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Accurately describing the spiking patterns of neurons in the subthalamic nucleus (STN)
of patients suffering from Parkinson’s disease (PD) is important for understanding the
pathogenesis of the disease and for achieving the maximum therapeutic benefit from
deep brain stimulation (DBS). We analyze the spiking activity of 24 subthalamic neurons
recorded in Parkinson’s patients during a directed hand movement task by using a
point process generalized linear model (GLM). The model relates each neuron’s spiking
probability simultaneously to factors associated with movement planning and execution,
directional selectivity, refractoriness, bursting, and oscillatory dynamics. The model
indicated that while short-term history dependence related to refractoriness and bursting
are most informative in predicting spiking activity, nearly all of the neurons analyzed have
a structured pattern of long-term history dependence such that the spiking probability was
reduced 20–30 ms and then increased 30–60 ms after a previous spike. This suggests
that the previously described oscillatory firing of neurons in the STN of Parkinson’s
patients during volitional movements is composed of a structured pattern of inhibition and
excitation. This point process model provides a systematic framework for characterizing
the dynamics of neuronal activity in STN.
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INTRODUCTION
Abnormal neural firing in the subthalamic nucleus (STN) of
patients with Parkinson’s disease (PD) is postulated to play a role
in the pathogenesis of the tremor, rigidity, and akinesia that char-
acterize the disorder (Bergman et al., 1994; Lang and Lozano,
1998; Levy et al., 2000). Modifying neuronal firing patterns in
the STN using deep brain stimulation (DBS) significantly reduces
the severity of these symptoms (Limousin et al., 1997, 1998; DBS
Study Group, 2001). However, the mechanisms by which DBS
achieves its effects remain unclear.

Studies employing microelectrode recordings from the
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) primate
model of PD (Bergman et al., 1994) and from PD patients (Levy
et al., 2000) have demonstrated an apparent increase in oscillatory
and synchronized activity in STN neurons. These abnormal oscil-
lations have been posited to play a role in the pathogenesis of PD
in several possible ways. For example, low frequency oscillations
(3–10 Hz) may contribute to Parkinsonian tremor whereas beta
band oscillations (12–30 Hz) may block the normal flow of infor-
mation through the basal ganglia, or lead to a loss of neuronal
selectivity resulting in akinesia or rigidity (Kopell et al., 2006).
This oscillatory activity appears to be dynamic and can be atten-
uated by volitional movements (Cassidy et al., 2002; Levy et al.,
2002; Amirnovin et al., 2004; Gale et al., 2009). Recent studies

have suggested that one of the primary mechanisms of DBS
maybe the disruption of abnormal beta-band oscillations (Kopell
et al., 2006; Wingeier et al., 2006; Gale et al., 2008).

For DBS to have maximal benefit, the stimulating electrode
must be accurately placed in the target nucleus. This is accom-
plished by using stereotactic guidance and microelectrode record-
ings obtained while the patients are awake (Hutchison et al.,
1998). Therefore, microelectrode recordings are an essential part
of this therapeutic intervention. Moreover, these recordings offer
a unique opportunity to characterize the spiking properties of
STN neurons in awake and behaving PD patients and hence, to
relate abnormal electrophysiological patterns to specific clinical
features of PD.

Many previous statistical analyses of oscillatory spiking activity
in the STN have focused on computing and interpreting estima-
tors of the spectrum of the spike train time series (Levy et al.,
2002; Magill et al., 2005). Such spectral estimators are useful for
visualizing the power distribution of the spike train across differ-
ent frequencies, but there is often other information about the
structure of oscillatory spiking activity that is not clearly reflected
in its power spectrum. Additionally, spectral estimators character-
ize oscillatory features of the spiking activity without accounting
for other factors that are known to influence neural spiking,
making it difficult to determine the relative importance of the
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oscillations and their role in the neural code. For example, recent
MPTP primate studies (Lebois et al., 2007) suggest that synchro-
nized oscillatory activity emerges after the onset of major motor
symptoms and that the pathological disruption of spiking activity
related to movement is more closely tied to motor dysfunction.
In advanced stages of disease, activity related both to volitional
movement and oscillations are present concurrently, but most
studies analyze such data using separate statistical techniques for
each factor influencing this activity. Here, we are interested in
understanding how past spiking activity in the STN of Parkinson’s
patients shapes the future propensity of the neuron to spike, while
simultaneously characterizing the effects of covariates related to
motor intention and execution.

