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Human choice is not free—we are bounded by a multitude of biological constraints. Yet,
within the various landscapes we face, we do express choice, preference, and varying
degrees of so-called willful behavior. Moreover, it appears that the capacity for choice
in humans is variable. Empirical studies aimed at investigating the experience of “free
will” will benefit from theoretical disciplines that constrain the language used to frame
the relevant issues. The combination of game theory and computational reinforcement
learning theory with empirical methods is already beginning to provide valuable insight
into the biological variables underlying capacity for choice in humans and how things
may go awry in individuals with brain disorders. These disciplines operate within abstract
quantitative landscapes, but have successfully been applied to investigate strategic
and adaptive human choice guided by formal notions of optimal behavior. Psychiatric
illness is an extreme, but interesting arena for studying human capacity for choice. The
experiences and behaviors of patients suggest these individuals fundamentally suffer from
a diminished capacity of willful choice. Herein, I will briefly discuss recent applications
of computationally guided approaches to human choice behavior and the underlying
neurobiology. These approaches can be integrated into empirical investigation at multiple
temporal scales of analysis including the growing body of experiments in human functional
magnetic resonance imaging (fMRI), and newly emerging sub-second electrochemical
and electrophysiological measurements in the human brain. These cross-disciplinary
approaches hold promise for revealing the underlying neurobiological mechanisms for the
variety of choice capacity in humans.
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INTRODUCTION
A scientific perspective of “free will” must be rooted in the parts
of the problem that are measureable and consistent with the
wealth of empirical data. Others have discussed the need for
this kind of approach and make good philosophical arguments
for the progress a scientific framework promises (Dennett, 2003;
Churchland and Churchland, 2006; Suhler and Churchland,
2009). But, before we can address the neurodynamics of “free
will” the question, “What is free will?” must be addressed.
Unfortunately an empirical answer to even this obvious question
remains murky—narratives aimed at describing the subjective
experiences associated with free will fail to pin down concrete
variables for measurement and experimentation. However, dis-
cussions on the topic of free will lurk around issues related to
observable choice behavior and the causes of our actions. In the
extreme, no organism has complete freedom in their capacity
to make choices. There are great numbers of evolved physi-
cal constraints that restrict any given organism’s capacity to
choose; for example, humans cannot choose to breath underwa-
ter (unassisted) no more than a fish can choose to become a
doctor. Yet, we observe choice behavior all around us and this

phenomenon is a very active area of research for many aca-
demic disciplines including neuroscience, economics, psychology,
politics, and philosophy.

Choice behavior is arguably the basis for all that is interest-
ing in humans. The impact of our choices pervades all aspects
of our day-to-day existence and has long-term consequences for
our planet and the life it supports. The choices individuals make
are likely the basis for how we assign personality and define iden-
tity. The apparent freedom individuals possess in carrying out
these decisions is a highly valued concept in many cultures. The
social value of this concept and beliefs about “free will” may have
evolved around the complex social development of our species.
Thus, we hold others (and ourselves) accountable for our actions;
and, we reward or punish individuals based on our acceptance
of the choices expressed. Accountability and the choices we make
in social domains assume that we possess agency and determine
the course of our own actions (Skyrms, 1996). In cases where
agency appears to be diminished (e.g., mental illness) we debate
the accountability of individuals that have performed unaccept-
able acts. This suggests that altered brain chemistry or abnormal
brain development are examples where individuals’ freedom to
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choose are accepted to be diminished. Still, this intuition lacks
from a rigorous framework that could guide empirical determi-
nations of humans’ capacity for choice. Such a framework will be
important to guide what it is we mean when we discuss “free will.”

