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Motor impairments have been found to be a significant clinical feature associated with
autism and Asperger’s disorder (AD) in addition to core symptoms of communication and
social cognition deficits. Motor deficits in high-functioning autism (HFA) and AD may dif-
ferentiate these disorders, particularly with respect to the role of the cerebellum in motor
functioning. Current neuroimaging and behavioral evidence suggests greater disruption of
the cerebellum in HFA than AD. Investigations of ocular motor functioning have previously
been used in clinical populations to assess the integrity of the cerebellar networks, through
examination of saccade accuracy and the integrity of saccade dynamics. Previous inves-
tigations of visually guided saccades in HFA and AD have only assessed basic saccade
metrics, such as latency, amplitude, and gain, as well as peak velocity. VWWe used a simple
visually guided saccade paradigm to further characterize the profile of visually guided sac-
cade metrics and dynamics in HFA and AD. It was found that children with HFA, but not AD,
were more inaccurate across both small (5°) and large (10°) target amplitudes, and final
eye position was hypometric at 10°. These findings suggest greater functional disturbance
of the cerebellum in HFA than AD, and suggest fundamental difficulties with visual error

monitoring in HFA.
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INTRODUCTION

Autism and Asperger’s disorder (AD) are pervasive developmen-
tal disorders that share disturbances in social interaction and
communication, as well as repetitive and stereotyped behaviors
and interests (American Psychiatric Association, 2000). AD is
currently differentiated from autism by the absence of clinically
significant delays in language (single words used by age 2 years,
communicative phrases used by age 3 years), and no delays in
cognitive development (American Psychiatric Association, 2000).
In addition to the core symptoms associated with autism and
AD, motor impairments have been consistently reported in these
groups (Fournier etal., 2010) impacting postural control (Gep-
ner and Mestre, 2002), fine motor (Cartmill etal., 2009), upper
limb (Martineau et al., 2004; Papadopoulos etal., 2012; Rinehart
etal., 2006a), gait (Rinehart etal., 2006b,c), and ocular motor
control (Takarae etal., 2004; Nowinski etal., 2005; Stanley-Cary
etal., 2011). Green etal. (2002) also found that motor per-
formance on the Movement Assessment Battery for Children,
which assesses manual dexterity, aiming and catching, and bal-
ance, was significantly correlated with IQ across children with
autism and AD (Green etal., 2009). However, few studies have
directly compared motor functioning in autism and AD, although
limited findings have revealed differences between the motor
profiles two groups in studies of gait (Rinehart etal., 2006b; Nay-
ate etal., 2011) and upper limb function (Rinehart etal., 2001,
2006a; Papadopoulos etal., 2012). The next revision of the Diag-
nostic and Statistical Manual of Mental Disorders will see the

amalgamation of autism and AD into a single autism spectrum
disorders category, however, determining whether a history of lan-
guage and cognitive delay is associated with additional motor
symptoms is essential to establishing a comprehensive under-
standing of the symptomatology of these disorders, and for the
development of appropriately tailored interventions for autism
and AD.

Current neuroanatomical evidence has also indicated that
involvement of the cerebellum across autism and AD. In autism,
abnormalities are consistently reported within the cerebellar
vermis lobules VI-VII, also known as the ocular motor ver-
mis (Courchesne etal., 1994a; Townsend etal., 1996; Allen and
Courchesne, 2003). Efferents of vermis lobules VI-VII project
predominantly to the fastigial nuclei, one of the three output
nuclei of the cerebellum (Scudder, 2002). Smaller neurons and
reduced cell numbers have also been reported in the fastigial nuclei
in high-functioning autism (HFA; Bauman, 1991). However, the
role of the cerebellum in the context of AD is poorly understood.
Although the primary site of pathology within the cerebellum is
unclear in AD, there is a general consensus the degree of cerebel-
lar disruption is more limited in AD than in autism (Lotspeich
etal., 2004; Bauman and Kemper, 2005; Catani etal., 2008; Yu
etal., 2011). The cerebellum, in particular vermis lobules VI-VII
and the fastigial nuclei, are crucial to the control of eye move-
ments (Ohtsuka and Nodu, 1995; Barash et al., 1999), and several
investigations of functional impairment associated with cerebel-
lar abnormalities have used ocular motor paradigms in autism
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and AD (Takarae etal., 2004; Nowinski etal., 2005; Stanley-Cary
etal.,, 2011).