We present a point process generalized linear model (GLM)
for characterizing the spiking activity of STN neurons, recorded
from PD patients, that relates spiking probability simultaneously
to factors associated with the time course of movement planning
and execution, directional selectivity, refractoriness, bursting, and
oscillatory dynamics. We use maximum likelihood methods to
estimate the parameters of this model and compute confidence
bounds about these estimates. The estimated parameter values
provide insight into the structure of the firing patterns in the
data. We use the time rescaling theorem (Brown et al., 2002) and
a Kolmogorov–Smirnov (KS) analysis to measure the goodness-
of-fit between the models and the spiking data. Finally, we mea-
sure the relative importance of the specific factors in describing
the neuron’s spiking propensity based on an analysis of model
deviance using Akaike’s Information Criterion (AIC).

MATERIALS AND METHODS
SUBJECT SELECTION
The 11 patients included in this study all had idiopathic PD for
greater than 4 years, a Hoehn-Yahr score of 3 or higher and a
documented response to L-dopa replacement therapy. All patients
had a pre-operative neurological exam with detailed information

on their tremor and PD symptoms. A panel that included
neurologists, neuropsychologists, and neurosurgeons reviewed
each DBS candidate on an individual basis before making a rec-
ommendation for surgery. Subjects were excluded from surgery
if they had cognitive impairment, active psychiatric disorders, or
anatomic abnormalities on magnetic resonance imaging. None
of the patients had undergone prior surgery for the treatment of
PD. Informed consent for participation in the study was obtained
in accordance with a protocol approved by the Massachusetts
General Hospital Institutional Review Board. The decision to per-
form surgery was made based on clinical indications and was not
related to participation in this study.

ELECTROPHYSIOLOGICAL RECORDINGS AND BEHAVIORAL TASK
In all subjects, anti-Parkinsonian medications were withheld
starting at midnight before the surgery. No sedatives were
given during the surgery. The general techniques of stereotac-
tic localization and intraoperative microelectrode recordings are
described elsewhere (Hutchison et al., 1998; Amirnovin et al.,
2004, 2006). We performed physiologic localization using an
array of three tungsten microelectrodes (1 MOhm impedance;
FHC Incorporated, Bowdoin, ME), separated by 2 mm, and
placed in a parasagittal orientation. The electrodes were advanced
simultaneously in 10–50 micron increments using a motorized
drive. Figure 1 shows a T2-weighted MR image depicting the
targeting trajectory. Amplification of the neuronal signal and
control of the micro-drive were handled by a dedicated intraop-
erative system (Alpha Omega, Nazareth, Israel). Neuronal activity
was band-pass filtered (300 Hz–6 kHz) and sampled at 20 kHz.
A Macintosh G4 computer using Lablib behavior software (http://
maunsell.med.harvard.edu/software.html) controlled the behav-
ioral paradigm.

Before the recordings were made, an electrophysiologist per-
formed sensory-motor testing, as previously described (Baker
et al., 2002), to ensure that the electrodes were positioned in

FIGURE 1 | T2-weighted MR image depicting the targeting trajectory (dashed lines) for the placement of deep brain electrodes. (A) Depiction of
electrode trajectories in the coronal plane and (B) depicts the electrode trajectory in the sagittal plane. The red dot indicates the position of the left STN.
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the motor region of the STN. Once the microelectrodes were in
the motor-STN, the subjects viewed a computer monitor and
performed the behavioral task by moving a joystick with the con-
tralateral hand. The joystick was mounted such that movements
were in a horizontal orientation with the elbow flexed at approx-
imately 45◦. Figure 2 illustrates the behavioral task. Each trial
began with the presentation of a small central fixation point. After
a brief delay (250 ms), four small gray targets appeared arrayed
in a circular fashion around the fixation point. After a 1500 ms
delay a randomly selected target turned green. At this point the
subject used the joystick to guide a cursor from the center of the
monitor toward the green target. Once the target was reached, a
tone sounded indicating the subject had successfully completed
the task, and the stimuli were erased. Patients were required to
reach the target within 5 s of the green cue presentation, although
they typically reached the target within 1 s of the onset of the stim-
ulus. There was an inter-trial interval of 1500 ms. Subjects were
required to return the joystick to the center position before a new
trial started. If the subject prematurely moved the joystick, strayed
beyond the confines of an invisible corridor, or failed to reach the
target the trial was aborted and excluded from analysis. Very few
of these error trials occurred. The target directions were pseudo-
randomized to ensure an equal number of trials in each direction.
Patients typically performed 12–24 correct trials in each direction
at a given site. Each recording run lasted about 3–5 min.

