, Shuman
and Kanwisher, 2004).

Using fMRI, Pinel et al. (2004) examined adults’ magnitude
estimation for size, luminance and number; and revealed at both
the behavioral and neural level, number interfered with size, but
not with luminance. It has also been suggested that number-space
interactions (i.e., “mental number line”) might be mediated by
shared parietal circuits for external attention to space and internal
representations of number (Hubbard et al., 2005). For instance, it
has been reported that there is left-lateralized parietal activation
when participants’ attention is directed to time, right-lateralized
parietal activation when attending to space, and bilateral activa-
tion when processing both dimensions simultaneously (Coull and
Nobre, 1998), and patients with spatial neglect (i.e., damage to
right parietal cortex produces failure to attend or response to left
space) reveal a variety of timing deficits (e.g., see Danckert et al.,
2007; Hoeckner et al., 2008; Calabria et al., 2011). For example,
Vuilleumier et al. (2004) report patients with neglect are slower
to classify numbers (Arabic) if they are smaller (than larger) than
a target number, which they attributed to difficulties spatially
representing numbers in the left side of the mental number line.

In adults, symbolic number processing (and complex math
ability) is usually characterized by bilateral, and in some
instances, left-lateralized IPS activity (for details, see Dehaene
et al., 2003; Santens et al., 2010). For instance, Piazza et al. (2002)
report the IPS is active when participants estimate numeros-
ity across non-symbolic numerical stimuli such as sets of visual
objects or auditory events, and Kadosh et al. (2005) report
notation-independent activity in IPS between symbolic (dig-
its, number words) and non-symbolic number (dots; see also,

Naccache and Dehaene, 2001; Eger et al., 2003). Further, right-
lateralized IPS activation is greater when participants compare the
values of Arabic numerals (or numerosity, ANS) than when they
compare stimuli of other such semantic categories as animals,
body parts, or abstract symbols along continuous dimensions like
ferocity, relative position, and orientation (Le Clec’h et al., 2000).
Bilateral IPS is selectively activated when participants perform
approximate arithmetic calculations on symbolic numerical stim-
uli such as Arabic numerals and number words (Pesenti et al.,
2000; Simon et al., 2004; for reviews see, Dehaene, 2003; Dehaene
et al., 2004). This activation is not related to factual knowledge of
arithmetic outcomes because greater IPS activation is also found
when participants roughly estimate the answers to arithmetic
problems. The activation can be dissociated from the patterns of
IPS activation associated with the calculation of precise arithmetic
outcomes (Dehaene et al., 1999). For example, when participants
are presented with the problem “4 + 5,” the IPS is activated when
they choose the closest answer from the options “8 or 3” but the
IPS is not activated when they identify the answer precisely from
the choices “7 or 9.” IPS activation is found when participants
are asked to compute the outcomes of various addition and sub-
traction computations but not when they are simply asked to read
number words (e.g., Chochon et al., 1999). The bilateral posterior
superior parietal lobe is believed to correspond to spatial atten-
tion along the “mental number line,” while the left angular gyrus
supports verbally learned facts (e.g., 2 + 2 = 4).

Pinel and Dehaene (2010) investigated whether individual dif-
ferences in functional asymmetry (left-lateralization) in areas
involved in sentence listening and reading are mirrored in the
asymmetry of areas involved in mental arithmetic, and found this
to be the case. They report arithmetic processing recruits frontal,
parietal and subcortical regions. “Specifically, the profile of asym-
metry in the posterior superior temporal sulcus during sentence
processing co-varied with the asymmetry of calculation-induced
activation in the IPS” (Pinel and Dehaene, 2010:48).

