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Even in absence of sensory stimuli cortical networks exhibit complex, self-organized activity
patterns. While the function of those spontaneous patterns of activation remains poorly
understood, recent studies both in vivo and in vitro have demonstrated that neocortical
neurons activate in a surprisingly similar sequential order both spontaneously and following
input into cortex. For example, neurons that tend to fire earlier within spontaneous bursts
of activity also fire earlier than other neurons in response to sensory stimuli.These “default
patterns” can last hundreds of milliseconds and are strongly conserved under a variety of
conditions. In this paper, we will review recent evidence for these default patterns at the
local cortical level. We speculate that cortical architecture imposes common constraints on
spontaneous and evoked activity flow, which result in the similarity of the patterns.
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INTRODUCTION
Spontaneous activity is a principal mode of operation of the
brain. It is defined as neuronal activity that is not directly tied
to either sensory input or a behavioral task. Functionally, it has
been suggested that cortical spontaneous activity underlies pro-
cesses such as mental imagery (Kreiman et al., 2000; Kosslyn et al.,
2001; Kraemer et al., 2005), cognition (Sadaghiani et al., 2010),
and the consolidation of memories (Buzsaki, 1989; Hoffman and
McNaughton, 2002; Born et al., 2006). In recent years, a variety of
recording techniques across multiple in vivo and in vitro models
have documented a resemblance of stimulus-evoked activity pat-
terns to those that occur spontaneously. Considering the synaptic
requirement for propagation of neuronal activity, it is likely that
cortical connectivity imposes common constrains on the activity
structure seen within a cortical circuit.

The initial description of a significant overlap between sponta-
neous and evoked activity patterns was provided by studies using
voltage-sensitive dyes. Visualizing ongoing activity in cat visual
cortex, Kenet et al. (2003) showed that spontaneously emerging
patterns of activity corresponded closely to functional orienta-
tion maps. Similarly, patterns of activity emerging in response
to sensory stimulation were also found to occur spontaneously
in mouse sensorimotor cortex (Ferezou et al., 2006). Theoreti-
cal studies have shown a direct link between the connectivity in
network models and the resultant dynamics (e.g., Honey et al.,
2007; Galán, 2008; Roxin, 2011). Consistent with these theoreti-
cal studies, recent experiments using either ultrastructural analysis
(Bock et al., 2011) or paired patch clamp recording (Ko et al., 2011)

have demonstrated that visually evoked neuronal activity patterns
reflected synaptic connectivity.

On a larger scale, Mohajerani et al. (2010) have shown that
fine scale spontaneous activity patterns are mirrored between
hemispheres and are the direct result of bilateral connectivity.
Modification of this connectivity results in a dramatic reduction
in the coherence of patterns between hemispheres. By combin-
ing anatomical tracing and fMRI, Vincent et al. (2007) provide
evidence that both spontaneous and evoked patterns could be
the byproduct of connectivity. Specifically, they found that “the
pattern of saccade task-evoked activations resembles the distribu-
tion of spontaneous BOLD correlations in the oculomotor system”
and showed that the correlation structure of spontaneous BOLD
fluctuations relates to the underlying anatomical circuitry by using
retrograde tracer injections.