DATA ANALYSIS
Spikes were sorted using a template-matching algorithm refined
by principal component analysis and cluster-cutting (Harris
et al., 2000). Inter-spike interval (ISI) histograms and auto-
correlograms were computed for all spike trains. Rasters and peri-
stimulus histograms were constructed for all recorded neurons,
and were aligned on the start of hand movement as determined
by an initial 1◦ deflection of the joystick (from a possible range
of 18◦). Autocorrelograms (1 ms bins) were computed for each
spike train, and crosscorrelograms were computed for pairs of
simultaneously recorded spike trains, at rest and during move-
ment. Periodic oscillations were detected using the correlograms
of all recorded spike trains, calculated for a 500 ms offset with a
bin size of 1 ms. The power spectra of the spike trains were cal-
culated by the Fourier transform of the autocorrelograms (after
removing the trough at time zero), allowing 1 Hz resolution
of the frequencies (Raz et al., 2000). Further analysis was per-
formed between 5 and 40 Hz. The signal-to-noise ratio (SNR) was
calculated for each neuron using the following formula:

FIGURE 2 | Schematic representation of behavioral task.

SNR = [(Maximum power of the peak) − (Mean of the
power spectrum between 5 and 40 Hz)]/(Standard deviation of
the power spectrum between 5 and 40 Hz).

Significant oscillatory activity was defined as a peak in the
power spectrum exhibiting a SNR greater than three times the
standard deviation of the power spectrum (Raz et al., 2000). We
examined 24 neurons that were determined to have significant
oscillatory behavior according to the power in the peak of the
power spectrum between 5 and 40 Hz.

A POINT PROCESS MODEL OF SUBTHALAMIC NUCLEUS DYNAMICS
We formulated a point process model to relate the spiking
propensity of each STN neuron to factors associated with the
movement time-course and features of the neuron’s spiking his-
tory. Point processes provide a useful mathematical framework
for analyzing neural spike trains (Daley and Vere-Jones, 2003;
Brown, 2005). A point process is completely defined by its con-
ditional intensity function. The well-known Poisson process is
a specific example of a point process in which all events are
independent (Brown, 2005). That is, the probability that a neu-
ron spikes at a given time does not depend on the past spiking
history. Since neural spiking is known to exhibit both short-term
history dependence such as refractoriness and bursting and long-
term dependence related to neural rhythms, we chose a more
general point process model instead of a Poisson process for our
analyses.

To analyze the spiking propensity of the STN neurons, we
define the spiking intensity function at each time t as a function
of the time relative to the start of the movement and the neuron’s
spiking history in the preceding 150 ms as follows:

λ(t|θ) = exp

⎧⎨
⎩

4∑
d = 1

tend∑
l = tstart

αl,dgl,d(t) +
9∑

j = 0

βjnt−(j + 1):t − j

+
14∑

k = 1

γknt−(10k + 9):t−10k

⎫⎬
⎭, (1)

where gl,d(t) is a basis function for a cardinal spline for the move-
ment direction d, na:b is the number of spikes observed in the
interval [a,b) and θ = [{αl,d}tend

l = tstart
, {βj}9

j = 0, {γk}14
k = 1

]
are a set of

unknown parameters which relate movement time course and the
neuron’s spiking history to current spike rate. Cardinal splines
are locally defined 3rd order polynomials that can approximate
any continuous function (Frank et al., 2002). Here, we have used
spline functions to capture the firing probability at a function of
time relative to the start of the joystick movement. The times tstart

and tend are the analysis start and stop times, respectively.
It follows from the precise definition of the conditional inten-

sity function for a point process (Daley and Vere-Jones, 2003;
Brown, 2005) that the probability of a spike in a small time
interval [t, t + �) is approximately:

Pr(spike in[t, t + �) | θ) ≈ λ(t | θ)� (2)

Hence by Equation 2, the intensity function defines explic-
itly the spiking probability in any small time interval [t, t + �).
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The {αl,d}tend
l = tstart

parameters measure the effect of the movement

planning and execution on the spiking probability. The {βj}9
j = 0

parameters measure the effects of spiking history in the previous
10 ms and, therefore, they capture the effects of refractoriness and
bursting on the spiking probability. The {γk}14

k = 1 parameters mea-
sure the effects of the spiking history in the previous 10–150 ms,
which are most likely associated with not only the neuron’s
individual spiking activity but also that of its local network.

MODEL FITTING AND DATA ANALYSIS
Defining the spiking intensity function (Equation 1) so that its
log is a linear function of the movement time course and spiking
history means that this model can be fit to the STN spike trains
using maximum likelihood methods based on the theory of GLMs
(Brillinger, 1988; Truccolo et al., 2004). The GLM is an extension
of the multiple linear regression model to the case in which the
variable being predicted, in this case spike events, is not normally
distributed (McCullagh and Nelder, 1989). GLMs provide an effi-
cient computational scheme for model parameter estimation and
a likelihood framework for conducting statistical inferences based
on the estimated model.

For each of the 24 neurons, we chose � = 1 ms, and we fit the
intensity function model in Equation 1 to its spike train. That is,
we estimated the set of parameters θ for each neuron. We exam-
ined separate model fits to the data for a period prior to move-
ment onset (tstart = −1500 ms, tend = −1000 ms) and another
period during movement (tstart = 0 ms, tend = 500 ms). These
periods were chosen to highlight possible changes in the spiking
patterns for a period well before movement to a period during
movement. In order to track the temporal spiking properties of
each neuron through time, we also constructed an additional
model encompassing the entire trial (tstart = −1500 ms, tend =
1500 ms) where the {βj}9

j = 0 and {γk}14
k = 1 parameters were fit

separately for each 500 ms interval [(−1500 ms, −1000 ms), . . .,
(1000 ms, 1500 ms)]. Significantly different parameter estimates
between these intervals suggest that the temporal neural firing
properties change as a function of movement and the difference
reflects the magnitude of change.

To assess the goodness-of-fit of the resulting models, we
applied the time-rescaling theorem (Brown et al., 2002). If the
spiking model is accurate, this produces a set of rescaled times that
are independent with an exponential distribution with mean 1.
We construct Kolmogorov-Smirnov (KS) plots of the empirical
cumulative distribution of the rescaled times versus the theo-
retical cumulative distribution of the exponential to visualize
the quality of the model fit, and compute the KS statistic (the
maximum difference between the empirical and theoretical dis-
tribution) to compare models numerically.

An additional tool for comparing the quality of two neu-
ral spiking models is AIC, which is equal to −2 times the log
likelihood of the data +2 times the number of parameters in
the model. This penalized likelihood measure provides a bal-
ance between models that describe the data well, and models
that describe the data with a small number of parameters. By
this criterion, the model with the smallest AIC provides the most
parsimonious fit to the data.

RESULTS
The firing properties of a single STN neuron during this reach-
ing task are illustrated in Figures 3A–C. Figure 3A shows spike
rasters of spiking relative to movement onset for trials in each
direction. The neuron spikes with a high rate (over 100 Hz) for
movements in each direction. By careful inspection, we observe a
slight increase in spike rate at a time near movement onset (0 ms),
but this increase is not dramatic and it is difficult to determine
whether there is a significant difference for movements in each of
the four directions. Figure 3B shows the autocorrelation function
for this neuron’s spiking. There is a clear negative correlation at
lag 1 ms, which is expected because of the refractory period, and
a clear positive correlation at lags 2–3 ms, suggesting a tendency
to fire in rapid bursts. At longer lags, there appears to be some
more subtle structure with slightly negative correlations between
20 and 30 ms and slightly positive correlations around 50 ms. This
finding is corroborated by the spectral density estimator shown
in Figure 3C, which identifies a large peak between 10 and 30 Hz,
indicative of beta rhythm oscillatory activity.