Well timed eye movements are essential for accurate visual per-
ception (Hernandez etal., 2008) and attention (Courchesne et al.,
1994b) as well as enhancing the precision motor actions where
the eye and hand are coupled, such as reaching and grasping or
catching a ball (Cotti etal., 2007). Visually guided (or reflexive)
saccades, which are initiated in response to novel exogenous stim-
uli, are of particular interest for comparing autism and AD as
they eliminate many confounds relating to differences in cogni-
tive and language development history between autism and AD.
Previous studies of visually guided saccades in autism reported
hypometric saccades and more variable error (scatter) of saccade
endpoints (Rosenhall etal., 1988; Takarae etal., 2004; Luna etal.,
2007; Stanley-Cary etal., 2011). In comparisons of visually guided
saccades between autism and AD, AD shows a tendency toward
hypometric primary saccades but no evidence of increased saccade
variability (Takarae etal., 2004). Fundamental abnormalities in
reflexive saccades may conceivably have detrimental, downstream
consequences for several features of autism and AD, such as cogni-
tion, language acquisition, attention, or visuomotor coordination
(Brenner etal., 2007).

To date, examination of visually guided saccades in HFA and
AD have used relatively elementary assessments of the saccadic
profile, such as latency, amplitude, peak velocity, and duration
(Minshew etal., 1999; Goldberg etal., 2000). Extensive investi-
gations of the role of the cerebellum in eye movements in both
humans and non-human primates have demonstrated that assess-
ing saccade dynamics, such as velocity skewness as well as the
relationship between saccade metrics and dynamics, such as exam-
ining the main sequence (relationship between peak velocity and
amplitude) and Q-ratio (relationship between peak velocity and
mean velocity), is a sensitive way by which to fully characterize
the integrity of the cerebellar vermis and fastigial nuclei network
(Robinson etal., 1993; Ohtsuka and Nodu, 1995; Takagi etal.,
1998; Collins etal., 2008; Federighi etal., 2011). Examination of
final eye position (FEP), as well as the primary saccade amplitude,
can also provide insight regarding the accuracy of corrective sac-
cades. Moreover, full characterization of saccadic profile has been
shown to be sensitive in discerning autism and AD in volitional
saccade paradigms (Stanley-Cary etal., 2011). As reflexive, visu-
ally guided saccades often form the basis of comparison for higher
order, volitional saccade tasks, thorough characterization of the
metrics, and dynamics of reflexive saccades in autism and AD is
essential.

The aim of this study was to further characterize visu-
ally guided saccade metrics and dynamics in individuals with
HFA and AD and determine whether ocular motor deficits are
associated with standardized measures of cognitive and motor
performance. Firstly, we aimed to establish a complete descrip-
tion of saccade metrics and dynamics in children with HFA
and AD, and determine whether these remained constant over
saccade amplitude. Additionally, we sought to clarify whether
variability of saccade accuracy was due to poor spatial encod-
ing, as evidenced by a disrupted relationship between saccade
latency and accuracy, or inherent variability of eye move-
ments. It was hypothesized that children with HFA would show

greater cerebellar-type ocular motor deficits relative to children
with AD.

MATERIALS AND METHODS

PARTICIPANTS

This study was approved by Monash University and Southern
Health Human Research Ethics Committees. Parents of partici-
pants provided informed consent prior to the commencement of
the study, and written assent was provided by the participants in
accordance with the Declaration of Helsinki.

Thirty-seven children aged between 9 and 14 years partici-
pated in the study: 10 with HFA (all male), 15 with AD (10
males: 5 females) and 12 typically developing (8 males: 4 females)
children (see Table 1 for a summary of participant characteris-
tics). Children with HFA and AD were recruited from private
pediatricians in Melbourne, Victoria and the Autism Victoria
database. Reports from pediatricians were reviewed to ensure that
all children were diagnosed according to Diagnostic and Statistical
Manual of Mental Disorders — 4th edition, revised (DSM-IV-TR;
American Psychiatric Association, 2000) criteria for autistic disor-
der. Further diagnostic information was gathered using the Social
Responsiveness Scale (SRS), Developmental Behavior Checklist —
Parent Version (DBC-P), structured parent interviews, direct child
observations and information from teachers and other therapists
involved in the assessment process. The DBC-P has good psycho-
metric properties, includes five subscales (disruptive/antisocial,
self-absorbed, communication disturbance, anxiety, and social
relating), and provides an autism screening algorithm (autism-
related items are weighted and collated to calculate an overall
risk index; Brereton etal., 2002; Witwer and Lecavalier, 2007).
Participants were excluded if they were suffering from any co-
morbid neurological (e.g., tuberous sclerosis), genetic (e.g., Fragile
X syndrome), or psychiatric diagnosis (e.g., Tourette’s syndrome).

Table 1 | Participant characteristics.