As it relates to time estimation, similar patterns of activation
are observed during supra-second perception or production tim-
ing tasks and all timing tasks (i.e., even those involving “thinking”
about time) typically activate motor regions such as the basal
ganglia, supplemental motor area (SMA) and pre-SMA (for a
review, see Macar et al., 2002; Kotz and Schwartze, 2011; van
Rijn et al., 2011). It is widely held that relatively small (less
than a second) and longer duration magnitudes (in the seconds
to minutes range) may be represented by different timing sys-
tems (e.g., see Buhusi and Meck, 2005; Jahanshahi et al., 2006;
Buhusi and Cordes, 2011). Sub-second timing may be more
cerebellar-dependent due to this region’s role in motor coordina-
tion, and timing in the supra-seconds range may depend more
upon the basal ganglia and prefrontal regions, as this type of
temporal processing recruits more attentional (switch and accu-
mulator) and working memory processes (see Figure 1; see also
Hinton and Meck, 1997), however they are not mutually exclu-
sive as cerebellar activation is also found in adult fMRI studies
using supra-second durations (and basal ganglia for millisecond
durations). Similarly, different molecular and neurophysiological
systems underlie interval and circadian (i.e., 24-h) timing (see
Agostino et al., 2011). Given the wealth of such findings (as it
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relates to humans and adults), a complete account of neuro-
physiological findings of timing and time perception in adults
is beyond the scope of this review (e.g., but see, Harrington
and Haaland, 1999; Matell and Meck, 2000; Meck and Benson,
2002; Meck, 2003, 2005; Nenadic et al., 2003; Hinton and Meck,
2004; Meck and Malapani, 2004; Pastor et al., 2004; Buhusi and
Meck, 2005; Coull et al., 2011; Allman and Meck, 2012). However,
a common feature of many adult neuroimaging studies is the
explicit attempt to dissect the contribution of different timing
components (e.g., clock, memory, and decision stages) as it relates
to a neurobiological instantiation of scalar expectancy theory
(Gibbon et al., 1984).

For example using fMRI, Harrington et al. (2010); see also,
Harrington et al. (2004) examined patterns of neural activity dur-
ing the perceptual (encoding), memory and decision stages of a
duration (and pitch) ordinality task. Encoding of time selectively
activated the striatum; the striatum was equally active for time (as
for pitch) during the maintenance stage, and striatal activation
was greatest for time during the decision stage. As acknowledged
by the authors, these findings are consistent with the SBF model
of interval timing (Matell and Meck, 2004). fMRI studies have
revealed the preSMA and basal ganglia likely serve a function
in the “accumulation processes” as there is increased activation
in these regions to longer durations (e.g., see Coull et al., 2004;
Pouthas et al., 2005); memory processes are likely served by lat-
eral premotor and right inferior frontal corticies (see Rao et al.,
2001; Pouthas et al., 2005) and decision processes by the anterior
cingulate (see also Rao et al., 2001).

In their study, Coull et al. (2004) made use of dynamically
changing visual stimulus attributes (e.g., color and duration),
requiring selective attention (on the part of the participants) to
either dimension. Increasing attentional allocation to time selec-
tively increased activity in a cortico-striatal network that included
the pre-supplementary motor area, the right frontal operculum,
and the right putamen.

Harrington et al. (2011) scanned adults while studying the
“sounds are judged longer than lights” effect. Subjective percep-
tions of time slowing or quickening were associated with different
patterns of superior temporal, posterior insula, and middle occip-
ital activity, which reveal stronger effective connectivity when
time was dilated. The within-trial evolution of interval timing
has also been examined (Rao et al., 2001), and it was found
that activation in the basal ganglia (right putamen and caudate)
occurred early and continued into the trial and was uniquely asso-
ciated with encoding time intervals, whereas cerebellar activation
unfolded later, suggesting an involvement of processes other than
explicit timing. Early activation in right inferior parietal cortex
(and bilateral premotor) was associated with encoding, impli-
cating these systems in attention and temporary maintenance
of intervals. Later activation in the right dorsolateral prefrontal
cortex emerged during comparison of time intervals.

SUMMARY AND CONCLUSIONS
Evidence from infants, children and adults, and non-human ani-
mals, suggests numerical and temporal processes are remarkably
accurate, and conform to qualities of sensory perception (i.e.,
scalar property), across a variety of different methods: behavioral

looking patterns of infants, social timing, behavioral responses in
children as young as 3-years old, and in the electrophysiological
potentials of neurons.

The studies cited in this review tend to support the notion that
typical infants possess a “built in” time and number sense (e.g.,
Brannon and Roitman, 2003). Performance on time and number
tasks is modulated by ratio-dependence in children and adults,
and this is found with non-symbolic and symbolic stimuli (e.g.,
Arabic numerals and words). Typically developing 6-month-old
infants reveal sensitivity to numerosity in temporal sequences and
spatial arrays, and sensitivity to time with respect to deviant dura-
tions, area, speed and distance, but only when constrained by the
1:2 ratio requirement, although this quite quickly develops (over
a few months) to encompass “more difficult” 2:3 ratio sensitivi-
ties. This review has attempted to reconcile such findings within
a “mode-control” model perspective (Meck and Church, 1983;
Church and Meck, 1984). In this model, temporal and numer-
ical quantity is measured by the accumulation of pulses (in the
run/stop and event modes, respectively).