Figure 3D shows the mean and standard deviation of the firing
rate over multiple trials for all 24 of the STN neurons analyzed.
The mean firing rates in this population ranged from 40 Hz to
200 Hz. The variability in the number of spikes from one trial to
the next increases as the mean rate increases. The red line indi-
cates the expected increase in the standard deviation of the spike
rate if the spiking activity came from a Poisson process, that is, if
each spike were independent of past spiking activity. While many
of the neurons have mean and standard deviation values near this
line, there are a number with much higher variability than could
be explained by Poisson spiking. This suggests that history depen-
dence may be important for characterizing the spiking properties
in these neurons.

Figure 4 illustrates the model parameters and their uncer-
tainty for the neuron whose firing properties are visualized in
Figures 3A–C. Figure 4A shows the spline estimates and 95%
confidence bounds of the stimulus related component as a func-
tion of time relative to movement onset, with the splines for the
four directions plotted in separate colors (black—right; blue—
down; green—left; red—up). In each case, the firing intensity is
initially low and begins to increase about 500 ms prior to move-
ment onset. The intensity reaches a peak between 200 ms prior to
movement onset to 400 ms after movement onset, and eventually
returns to initial firing levels. The shaded areas surrounding each
estimate represent 95% confidence regions about the firing rate,
which can be used to determine when the estimated rate in one
direction is statistically different from another. For example, dur-
ing movements to the upper target, indicated by the red line, the
firing rate is significantly lower at movement onset than during
movements to lower target, indicated by the blue line.

Figures 4B and C show the short-term history components of
the model using the data 1500 ms to 1000 ms prior to movement
onset and from movement onset to 500 ms into the movement,
respectively. In both cases, the value of exp(β0) is approxi-
mately 0.5 and is significantly smaller than one, indicating that
the probability of observing a spike in a 1 ms bin is cut in half if a
previous spike was observed in the prior 1 ms bin. The values of
exp(β1) and exp(β2) are significantly larger than one, indicating
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FIGURE 3 | Visualizations of spiking activity. (A–C) Spike rasters for
each movement direction, spike autocorrelation function, and
spike power spectral density for one example neuron. (D) Mean and

standard deviation of firing rate over trials for all neurons analyzed
(blue dots). The red line indicates the expected relationship for a Poisson
process.

that the probability of firing increases 2–4 ms after a spike. This
may relate to bursting activity in the spike train.

Figures 4D and E show the model parameter estimates related
to long-term history effects before and during movement, respec-
tively. In the period prior to movement onset, these parameters
have a distinctive shape. Here, the parameter exp(γi), which
relates the current spiking to the number of spikes occurring in
the interval (10i, 10(i + 1)] in the past, is shown on the x-axis
at time 10(i + 1). For example, exp(γ2), the parameter relating
to ISIs between 20 and 30 ms, is significantly smaller than one
while exp(γ4) and exp(γ5), relating to ISIs between 40 and 60 ms
are significantly larger than one. In a population analysis across
all 24 neurons analyzed, 21 revealed a similar temporal statistical

spiking pattern consisting of a significantly decreased probabil-
ity of firing 20–40 ms after the previous spike and a significantly
increased probability 40–90 ms after a spike. During movement,
the values of the long-term history parameters indicate virtually
no significant effect of past spiking beyond 10 ms, with only
exp(γ5) significantly different from one. Although there is still
some inhibition 20–30 ms after a spike during movement, this
effect is significantly reduced from the period prior to movement
initiation.

Table 1 presents the population summary of the number of
neurons exhibiting specific firing properties as determined by the
significance levels of the model parameters, and a summary of the
mean and standard deviations for specific history parameters. All
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FIGURE 4 | (A) Stimulus related firing rate estimates in each of
four movement directions (black—right; blue—down; green—left;
red—up). (B) Short-term history (0–10 ms) parameters prior to
movement. Blue line represents parameter estimates, black dots

represent confidence intervals. (C) Short-term history parameters
during movement. (D) Long-term history parameters (10–150 ms)
prior to movement. (E) Long-term history parameters during
movement.