The interdependence of spontaneous and evoked activity is
further supported by compelling evidence of plastic remodeling
of spontaneous activity by sensory experience. Using voltage-
sensitive dye imaging in rat visual cortex, Han et al. (2008) found
that repetitive presentation of a visual stimulus modified ongo-
ing spatiotemporal activity patterns such that these patterns more
closely resembled the evoked responses. Thus, the overlap in
activity patterns may be the product of intracortical plasticity
mechanisms, suggesting that the similarity between spontaneous
and evoked patterns is the product of dynamic remodeling of
the underlying synaptic connectivity. In more global framework,
spontaneous activity can be seen as an internal model of the
learned sensory environment (Fiser et al., 2010).
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The most distinguishable patterns of spontaneous spiking
activity are observed during slow wave oscillations (SWO), which
can be observed during slow wave sleep (Metherate and Ashe, 1993;
Steriade et al., 1993, 2001), quiet wakefulness (Petersen et al., 2003;
Crochet and Petersen, 2006; Ferezou et al., 2006; Luczak et al.,
2007, 2009), and under anesthesia (Steriade et al., 1993). SWO
can also originate without pharmacological manipulation in vitro
in slices of isolated cortex (Sanchez-Vives and McCormick, 2000;
Cossart et al., 2003; Shu et al., 2003), showing a strong general-
ization of this rhythmic neuronal behavior to the cortex. During
SWO, bursts of population activity called UP states last for 100 ms
to several seconds and are interspersed with periods of neuronal
silence (DOWN states; Metherate et al., 1992; Steriade et al., 1993;
see example in Figure 1 middle column and in Figure 2A). UP
states, whether spontaneous or evoked by external stimuli, occur
simultaneously in nearby neurons (Lampl et al., 1999; Luczak
et al., 2007, 2009) and exhibit complex spatiotemporal patterns of
neuronal activity (Cossart et al., 2003; MacLean et al., 2005; Wat-
son et al., 2008). Multiple studies have shown that those patterns
occurring during spontaneous UP states are particularly similar
to patterns produced by thalamic or sensory stimulation (Tsodyks
et al., 1999; Kenet et al., 2003; Fiser et al., 2004; MacLean et al.,
2005; Eggermont, 2006; Watson et al., 2008; Luczak et al., 2009).
These data suggest that spontaneous patterns resemble stimulus
evoked patterns because they propagate through the same micro-
circuits, and the architecture of synaptic weights and connections
imposes significant ‘hardware’ constraints on activity patterns.

In this mini review, we will focus on the similarity of
spontaneous and evoked activity patterns at the local circuit level.
Although this similarity has also been observed on much larger
spatial scales (Vincent et al., 2007; Mohajerani et al., 2010), we
will focus on microcircuits that can be densely recorded from

with single cell resolution. We term local patterns of neuronal
activations that frequently repeat spontaneously or in response
to stimuli as “default patterns” due to the preservation of their
structure regardless of the source of initiation. Consistent with
the theory that local cortical architecture plays a major role in
generating these default patterns, we also introduce the term
“default microcircuits.” Thus, default microcircuits give rise to
default patterns, reflecting the concept that specific connectivity
in a local network constrains and shapes the spontaneous and
evoked activity. We speculate that default microcircuits are a net-
work of strongly interconnected neurons embedded in network
of weaker connections (Song et al., 2005; Perin et al., 2011), likely
shaped by plasticity mechanisms (Han et al., 2008). These strong
connections cause spontaneous or evoked signals to be more likely
to travel along these stronger connections, which, in turn, results
in similar activity patterns.

DEFAULT PATTERNS: IN VITRO
Far from being random, spontaneous circuit activity is precisely
patterned in terms of the timing of a specific neuron within a
sequence of neuronal activity (Cossart et al., 2003; Kenet et al.,
2003; MacLean et al., 2005; Watson et al., 2008; Luczak et al., 2007,
2009). Further, the same circuits that are spontaneously active in
sensory cortices can also be activated by thalamic input in vitro
(Castro-Alamancos, 2009; MacLean et al., 2005; Watson et al.,
2008). Here we define a circuit as a group of neurons that are likely
synaptically interconnected and functionally related (Bock et al.,
2011; Ko et al., 2011). Thus, any discrete population of neurons
that are co-active (i.e., a circuit) will be repeatedly co-active to the
exclusion of the majority of the surrounding neurons. This sug-
gests that this activity is the byproduct of discrete/specific synaptic
connectivity inherent to cortex (Sanchez-Vives and McCormick,

FIGURE 1 | Spatiotemporal precision of network activation: cells are

activated in similar order spontaneously and following thalamic

stimulation. (A) Light micrograph, with an overlaid cartoon, of a
somatosensory (S1) thalamocortical slice preparation with intact thalamic
input nucleus (ventral basal nucleus, VB), thalamocortical axons, and the
somatosensory cortex. A stimulating electrode is placed in VB, as indicated
by yellow square. The superimposed dashed-red box indicates the location,

over layer 4, of the illustrated frame in (B). Scale bar, 1 mm. (B) Individual
frames (300 ms) from representative movies of a thalamically evoked
network activation (triggered, gray, left) and a spontaneous network activation
(spontaneous, green, middle) in the same slice. Each movie progresses from
top to bottom as indicated by the arrow. Core frames indicate cells active in
the same order across all movies (n = 11) from this slice, indicated in red.
Scale bar 50 μm (adapted from MacLean et al., 2005).
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FIGURE 2 | Spontaneous UP states initiate sequential patterns