Mathematically explicit models have been incorporated into
empirical investigations of choice behavior and are beginning to
generate good hypotheses about how nervous systems deal with
computations associated with various choice problems. Herein,
I will briefly introduce two dominant quantitative theories that
deal with choice behavior (i.e., game theory and computational
reinforcement learning theory). I will discuss the impact these
disciplines have already had on neurobiological investigations of
human choice behavior and highlight how the integration of
these disciplines is beginning to open new arenas for investigating
the biological basis for choice capacity. These arenas include the
diminished capacity for choice experienced by individuals with
mental illness and investigation into the variation expressed by
healthy decision makers. It is in the intersection of theoretical and
empirical disciplines where advances in our understanding of our
capacities for choice can develop. I will conclude with a depic-
tion of possible future avenues of basic neuroscience research in
the domain of human choice capacity and how these investiga-
tions may impact psychiatric medicine and more generally our
conception of “free will.”

INTEGRATING THEORETICAL DISCIPLINES WITH AN
EMPIRICAL NEUROSCIENCE OF CHOICE
A neurobiological understanding into the mechanisms
underlying willful choice behavior in humans must inte-
grate the wide range of knowledge gained from empirical studies
at multiple scales of analysis. Molecular systems build neural
circuits that respond to and direct the actions of a wholly
integrated organism; the behavior of these systems can be
measured in a wide range of spatial and temporal scales, thus
complicating the job of any integrative hypothesis. Quantitative
theory has had a big impact on integrating the growing body of
neurobiological data, but much work remains (Abbott, 2008).
Investigations into the neurobiology underlying choice behavior
has recently been infused with the quantitative theory of games
(Montague and Berns, 2002; Montague et al., 2006; Camerer,
2008). The establishment of game theory (Von Neumann and
Morgenstern, 1947) provided an abstract, but principled and
mathematical approach to the problem of choice during strategic
interaction. The extension of this framework to an experimental
context gave birth to behavioral economics (Camerer, 2003),
which recently extended its empirical investigations with human
neuroimaging technology (Montague and Berns, 2002; Montague
et al., 2006; Camerer, 2008; Kishida et al., 2010). Prior to the
development of neuroeconomics, computational reinforcement
learning theory (Sutton and Barto, 1998) provided an abstract
depiction of value guided choice behavior with notions of
optimally adaptive actions. Game theoretic and computational
reinforcement learning approaches stand to provide a foun-
dation for empirical investigations into choice behavior and
the expression of choice capacity. In line with the aims of this
special issue, these theoretical frameworks have already pro-
vided insight into the neurobiology underlying choice behavior

crossing multiple temporal scales of investigation including
millisecond spike activity of individual neurons (Montague
et al., 1996), sub-second changes in extracellular dopamine
(Clark et al., 2010; Kishida et al., 2011), to blood-oxygen
level-dependent neuroimaging in humans (Berns et al., 2001;
Pagnoni et al., 2002; McClure et al., 2003, 2004; D’Ardenne et al.,
2008).

COMPUTATIONAL REINFORCEMENT LEARNING THEORY
Computational reinforcement learning theory (Sutton and Barto,
1998) has relatively few fundamental moving parts. Abstractly,
these include the decision-making agent, its environment (the
“state-space”), guidance signals (“rewards”), and a policy. In this
framework, an agent receives signals from its environment, which
tells the agent all it needs to know about the current decision-
problem or what state, “st ”, the agent is in at time “t” (Figure 1).
As the agent traverses different states of the environment it
receives new information about the new states it visits including
positive or negative feedback in the form of rewards and pun-
ishments, respectively. Here, rewards are a quantitative variable
determined by the environment that immediately signals to the
agent “this state is good” by amount “rt ”. With this information
the agent makes a decision to take some action “at” according
to the agent’s policy. Within the development of computational
reinforcement learning theory all of these processes are captured
and represented mathematically. A fundamental principle that
has emerged from this theory is the Bellman optimality equations,
which prescribe the optimal values to states and actions accord-
ing to some policy and the expected accumulation of rewards for
future states. For example:

Q∗(s, a) = E

{
rt+1 + γ max

a′ (Q∗(st+1, a′))
∣∣st = s, at = a

}

is the Bellman optimal action-value equation. It determines the
optimal action-value assignment (i.e., Q∗ (s, a)) for a given state-
action pair [an action (a) taken while in state (s)]. Here “E”
is the expectation of the reward “rt+1” plus the discounted
(γ) state-action value function (Q∗(st+1, a′)) for the next state
(st+1) given some chosen action (a′); a′ is chosen to maximize
Q∗(st+1, a′), for which the policy is implied. Finally, the expected
value “E{·|(st = s, at = a)}” is calculated given the actual state-
action pair at time t (st = s, at = a). When everything is known
about the decision problem (e.g., the current state, next state,
the possible actions, and their associated rewards) the calcula-
tion of this problem is straightforward. But, in the real world
these decision problems are faced with incomplete knowledge
and the theoretical work in this domain has been aimed at
different solutions to variations on this problem. This frame-
work has been deployed on a number of biological decision-
making problems including those that humans face or are pitted
against in experiments aimed at understanding how humans
make decisions in environments with various statistical proper-
ties (Montague et al., 2006; Kishida and Montague, 2012; Lee and
Jung, 2012).

An additional value of this framework, in the present dis-
cussion, is that it lays down the fundamental moving parts of
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FIGURE 1 | Cartoon depiction of state-space representation of a simple

choice problem. In all three panels an agent is in state st at time t and
must choose up or down. The dashed boxes with Q∗ and Q′ represents
the value of the up-state (value-maximizing) and down state (sub-optimal),
respectively. In (A) the agent chooses a∗

t+1 and moves into the value

maximizing (Q∗ ) state s∗
t+1. (B) The agent chooses sub-optimally due to a

faulty estimate of the value maximizing choice. (C) The agent has an
incomplete representation of its current state resulting in the diminished
representation of available options; here the sub-optimal choice appears to
be the only one possible.

the problem of willful choice. Within this framework we can
begin to discuss concretely the ways in which an agent’s choice
capacity may be constrained or freed. For example, Figure 1A
demonstrates the ideal case where an agent is sitting in a state
and takes an accurate value maximizing action. If an agent pos-
sessed complete knowledge of the decision problem as the agent
in Figure 1A is assumed, then to choose up is the only decision
that satisfies the assumption that decision-makers act to maxi-
mize their return. Additionally Figures 1B,C highlight examples
where an agent may make the “wrong” decision, but for differ-
ent reasons: Figure 1B shows the agent choosing downward due
to an inaccurate estimate of the value maximizing action. This
is very likely to happen when the estimate of Q∗ (s, a) is wrong
due to incomplete or inaccurate information about the decision
to be made (for example: a poor model or less than optimal learn-
ing expressed by the agent). An example of this kind of problem
during willful decision making has been explored in a formal
manner by Dayan et al.; here, the authors present a computational
theoretical depiction of the problem faced by an agent that uti-
lizes both reflexive and contemplative mechanisms for navigating
choice spaces and show how one or the other system may misesti-
mate the value of available options (Daw et al., 2005; Dayan et al.,
2006).

Figure 1C, on the other hand, highlights a very different issue.
Here, the agent does not represent or encode the state that they
are in accurately (expressed by the faded color of the state cir-
cle, “st ,” Figure 1C). This agent also chooses down incorrectly

due to the fact that the representation that “up is an option”
is completely lacking because the present state is not encoded
correctly. Each of these examples shows how a decision-making
agent may express variable behavior dependent on the ability to
represent the decision problem accurately.