Table 1 | Population summary for oscillatory neurons.

Property Number/Total Percentage

Refractoriness 24 / 24 100

Bursting 23 / 24 96

Movement sensitivity 14 / 24 58

Directional selectivity 11 / 24 46

Inhibition/Excitation cascade 21 / 24 87.5

Cascade attenuated by movement 21 / 21 100

PARAMETER MEANS AND (STANDARD DEVIATIONS)

Parameter Before During

movement movement

exp(β0) 0.46 (0.08) 0.44 (0.13)

exp(β1) 1.33 (0.15) 1.18 (0.16)

exp(γ2) 0.96 (0.02) 1.01 (0.02)

exp(γ5) 1.04 (0.02) 1.02 (0.03)

Standard deviations are in parentheses.

of the neurons displayed refractory behavior, defined as a value
of exp(β0) significantly smaller than one, and 23 out of the 24
oscillatory neurons displayed bursting behavior, defined as a value
of exp(β1) significantly larger than one during the period before
movement. Movement selectivity was defined as two consecu-
tive movement parameters that are significantly larger than α0,d,
and directional selectivity was defined as significantly different

movement parameter corresponding to the same time interval but
different directions. Of the 24 neurons we examined, 14 showed
significantly increased firing at 200 ms prior to movement onset
and 11 showed significant directional selectivity at this time. The
pattern of long-term history dependence present in Figure 4, such
that the estimate for exp(γ2) was significantly smaller than zero
and the estimates for exp(γ4) through exp(γ7) were significantly
larger than zero in the period before movement, was present in
21 of the 24 neurons examined. In the remaining three neu-
rons, a similar pattern of inhibition followed by excitation was
also present although the associated parameters did not reach
significance. In all of the 21 neurons that did exhibit this signif-
icant pattern of inhibition and excitation, these parameters were
significantly different between the premovement and movement
execution periods.

Figure 5 shows KS plots of the model fits for the cell modeled
in Figure 4 using the full model in equation 1 and each of the
components of that model taken individually. The closer the KS
plot is to the 45◦ line, the closer the model fit to the data. The
model that minimizes the maximum deviation, the KS statistic
listed at the top of each panel, provides the best fit to the data. Not
surprisingly, the complete model containing the stimulus-related
component as well as the short- and long-term history compo-
nents provides the best fit. Examining the component models, we
found that the immediate history component most contributes
to goodness-of-fit, followed by the long-term history component,
followed by the stimulus-related component. This observation is
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FIGURE 5 | KS plots for models comprising (A) only stimulus related component, (B) only immediate history component, (C) long-term history

component, and (D) the complete model.

Table 2 | Computation of AIC values for component and full models.

# params AIC value Improvement

in AIC over null

Null model 1 62104 0

Stimulus component 10 62077 27

Immediate history 10 61709 395

Long-term history 15 62053 51

Full model 35 61642 462

further supported by the AIC values for this neuron and these
models, which are displayed in Table 2. Each model is compared
to a null model that treats the spiking as a Poisson process with
constant firing rate. Each of the 24 oscillatory neurons analyzed
exhibited similar goodness-of-fit results. In each case, the full
model had the smallest KS statistic and minimum AIC score and
the single component that contributed most to the overall fit
was the immediate history component. On average, the model
improvement related to the stimulus component, the immediate
history component, and the long-term history component was
16%, 75%, and 17% of the improvement from the full model,
respectively.