HFA AD TD
Mean SD Mean SD Mean SD
Age (months) 134.90 1728 153.93 42.33 139.58 18.92
Full scale 1Q 95.90 15.22 104.20 14.01 108.50 11.09
Verbal Comprehension 99.00 18.02 10787 15.62 108.92 15.02
Index
Perceptual Reasoning  102.10 2100 104.00 13.56 104.33 13.20
Index
MABC-2
Total score 6.90* 3.38 773 343 1078 264
Manual dexterity 7.10 3.18 700 2.71 8.92 1.83
Aiming and catching 8.40* 255 8.46° 350 1275 3.39
Balance 780* 3.82 10.00 383 1092 271

HFA, high-functioning autism; AD, Asperger’s disorder; TD, typically developing;
SD, standard deviation;, MABC-2, Movement Assessment Battery for Children —
2nd edition.

*HFA vs TD p < 0.05; *AD vs TD p < 0.05.

Frontiers in Integrative Neuroscience

www.frontiersin.org

November 2012 | Volume 6 | Article 99 | 2


http://www.frontiersin.org/Integrative_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Integrative_Neuroscience/archive

Johnson etal.

Saccades in HFA and AD

No children in the HFA or AD groups were reported to have been
taking any type of medication.

Typically developing boys were recruited from community-
wide organizations. The presence of motor impairment was
screened for using the Movement Assessment Battery for Chil-
dren —2nd edition (MABC-2), and normal behavioral functioning
was screened for using the DBC-P and SRS in order to exclude
the presence of autism, AD, or other previously listed psychiatric
diagnosis.

Motor skills of all children were assessed using the MABC-
2, which has previously been used to assess motor performance
in children with HFA and AD (Green etal., 2002). The MABC-2
consists of eight items grouped in three sections: manual dexterity,
ball skills and balance, with age dependent items used for each
section. No TD participants fell in the “definite motor impairment
range” as defined by the MABC-2 guidelines.

All children completed the Wechsler Intelligence Scale for Chil-
dren — 4th edition (WISC-IV). Analysis of variance (ANOVA) was
used to compare age and IQ scores between the three groups (see
Table 1 for participant characteristics). The groups did not differ
onage [F(2,36) = 1.36, p=0.27], FSIQ [F(2,36) = 2.22, p=0.12],
VCI [F(2,36) = 1.12, p = 0.30], or PRI [F(2,36) = 0.063, p = 0.94].

APPARATUS

Eye movements were recorded at 500 Hz using a head-mounted
Eyelink IT video-oculographic eye tracking system, which has a
sensitivity of <0.01°. Stimuli were generated using Experiment
Builder v1.10 (SR Research Ltd., Mississauga, Canada) and dis-
played on a 22” CRT monitor with a screen refresh rate of 100 Hz.
Stimuli were presented on a black background and comprised a
green target in the shape of a cross (30 mm x 30 mm) which was
presented centrally, 5° or 10° from center in either hemifield, and
a white centrally positioned square ring (10 mm x 10 mm) which
served as the refixation stimulus.

Prior to testing, participants were shown the equipment and
given time to familiarize themselves with the head-mounted cam-
eras and ocular motor testing procedure. Participants were seated
840 mm directly in front of the monitor with their heads stabilized
using a custom-made chin and head rest. Whole body movements,
which can also introduce instability in eye movement recording,
were controlled with use of feet and arm rests, and high backed
chair to support the shoulders and upper body.

Eye movement data were analyzed off line using a customized
MATLAB program developed in our laboratory.

PROCEDURE

The task included 32 trials (16 left, 16 right, balanced for 5° and
10° steps). Participants fixated on a centrally positioned target.
After a random time period of either 1250 or 1600 ms, the cen-
tral target was extinguished and concomitantly a peripheral target
appeared. The peripheral target was extinguished after 1500 ms
and a refixation stimulus appeared for 150 ms to redirect gaze
back to the center in preparation for the next trial.

DATA ANALYSIS
Trials were excluded from further analysis if they exhibited (1)
blinks prior to 100 ms of the target onset or during the primary

saccade, (2) unstable fixation on the centrally presented target, or
(3) small saccades with amplitude <3°.

First saccade gain, defined as [first saccade amplitude/target
amplitude], was used as a measure of saccade dysmetria. The FEP
was defined as the fixation position reached following the pri-
mary saccade plus any corrective saccades; FEP gain was defined
as [FEP/target amplitude].

Variable error was calculated as the standard deviation of gain.
This was used as a measure of the consistency of saccade endpoints,
with higher values indicating reduced movement consistency.