homologous to evoked responses. (A) Representative raw data plot
showing a tone response and spontaneous firing event. DOWN states of
complete silence alternate with UP states of generalized activity. Neurons are
ordered vertically by the mean latency over all stimuli, to illustrate sequential
spread of activity. Blue traces show local field potentials (LFPs) from four
separate recording shanks; at bottom is the multiunit firing rate (MUA).
(B) Raster plots showing spike times for two representative neurons to
repeated presentations of a pure tone stimulus. (C) Average activity of 90
simultaneously recorded neurons to tone stimuli. Gray bars show
pseudocolor representations of each neuron’s perievent time histogram
normalized between 0 and 1; red dots denote each neuron’s latency in the
100 ms after tone onset. (D) Response of the same two neurons as in (B)

triggered by UP state onsets. Note the similar temporal pattern. (E) Average
upstate-triggered activity of all neurons, sorted in the same order as in C
(adapted from Luczak et al., 2009). (F) Cartoon illustration of default
microcircuits – strongly connected neurons (solid arrows) embedded in pool

of weaker connections (dashed arrows). Due to constraints on connectivity,
different inputs may result in similar activity propagation through the
network. Most typical patterns produced in such default microcircuit are
termed default patterns (G). (H) Cartoon illustration of stimulus-evoked
patterns. The overall structure of evoked patterns is similar to the
spontaneous default patterns shown in panel (G), but the firing rate and to
smaller degree spike timing of neurons encodes information about stimulus
identity. For example: during spontaneous activity neuron 1 (green) tends to
fire before neuron 2 (brown). In response to a stimulus that is preferred by
neuron 1, neuron 1 fires at a higher rate (4 Hz) and with shorter delay (5 ms)
after stimulus onset while neuron 2 fires at 2 Hz 25 ms after onset. For a
different stimulus that is preferred by neuron 2, neuron 1 fires at a lower rate
(1 Hz) and with longer delay (15 ms), while neuron 2 increases its firing rate by
3 Hz and shortens its delay by 5 ms. This exemplifies how external stimulation
can evoke a stimulus-specific firing rate and timing of neurons and still
maintain the overall structure of the default pattern (i.e., neuron 1 fires before
neuron 2).
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2000; Ko et al., 2011). Using mouse somatosensory thalamo-
cortical slices and calcium imaging to observe action potential
generation within individual neurons, it has been demonstrated
that thalamic stimulation activates specific neocortical circuits,
which repeatedly involve a particular population of neurons active
in a particular sequence. These thalamically recruited circuits
are statistically indistinguishable in the numbers, identities, and
sequences of neurons firing during spontaneous activations of the
same circuit (MacLean et al., 2005; Watson et al., 2008). This is
especially the case when examining “core” circuit neurons, that is,
neurons that participate in every activation of the specific circuit
that they were part (MacLean et al., 2005; Yassin et al., 2010). By
comparing all possible pairs of core neuron sequences, it was found
that the percent of core neurons that were activated in exactly the
same order both spontaneously and following thalamic input to
be around 70%. These repeating sequences were significantly dif-
ferent from bootstrap reshuffled data sets in which cell identity
was maintained and only the time of activation during a circuit
event was changed (Figure 1). Thus, cortical circuits that are acti-
vated by thalamic input significantly overlap with the activity that
arises in these same circuits spontaneously. This result implies that
intracortical connectivity plays a dominant role in determining the
cortical response to sensory input.