DISCUSSION
Previous analyses of aberrant spiking patterns of STN neurons
in PD have focused on features of the spike train power spec-
trum. In these analyses, the oscillatory behavior of STN neurons

in PD when not attempting to make an explicit arm move-
ment is described as a peak in the power spectrum between
10 and 20 Hz that is evident above the noise in the compu-
tation of the power spectrum itself. This same baseline noise
could mask other features of the spiking properties of these
neurons that are important in characterizing how their firing
relates to the pathogenesis of PD. In the above analysis, we
have used point process models to estimate the instantaneous
intensity of neural spiking as a function of time relative to move-
ment onset, movement direction, and the past spiking activity
of the neuron being modeled. Using a simple GLM frame-
work, we are able to compute optimal parameters to fit the
data, which are interpretable in terms of the relation between a
covariate and the observed spiking activity, to determine the sta-
tistical significance of these parameters, and to measure overall
goodness-of-fit between the resulting GLM model realization and
the data.

We can interpret the stimulus-related parameters {αl,d}tend
l = tstart

as defining the spiking rate in the absence of recent spiking activ-
ity. When we compare these estimated parameters in the full
model to those in the model with only the stimulus-related com-
ponent, we find that they are largely identical, indicating that
the inhibitory and excitatory effects of past spikes tend to aver-
age each other out. Therefore, the neuron in Figure 4 has an
average firing rate of about 65 spikes per second 1.5 s before
the initiation of a movement in any direction. Over half of the
neurons we analyzed showed a significant increase in the fir-
ing activity that began 500–800 ms prior to movement onset,
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peaked sometime between 200 ms prior to movement to 500 ms
following movement onset, and lasted up to a second into the
movement. Amirnovin et al. (2004) found similar significance
results by averaging over a population of STN neurons. Our anal-
yses also revealed directional selectivity among a number of these
oscillatory neurons, in agreement with the results of Williams
et al. (2005).

The estimated values and significance levels of the history-
related parameters are particularly noteworthy. We can
interpret the values of these parameters as modulations of
the stimulus-related intensity, based on past spiking activity. A
parameter value that is less than zero, so that its exponentiated
value is less than one, indicates a reduced probability of firing
due to a previous spike, or an inhibitory history effect, while a
value that is greater than zero indicates an increased probability,
or an excitatory history effect. For any neuron, the fact that
any of these parameter estimates is significantly different from
one indicates that a Poisson process cannot completely describe
its spiking behavior. The oscillatory neurons we observed here
have significant history effects at both short and long intervals.
Therefore, rate models of STN spiking that do not take firing
history into account will not capture the highly non-Poisson
structure in the observed spike trains.

The short-term history parameters, {βj}9
j = 0, relate to intrinsic

firing properties of the neuron. The fact that exp(β0) was signifi-
cantly smaller than one in all of the oscillatory neurons observed
reflects a 0–1 ms refractoriness in the spiking of each of those
neurons. In all but one of these neurons, the estimated value of
exp(β1) was significantly larger than one, indicating that 1–2 ms
after a previous spike, the probability of another spike is greatly
increased. In a number of these cells, this increased probabil-
ity of firing persisted up to 5 ms after a previous spike. This is
characteristic of neurons that fire in rapid bursts of two or more
spikes.

The estimated values of the long-term history parameters,
{γk}14

k = 1, characterize the statistical structure of the oscillatory
spiking behavior of these neurons. In 21 of the 24 neurons ana-
lyzed, we found a significant reduction in the firing intensity at
about 20–40 ms following a spike, at which point the probabil-
ity of spiking decreased by 5–10%. In all of these neurons, firing
intensity is significantly increased by 2–5% between 40 and 90 ms
after a spike. This suggests that the peak in the computed power
spectra of these oscillatory neurons is due to an initial period
of inhibition followed by a period of increased excitability. The
fact that the decrease and increase in firing is only a small per-
centage of the stimulus related intensity suggests that the spiking
behavior of these neurons is not strictly periodic, with spikes
occurring at each cycle. Instead, the probability of firing is only
slightly altered by past spiking. For example, for the neuron rep-
resented in Figure 4, the probability of firing at least one spike
20–30 ms after a previous spike, at the point of maximum inhi-
bition, is 0.44, while the probability of firing at least one spike
50–60 ms after a previous spike, at the point of maximum facil-
itation is 0.5. This difference may not be easy to identify by eye
in the spike train for a given neuron, but does show up sig-
nificantly in the power spectrum and model fits with sufficient
data.