Mean absolute percentage error (MAPE), calculated as [(eye
position — target position)/target position] x 100, was used
as a measure of absolute movement error, irrespective of
direction.

Saccade latency was defined as [target onset — saccade onset].
[Latency/first saccade gain] was used as measures of reaction time
and to assess whether saccade accuracy changed with processing
time (Cohen etal., 2007).

Saccade dynamics were used to determine whether there was
any change in the waveform relationships across amplitude, which
can be indicative of disruption to cerebellar-brainstem motor cir-
cuitry deficits. The time from saccade onset to peak velocity, and
from peak velocity to 0, were used to calculate the velocity skewness
[time to peak velocity/time from peak velocity to 0]. Q-ratio [Peak
velocity/Mean velocity] and main sequence [peak velocity/first
saccade amplitude] were also assessed.

STATISTICAL ANALYSES

Data were analyzed with SPSS v.18.0. Mixed model ANOVAs
with target direction as the within subjects variable and group
as the between subjects variable revealed no significant interaction
between group and target direction for any dependent variable. All
data were therefore collapsed across direction for group analyses
using a series of one-way ANOVAs.

Peak velocity/mean velocity ratio, variable error of first sac-
cade gain and FEP MAPE each violated Levene’s test of equality of
variance (p < 0.05), therefore in these instances Brown—Forsythe
test was used for comparison between groups. Post hoc Tukey’s
HSD tests, or Games—Howell tests in instances where homo-
geneity of variance was violated, were used to investigate group
differences.

RESULTS
PRIMARY SACCADE METRICS
Primary saccade gain and variable error of primary saccade gain
did not differ between groups for 5° or 10° target amplitudes.
Children with HFA, but not AD, showed increased MAPE at
both 5° and 10° target amplitudes relative to controls. There
was a significant difference in MAPE at 5° [F(2,36) = 5.04,
p = 0.012], with post hoc analysis revealing significant differ-
ences between HFA and TD groups (p = 0.011) and HFA and
AD groups (p = 0.050), but not between AD and TD groups.
There was also a significant difference in primary saccade MAPE
at 10° [F(2,36) = 4.19, p = .024], with post hoc analysis revealing
significant differences between HFA and TD groups (p = 0.020)
and trend toward significance between HFA and AD groups
(p=0.054), but not between AD and TD groups.
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FINAL EYE POSITION METRICS

Children with HFA showed hypometric FEP at 10° target ampli-
tudes, but not 5° target amplitudes (Table 2). There was a signif-
icant difference in FEP between groups at 10° [F(2,36) = 6.00,
p = 0.006], with post hoc analysis revealing significant differ-
ences between HFA and TD groups (p = 0.006) and HFA and
AD groups (p = 0.026), but not between AD and TD groups
(p = 0.73). FEP gain did not differ between groups for the 5°
targets [F(2,36) = 0.52, p = 0.60].

Children with HFA also showed greater variability in FEP
at large target amplitudes, but not smaller target amplitudes
(Table 2). There was a significant difference in FEP variable error
between groups at 10° [F(2,36) = 4.25, p = 0.02], with post hoc
analysis revealing significant differences between HFA and TD
groups (p = 0.036) and HFA and AD groups (p = 0.038), but
not between AD and TD groups (p = 0.98). Variable error of FEP
gain did not differ between groups for the 5° targets.

Table 2 | Group means and standard deviations for saccade latency
and metrics.

HFA AD D

Mean SD Mean SD Mean SD

Saccade metrics

First saccade gain

5° 0.97 0.10 0.96 0.10 0.95 0.08
10° 0.87 0.08 0.90 0.06 0.91 0.04
Variable error of first saccade gain

5° 0.17 0.1 0.15 0.08 0.12 0.04
10° 0.14 0.09 0.13 0.04 0.10 0.01
First saccade MAPE

5° 16.64* 7.68 14.21 5.06 10.15 1.96
10° 18.19*" 726 12.94 5.00 1117 3.60
Final eye position gain

5° 1.04 0.13 1.02 0.06 1.00 0.05
10° 0.95* 0.06 1.00 0.03 1.01 0.04
Variable error of final eye position gain

5° 0.19 0.15 0.14 0.09 0.10 0.06
10° 0.17* 0.13 0.09 0.05 0.09 0.04
Final eye position MAPE

5° 13.07 8.27 9.37 4.25 8.33 3.41
10° 11.56 7.86 6.13 2.29 6.70 2.03
Latency

5° 173.16 21.65 181.35 30.97 170.38 1765
10° 175.16 18.69 173.56 25.34 176.44 21.97
Latency/saccade gain

5° 208.37 30.7 198.36 28.8 200.39 30.76
10° 183.76 28.58 191.21 34.03 184.82 28.22

HFA, high-functioning autism, AD, Asperger's disorder, TD, typically developing;
SD, standard deviation; MAPE, mean absolute percentage error.
*HFA vs TD p < 0.05; T HFA vs AD p = 0.054.