GAME THEORY
The establishment of game theory (Von Neumann and
Morgenstern, 1947) provided a quantitative framework for
exploring the theory of strategic decision-making in (rational
self-interested) humans. The thought experiments and the cor-
responding solutions developed within this discipline provided
a natural entry point for quantitative experimental approaches
(Camerer, 2003); and, for understanding constrained choice
behavior in range of biological agents (Smith, 1982). A fun-
damental principle underlying game theoretic depictions of
choice behavior is the notion that decision-making agents act
to maximize some utility function. Decisions in this context
are made rationally and to maximize the agent’s selfish inter-
ests. Experimental economics and the more recent development
of pairing behavioral experiments with neuroscientific measures
[i.e., neuroeconomics, (Montague and Berns, 2002; Glimcher
and Rustichini, 2004)] aims to test hypotheses generated within
economic theory. However, the quantitative nature of game the-
oretic probes may prove more broadly beneficial in disciplines
aimed and generally understanding the biology of choice behav-
ior. These probes have been designed with explicit notions of
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optimality that ought to determine behavior. The control sig-
nals implicit in these quantitative games are ripe for experiments
aimed at determining biological correlates of choice capacity.
Interestingly humans often deviate from the “rational” game
theoretic solution and express a range of variable responses,
which are largely uncharacterized from an empirical standpoint
(Camerer, 2003). This suggests that humans are not constrained
by the assumptions laid down in economic theory, but these
games provide abstract quantitative landscapes, which experi-
menters can exploit for testing decision-making models in human
participants. These games have been employed in humans and
non-human model organisms to test the assumptions present
in economic theory and to determine the neurobiological sub-
strates for the kinds of computations required to navigate these
game spaces.

DECISION NEUROSCIENCE AND COMPUTATIONAL
PSYCHIATRY
Decision neuroscience has been greatly influenced by psychol-
ogy, computational theory, and more recently game theory.
Experimental paradigms employing a strictly quantitative frame-
work for examining choice pair naturally with the physiological
measurements neuroscientists prefer. Prior to functional mag-
netic resonance imaging (fMRI) the primary tools available to
investigate the underlying neurobiology of choice were highly
invasive, and thus restricted primarily to non-human decision-
making experiments. fMRI has opened the door to deter-
mining physiological responses associated with willful choice.
Experiments aimed at understanding human decision-making
have taken advantage of the theoretical frameworks developed
in game theory and computational reinforcement learning the-
ory (Montague et al., 2004, 2006; Kishida et al., 2010; Kishida
and Montague, 2012; Lee and Jung, 2012). An exciting develop-
ment along these lines is the advent of Computational Psychiatry
(Kishida et al., 2010; Maia and Frank, 2011; Montague et al.,
2011).

In the context of willful choice, psychiatric disorders pose a
number of interesting issues. The altered behavioral profiles of
patients with psychiatric disorders compared to healthy individ-
uals suggest an amplification of the kinds of biological deter-
minants that naturally constrain human choice. Computational
psychiatry aims to characterize psychiatric illness in objectively
measureable quantitative terms. Using game theoretic paradigms
to investigate altered social behavior in patients diagnosed with
mental disorders (Kishida et al., 2010; Maia and Frank, 2011;
Montague et al., 2011) the goal of this newly inspired effort will
be to determine previously hidden characterizations of the “com-
putational” problems expressed by individuals diagnosed with
mental illness [for an introduction to Computational Psychiatry
please see (Montague et al., 2011)]. The early developments of
computational psychiatry have focused on examining human
decision-making behavior through the lens of computational
reinforcement learning theory and game theoretic probes of
choice behavior. These behavioral probes have been paired pri-
marily with fMRI, but more recently, invasive measurements in
humans have begun to verify and challenge some of the hypothe-
ses generated in the theory guided fMRI experiments.

HUMAN ELECTROCHEMISTRY AND ELECTROPHYSIOLOGY
The computational role of reward and valuation in adaptive
decision-making has been explored at the level of individual
neuron activity. In 1996 Montague et al., proposed a mathe-
matical model of dopamine neuron activity in non-human pri-
mates [(Montague et al., 1996) and reviewed in Schultz et al.
(1997)]. These models later guided valuation experiments in
humans using fMRI. Initially these experiments investigated sim-
ple reward and valuation responses (Berns et al., 2001; Pagnoni
et al., 2002; McClure et al., 2003), but also questions into how
humans make adaptive choices and the associated brain regions
involved (Montague and Berns, 2002; McClure et al., 2004; Daw
et al., 2005, 2011; Daw and Doya, 2006). Recently, electrophysiol-
ogy (Zaghloul et al., 2009; Patel et al., 2012) and electrochemistry
(Kishida et al., 2011) experiments in have been used to investi-
gate the role of dopaminergic neurons and dopamine release in
human decision-making.