Our comparative goodness-of-fit analysis on the component
neural spiking models characterizes the relative contributions of
covariates related to the movement signal and the short- and
long-term history effects on our ability to describe and predict
spiking activity. The AIC value for each component model is
smaller than a null Poisson spiking model, indicating that each
one of these components improves the fit to the data when added
individually to the model. Additionally, the AIC of the full model
is better than that of any model component alone, indicating that
no one component provides complete information about the sta-
tistical spiking properties. Nevertheless, adding the immediate
history component to the null model improves its fit dramati-
cally more than adding either of the stimulus-related or long-term
history effects. This suggests that most of our ability to predict
spike times from this model comes from characterizing the intrin-
sic properties of the neuron such as refractoriness and bursting.
This is not entirely surprising, as the values of the short-term
history parameters tend to change the baseline firing intensity
more than 50% upward and downward. By comparison, the val-
ues of the stimulus-related parameters never changes the baseline
firing intensity by more than 20% and the values of the long-
term history parameter never increase or decrease it by more
than 10%.

While this analysis suggests that a full characterization of STN
spiking must include short history terms related to the neuron’s
internal dynamics, it is the resulting estimates for the interme-
diate history terms that shed light on possible mechanisms for
oscillatory behavior of STN neurons. We found that these oscil-
lations could be described by a cycle of inhibition and excitation
that takes place from 20 to 90 ms after a previous spike and that
voluntary movements attenuate this spiking pattern. This sug-
gests that beta frequency oscillations may be caused by network
effects involving multiple regions of the basal ganglia rather than
the intrinsic properties of individual STN neurons. One hypothe-
sis is that synchronized firing in the STN feeds back to the globus
pallidus pars externa (GPe), which then provides a wave of inhi-
bition back to STN (Plenz and Kital, 1999). The timing of the
oscillatory spike patterns would, therefore, be determined by the
time course of excitation and inhibition within this recurrent loop
(Montgomery, 2004). When planning and executing a volun-
tary movement, increased neural inputs from cortical premotor
and motor areas could serve to disrupt this cycle of excitation
and inhibition by stimulating the STN in a non-synchronous
manner and at frequencies different from the natural oscillatory
frequency, thereby disrupting the network responsible for this
pattern of activity.

While this analysis focused on characterizing patterns of oscil-
latory spiking in the Parkinsonian STN and comparing these
patterns between rest and movement periods, to understand the
mechanisms underlying the disease, we would ideally like to ana-
lyze how oscillations in the Parkinsonian STN differ from spiking
activity in the healthy STN. Previously, we have used analogous
methods to compare spike patterns in human Parkinsonian STN
to healthy non-human primate STN (Sarma et al., 2010), finding
that Parkinsonian STN had significantly more cells with dom-
inant beta oscillatory activity and significantly fewer cells with
strong directional tuning. As DBS technology advances, it is likely
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that it will be used at earlier stages of PD, allowing for comparison
of directional tuning and oscillatory activity at different stages of
disease progress.

Additionally, in future work, we plan to explore variability in
spiking activity over multiple locations in the STN. We hypoth-
esize that specific subregions of STN may have spike patterns
that are more affected by the disease process or more related
to specific motor symptoms than others. The GLM methods
outlined here provide a natural framework for comparing fir-
ing activity across spatial regions. These statistical methods may
also aid in the development of improved treatments. For exam-
ple, GLM analyses of spatial variability in spiking patterns may
help identify specific subregions of STN where DBS stimulation
is most effective. Similarly, applying these methods to simulta-
neous recordings from multiple structures in basal ganglia and
cortex could be used to identify alternate targets for stimulation,
for example specific locations in motor cortex that are statistically
connected to STN activity.

These results demonstrate that point-process analyses provide
an elegant approach to determining the relative contributions
of intrinsic dynamics and external stimuli to the propensity of
neurons to fire. This approach provides a systematic framework
for characterizing subthalamic neuronal activity and differen-
tiating normal from pathologic activity. Moreover, these data
suggest that the pathophysiological mechanisms that underlie PD
likely reflects abnormal network processing (Gale et al., 2009),
the dynamics of which cannot be completely described using
first order analysis such as firing rate and/or power spectral
calculations.
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