As studies examining the relative extent of conformities
between magnitude estimation for different dimensions con-
tinue, so too does support for the idea that there is a general
principle (of the type described by the mode-control model)
operating on a multitude of dimensions (of the type described
by ATOM) upon which we rely to make sense of events in
our world (time, area, number, size, distance, speed). However
there is (as yet) no model that is able to provide a complete
account of multi-dimensional magnitude estimation (accumula-
tion) processes. Both types of account predict cross-dimension
interaction effects (between time and number; across different
quantities). Of course, given the co-linearity between time and
numerosity in the mode-control model, and in ATOM (Walsh,
2003), it becomes difficult to dissociate between these two types
of accounts given the aforementioned developmental similarities
between magnitude estimates of time and number.

Infants are able to perform numerical addition and subtrac-
tion, and more advanced temporal and numerical abilities also
require similar forms of arithmetic operations of magnitudes,
such as calculating speed (space divided by time) or rate of return
(number divided by time), and number sense appears to be asso-
ciated with math ability. The fact that infants resources are being
directed toward improving sensitivity to different quantities at
such a critical period in brain development, speaks to the impor-
tance of this as a “foundational” ability for other cognitive and
behavioral functions. Of course during infancy, a wide variety
of abilities are starting to take shape (e.g., walking, inhibiting
actions) and it comes as no surprise that the time from birth to
2 years and middle to late childhood is particularly important for
the development of NEUTIN. It will be useful for future research
to identify the precise developmental sequences of sensitivities to
different quantities, and how they relate to other forms of cog-
nitive development (e.g., attention, memory), and to adapt the
mode-control to accommodate findings for different dimensions
(see also, Lustig, 2011).

Given the literature, it seems likely that a (right-lateralized)
non-symbolic number system provides the foundation for the
(left-lateralized) symbolic number system over the course of
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development (see Cantlon et al., 2009). Across childhood, it
appears the discrimination of analogue magnitudes improves
with age, which is perhaps inextricably linked with the develop-
ment of attentional capacities or the ability to maintain informa-
tion in working memory. There is debate about whether smaller
magnitude estimates (i.e., numerosities) are processed differently
than larger ones. The question of how the brain develops a sense
of number and time raises serious computational issues for cogni-
tive neuroscience. As adults, we have the ability to make decisions
based on abstract mental representations of magnitudes of time
(e.g., “do I have enough time to get to the shop”) and com-
plex number abstractions (e.g., calculating change left over from
a purchase at the shop), and of course our attention is dis-
tributed in time and space, and our subjective experience of time
is modulated by attention (see Coull et al., 2004).

It will be important for future research to identify the neu-
ral correlates of time and number representation in children, and
corresponding changes in brain function that underlie normative
developments in these domains (i.e., brain maturation and the
relationship to timing and counting). This is relevant to children
with developmental disabilities, particularly those with apparent
difficulty with time and number (e.g., math disability, autism
spectrum disorder, Williams syndrome), as it offers a “bench-to-
bedside” approach with therapeutic potential. For example, there
is evidence that external temporal supports (e.g., picture sched-
ules, timers) are extremely effective in the training and treatment
of individuals with autism, and other neurological populations
who experience problems with cognitive adaptation (for details,
see Allman and Meck, 2012).

A developmental perspective to time and number can also help
unravel interactions among seemingly disparate levels of orga-
nization, such as the molecular biology of gene expression and

the development of cognitive abilities. For example, assuming a
basic deficit in time sense in those with autism spectrum disor-
der, it should follow that aspects of the behavioral phenotype are
related to subtle and early neuropathology that ultimately affects
multiple neural systems involved in number and time represen-
tation, directly and through compensatory experience-dependent
reorganization. This is still yet to be determined, but this idea is
congruous with current theories of autism spectrum disorder that
emphasize differences in “neural signatures” (Kaiser et al., 2010),
or the adaptive functioning of long-range (multiple neural sys-
tems) in neurocognitive function (Allman, 2011; Barttfield et al.,
2011). Potentially at least, this type of neural-systems approach
to the development of NEUTIN may provide a neural signa-
ture or “endophenotype” that corresponds to impairments in
autism spectrum disorder (and potentially, to co-morbid dis-
orders). The goal for the quest for the “endophenotype” is to
identify pathophysiological mechanisms that “cause” the disorder
(Kaiser et al., 2010).

On a final note, it is parsimonious (from an ontogenic devel-
opmental perspective) to surmise that our “built in” quantity
sense and “integration” mechanism is likely at the root of our
cognitive ability to think about metaphysical aspects of time and
space, such as pondering how big or old the milky way is, and
what the word “vast” means to our subjective estimations of
magnitude.
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