Among the first investigations into the role human dopamine
neurons play in decision-making behavior is Zaghoul and col-
leagues’ recordings of neural activity in human substantia nigra
(Zaghloul et al., 2009). The participants for this study were
patients undergoing deep brain stimulation electrode implanta-
tion for the treatment of Parkinson’s disease. During surgery,
acutely implanted sharp electrodes recorded neural activity while
patients played a gambling task. The authors demonstrated that
unexpected gains (but not expected gains) were associated with
increases in the firing rate of neurons in the substantia nigra.
These results are consistent with dopamine neurons in the sub-
stantia nigra of humans tracking a reward prediction error and
are consistent with reinforcement learning theories of dopamine
neuron activity previously only studied in model organisms.
In addition, Patel and colleagues recently measured single unit
activity in the nucleus accumbens during a financial decision-
making task (Patel et al., 2012). Results from these experiments
demonstrated that single unit activity in the nucleus accumbens
predicted the choice the participants would express 2 s later; and,
the activity in these neurons was reported to encode the differ-
ence between the expected and realized outcome, which is also
consistent with a prediction error signal.

The implantation of deep-brain-stimulating electrodes for the
treatment of Parkinson’s disease and a growing number of other
neurological disorders is beginning to open the door to invasive
neurophysiological measurements in humans. The opportunity
to relatively safely record measurements directly from human
brains invites the development of new technology to gain fur-
ther understanding in to human brain function. Along these
lines, Kishida and colleagues, adapted carbon fiber microsen-
sors to perform fast-scan cyclic-voltammetry in humans (Kishida
et al., 2011). Fast-scan cyclic-voltammetry has been used to mea-
sure rapid changes in extracellular dopamine concentration in
freely moving rodents (Phillips et al., 2003; Clark et al., 2010).
Kishida and colleagues, used this technology for the first time in
humans to measure dopamine release in human striatum during
a financially incentivized sequential investment game (Figure 2A,
adapted from Kishida et al., 2011). This game had been used
in fMRI experiments to test the impact different kind of learn-
ing signals have on the choices expressed by healthy participants
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FIGURE 2 | Sub-second dopamine release during the sequential

investment task. (A) Screen shot from the sequential investment task
(Lohrenz et al., 2007; Chiu et al., 2008; Kishida et al., 2011). Participants are
provided (1) a trace of the market, (2) the value of their portfolio (shown in
this screen shot: “$139”), and (3) the fractional change in the value of their
portfolio following their most recent investment decision (shown:
“−23.92%”). Participants lodge investment decisions using button boxes
that control a visually displayed vertical slider bar. (B,C) Fast-scan cyclic
voltammetry on a carbon fiber microsensor was used to track dopamine
release in the caudate of a human patient performing the sequential
investment task. (B) A reconstructed image showing the microsensor
trajectory and the depth target in the caudate (see MRI image insets).
(C) Measurements of extracellular dopamine track the market value.
Magenta trace: market value as the participant lodges investments (20
decisions shown); Black trace: measured dopamine release in the patient’s
caudate sampled at 10 Hz. Scale bars (normalized units): vertical bar indicates
one standard deviation; horizontal bar indicates 25 s (Kishida et al., 2011).

(Lohrenz et al., 2007) and participants addicted to nicotine (Chiu
et al., 2008). In these prior experiments participants’ choices were
predicted by experience-based learning signals or counterfactual
fictive learning signals depending on their state of addiction and
whether or not they were craving or sated on nicotine (Chiu et al.,
2008). These experiments demonstrated that the BOLD response
tracking these two learning signals appeared in the caudate and
that these signals were (1) important for the expression of adap-
tive behavior in humans and (2) that the status of being an addict
or being sated or unsated has a significant effect on the expression
of adaptive behavior.