DEFAULT PATTERNS: IN VIVO SENSORY CORTICAL CIRCUITS
To investigate if precise spatiotemporal sequences of activation
also occur in vivo, Luczak et al. (2009) recorded simultaneously
from 40–100 neurons in layer V of rat auditory cortex using silicon
microelectrodes in both urethane anesthetized and awake rats. In
response to tone stimuli as well as spontaneously, neurons showed
sequential temporal firing patterns (Figure 2A). If the sequential
structure of sensory responses is a reflection of a default dynamics
of the circuit producing it, spontaneous patterns generated by the
same circuit should show the same stereotyped sequential struc-
ture as sensory responses. In support of this prediction, individual
neurons showed similar temporal relationships of their spiking
activity to UP state onsets as they did to sensory stimuli, revealing a
similar sequential structure at the population level (Figures 2B–E).
The similarity of spontaneous and evoked patterns was also
observed in somatosensory and visual areas (Jermakowicz et al.,
2009; Luczak et al., 2009) and similar sequential patterns were also
reported in prefrontal cortex (Peyrache et al., 2010). This suggests
that default patterns are present in most cortical areas. More-
over, weak pair-wise correlations in neuronal circuits may cause
major constraints not only on sequential structure of default pat-
terns but also on firing rate correlations at the population level
(Schneidman et al., 2006). Thus, default patterns not only demon-
strate fine-scale temporal patterns, but also have similar firing
rate correlations for both spontaneous and stimulus-evoked events
(Luczak et al.,2009). These are important findings because it shows
that population spike patterns in anesthetized and awake animals
are much less diverse than previously assumed.

DISCUSSION
It is not surprising that the neuronal population patterns may
show a certain level of similarity to each other, since more
strongly connected neurons will be more likely to fire together

across different conditions. Rather, the surprise is how highly
conserved these activity patterns are under a variety of condi-
tions. Considering that each cortical neuron receives input from
potentially thousands of other neurons, any evoked or sponta-
neous activity pattern could have very different spatiotemporal
dynamics from all other patterns. Contrary to this expectation,
studies reviewed here show that neuronal responses are limited
to a small subset of all possible activity patterns. We suggest
that these “default patterns” are the functional manifestation
of “default microcircuits” – local patterns of connectivity that
impose similar spatiotemporal constraints on spontaneous and
stimulus-evoked flow of activity, as illustrated in cartoon form in
Figures 2F–H.

One profound question which comes to mind is: what would be
the function of default patterns? We see it a little differently – that
the system has to generate default patterns given the constraints
imposed by synaptic connectivity. Thus, we feel it could be mis-
guided to try to assign a specific function to this activity, rather
default patterns reflect the circuit wiring diagram(s) in neocor-
tex. Let’s use an analogy: the arm is composed of set of bones
and joints which put together set constraints on possible move-
ments. Thus, although spontaneous arm movements, reaching for
a cup or writing are quite different actions – patterns of muscles
activity during those actions share many similarities, because it
uses the same “hardware.” Thus, default activity patterns are likely
the manifestation of “hardware” constraints within the system.
However, we believe that it is important to discuss the existence
of default patterns because it can shed light on the structure of
baseline activity, structure of stimulus-evoked patterns and thus
will likely prove critical to our understanding of the informational
coding scheme in cortex.

Although, results reviewed here indicate that the spatiotem-
poral population spike patterns are much less diverse than
previously assumed, neuronal patterns are not carbon copies
of one another. It is particularly important to keep in mind
that although default microcircuits constrain neuronal activity
dynamics, the number of possible patterns is still enormous, allow-
ing for the unique representation of different stimuli (Luczak
et al., 2009). For instance, for a preferred stimulus, a neuron
will tend to respond with higher firing rate and with slightly
shorter latency but the overall structure of default pattern will
be preserved (Figure 2H, see also Figure 1 in Luczak et al.,
2009). It is also interesting to note that the highest preci-
sion of spike patterns is observed immediately after stimulus
(Churchland et al., 2010) or UP state onset, after which timing
precision progressively deteriorates (Luczak et al., 2007). Thus,
those results are not fully consistent with concept of “synfire
chains” which generally implies repeating patterns to have a
millisecond-level precision for the entire duration of pattern
(Abeles, 1991). It is conceivable that the reason for the highest
precision of spiking observed immediately after onset could be
that neurons firing earliest in the sequence would reflect an ini-
tial processing of information; and spiking activity at later times
would reflect subsequent computations combined with feedback
information from other areas. For example in several sensory
systems, short-latency responses correlate with simple stimulus
features, while later responses evolve to represent more complex
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features (Grastyan et al., 1978; Sugase et al., 1999; Brincat and Con-
nor, 2006; Bartho et al., 2009). For this reason we feel that data
reviewed here best fits with the theoretical construct based on cell
assembly hypothesis. This idea introduced by Donald Hebb in the
1940s (Hebb, 1949) proposes that neurons are active collectively
in groups produced by Hebbian plasticity. Further, Hebb pos-
tulates that different stimuli are represented by unique neuronal
assemblies with completely different temporal patterns depend-
ing on task or stimulus. However, evidence for default patterns
necessitates a partial revision of Hebb’s theory. Specifically, con-
served activity patterns imply that neuronal assemblies are like a
variation on a one master theme rather than unique themes for
each stimulus or object. For example, neurons in auditory cor-
tex respond with similar temporal sequences to different tones
(Figures 2B,C), although each tone evokes different variation of
that pattern (Luczak et al., 2009).