The experiments executed by Kishida and colleagues used a
carbon fiber microsensor placed in striatum of a human partici-
pant (Figure 2B, left inset) to measure dopamine release 10 times

per second while the patient performed the sequential investment
game (Figure 2A). The major importance of this study was the
demonstration of new technology to investigate the computa-
tional role of dopamine release in a human brain. However,
there was also a surprising result in that the dopamine concen-
tration was not shown to track rewards or losses (expected or
unexpected) nor did it track learning signals previously demon-
strated in the human fMRI experiments with this task. Rather,
the dopamine concentration tracked the “stock market” price
with very high correlation (Figure 2C). In the context of the rein-
forcement learning models this may correspond to a signal about
the “state” the decision maker was in. This result is an early
demonstration of the importance of investigating the neurobio-
logical mechanisms underlying human choice using a variety of
measurement tools and theoretic perspectives.

CONCLUSION
The problem of “free will” is an old philosophical one. It can
be considered ultimately a problem of choice and about the
capacity an individual possess in determining the outcome of
choice problems. Intertwined with this problem are those, which
engage questions about agency. These questions and problems
posed in philosophical terms tend to ignore the fact that these
questions are about biological agents—humans [with excep-
tions (Dennett, 2003; Churchland and Churchland, 2006; Suhler
and Churchland, 2009)]. Neuroscience, with the development
of new technology, is beginning to investigate a wide range of
questions concerning human choice behavior. Computationally
framed theories will be important to guide these disciplines in
order to be concrete about the relationships between hypothetical
computations, expressed behavior, and the underlying biology.

Computational reinforcement learning theory and game the-
ory have already made a significant impact in human decision
neuroscience. Not only have they framed the problem of choice
in quantitative terms, but also they have begun to open new areas
of research in domains where human choice is severely restricted
as observed in individuals diagnosed with psychiatric disorders.
I argue that continuing along these lines will be important of
a neuroscience of human choice capacity, or what it means to
have anything like “free will.” This would include beginning with
a computational definition of “free will.” Huys and Dayan have
made a positive step in this direction by addressing one aspect
of what it would mean in computational terms to have “control”
(Huys and Dayan, 2009); they propose a Bayesian description of
what it would mean for an agent to make choices with a causal
relationship to the expected outcomes. Interestingly, this work
is developed in the context of trying to understand an aspect
of major depression and learned helplessness (Huys and Dayan,
2009). Additionally, Dayan and colleagues use a computational
reinforcement learning theory framework to explore the possibil-
ity of competition between decision-making systems within an
agent and demonstrate theoretical results of the impact compet-
ing valuation systems may have on the expression of adaptive
behavior (Daw et al., 2005; Dayan et al., 2006).

The development of theory without application to, or verifi-
cation with, empirical investigation is not a scientific endeavor.
Indeed, the theoretical frameworks discussed herein have guided
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investigations into the neurobiological substrates supporting
human choice. The primary tool thus far has been fMRI, how-
ever, new developments in access to human brains and supporting
clinical and investigational technology is providing an unprece-
dented look into the neurobiology of human choice and agency.
Going forward, the biology of willful choice behavior in humans
is wide open for investigation and will likely make major advances
in our basic understanding of the underlying neurobiology. More
practically speaking, these developments will also likely have a
major impact on our understanding of human mental illness—
conditions where capacity for choice becomes so restrictive that
individuals suffer without apparent alternatives. What it means
to have “free will” isn’t very clear and this concept continues
to evolve, but it is clear that humans express choice and have
preferences. The quantitative exploration of these concepts has

provided a clarifying foundation for theoretical and empirical
developments. This same framework promises to allow us to mea-
sure human choice capacity and in this context we may come to
understand and exercise the freedoms we do possess.
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