The discovery of resting brain state in fMRI studies has required
neuroscientists to rethink our understanding of “baseline activity”
(Gusnard and Raichle, 2001). Similarly, the existence of default
patterns should lead to more careful rethinking of baseline activity
in electrophysiological experiments. For example, from the pre-
sented studies it is clear that assumption of spiking independence
(e.g., Poisson process), or quiescence for that matter, is not an
accurate description of neuronal population activity at rest. Spon-
taneous brain activity is full of structured patterns and ignoring
this fact may lead to incorrect interpretation of experimental data
especially when investigating temporal and firing rate relationships
between neurons.

Despite the fact that many labs have observed and reported
repeating patterns in neuronal activity, these results are not widely
accepted. One of the reasons for this is the statistical difficulty in
assessing the significance of reoccurring patterns. Specifically, the
problem resides in defining a null hypothesis: what is the expected
probability of a pattern arising by chance (Ikegaya et al., 2004;
Mokeichev et al., 2007; Ikegaya et al., 2008; Roxin et al., 2008)?
For example, should the analyzed spike trains be compared to a
homogeneous or inhomogeneous Poisson process; if inhomoge-
neous, what then should be an appropriate modulation function?
We would like to note that evidence showing consistent and repeat-
ing sequential neuronal activity in response to stimulation as well
as to DOWN-UP state transition as reviewed here are not subject
to these statistical difficulties.

Another potential source for discrepancy between results may
be due to differences in brain state. For instance, during sleep,
periods of SWO are interleaved with periods of REM sleep. Each

of those states has quite different dynamics. Moreover, the awake
state is different from sleep and has its own range of states ranging
from an animal at rest to an animal which is fully engaged while
performing a task. Probably during “quiescent” states (i.e., SWO in
thalamocortical slices, SWO in animals under anesthesia, “quiet”
wakefulness; Petersen et al., 2003) it is easier to detect default activ-
ity patterns as opposed to the activated/attending state observed
in animals engaged in task. We speculate that in the more active
brain, i.e., attentive wakefulness, spatial and temporal overlap of
patterns propagating through the same default microcircuits may
obscure and complicate detection of any structured activity. By
analogy, in slowly moving carousel it easy to see each of the seats,
but when the carousel is spinning fast we can no longer distin-
guish single seats from the blur of motion. Thus, the apparent
absence of patterns reported in some studies (e.g., Ecker et al.,
2010) could be the result of a more activated brain state. In studies
that densely sample from neuronal populations, as afforded by
2-photon imaging methods, significant correlation between
nearby and task related neurons has been observed even during
the activated state (e.g., Komiyama et al., 2010). This observation
was made possible by imaging approaches that allow single cell
resolution. Without fine spatial resolution, task-engaged circuits
can be intermingled and overlapping, making it difficult to detect
meaningful correlations and preserved spatial–temporal structure
of local circuits. The other possible source of discrepancies in
detecting repeated patterns may be found in the size of the time
bin over which correlation is calculated, as it can lead to nega-
tive results if the time bin is too large or small. Regardless, we
suggest that it is of utmost importance that the role and activity
of neurons that comprise a default microcircuit be characterized
across different brain states ranging from deep anesthesia to awake
task-engaged animal.

In summary, we describe current evidence for existence of
default patterns. We suggest that default microcircuits (strongly
connected neurons embedded in pool of weaker connections)
could cause similar propagation of activity through the network,
despite differences in spontaneous and stimulus-evoked inputs
(Figure 2F). As the result, certain types of activity patterns
(i.e., default patterns) are more prominent and more frequent
(Figure 2G).
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