There was no significant difference in FEP MAPE between
groups at 10° or 5° target amplitudes.

LATENCY

There was no difference between groups with respect to latency
or latency/saccade gain ratio for saccades made to either 5° or 10°
target amplitudes.

SACCADE DYNAMICS

There was no difference in the velocity profile of saccades as evi-
denced by no between-group differences in saccade duration, peak
velocity, time to peak velocity, time from peak velocity to 0, veloc-
ity skewness, peak velocity/mean velocity ratio, or main sequence
at either 5° or 10° target amplitudes (Table 3).

DISCUSSION

In the present study, we sought to characterize the profile of reflex-
ive saccade metrics and dynamics in children with HFA and AD.
Our results confirmed previous reports of hypometria at large
saccade amplitudes in children with HFA (Takarae etal., 2004;
Stanley-Cary etal.,, 2011), and extended these findings to reveal
inaccurate saccades at smaller amplitudes. Although primary sac-
cades were more variable and hypometric in HFA, there was no

Table 3 | Group means and standard deviations for saccade dynamics.

HFA AD D

Mean SD Mean SD Mean SD

Saccade duration

5° 31.48 5.21 32.78 3.44 30.83 3.56
10° 41.64 5.28 43.47 5.07 42.74 3.66
Peak velocity

5° 270.14 45.32 266.05 31.89 278.85 54.83
10° 362.27 49.33 372.35 4113 37718 49.33
Time to peak velocity (ms)

5° 14.02 2.63 14.47 2.70 12.61 1.55
10° 1741 3.94 18.13 2.94 1700 2.41
Time from peak velocity to 0 (ms)

5° 1745 3.74 18.30 2.27 18.21 3.60
10° 24.22 3.28 25.33 4.69 25.73 3.99
Velocity skewness

5° 0.86 0.18 0.84 0.19 0.77 0.20
10° 0.75 0.19 0.76 0.19 0.71 0.17
Peak velocity/mean velocity

5° 1.61 0.07 1.65 0.08 1.66 0.14
10° 1.63 0.18 1.63 0.08 1.63 0.12
Main sequence

5° 56.44 8.06 55.95 8.08 59.27 9.03
10° 41.93 5.94 42.1 5.17 41.84 5.33

Main sequence, peak velocity/amplitude; HFA, high-functioning autism, AD,
Asperger’s disorder; TD, typically developing; SD, standard deviation.
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evidence of associated changes to saccade dynamics. These sub-
tle motor impairments are comparable to those seen in other
motor modalities in HFA, such as gait (Rinehart et al., 2006¢; Nay-
ate etal.,, 2011) and upper limb function (Martineau etal., 2004;
Papadopoulos etal., 2012).

The networks that underpin initiation and optimization of
visually guided saccades can be conceptualized as two compli-
mentary functional loops (Pierrot-Deseilligny etal., 1991, 1995;
Scudder, 2002; Quaia et al., 2005). The first loop involves the visual
cortex, parietal eye fields (PEFs), superior colliculus (SC), and
brainstem pre-motor areas (Pierrot-Deseilligny etal., 1995; Gay-
mard etal., 2003). The PEFs, which receive input from the visual
cortex, integrate visuospatial information and generate a motor
command in response to the sudden appearance of a target within
the visual field (Gaymard etal., 2003). The motor command from
the PEF is sent to pontine pre-motor nuclei in the brainstem via
the SC. Abnormalities of the parieto-collicular pathway in visu-
ally guided saccades classically manifest as disturbances in saccade
latency: poor visuospatial integration is associated with decreased
saccade accuracy (Scialfa and Joffe, 1998; Cohen etal., 2007), while
lesions of the PEF result in increased reflexive saccade latencies
(Lynch and McLaren, 1989; Gaymard et al., 2003). We did not find
any evidence of disrupted latency, or altered latency/saccade gain
relationship suggestive of impairment of visuospatial attention
(Cohen etal., 2007), which is consistent with previous findings for
visually guided saccades in HFA and AD (Minshew etal., 1999;
Takarae etal., 2004).

The second loop, which refines saccade amplitude and min-
imizes variability in response to visual error, involves the SC,
cerebellar oculomotor vermis (lobules VI-VII), fastigial nucleus,
and brainstem pre-motor nuclei (Robinson etal., 1993; Scud-
der, 2002; Quaia etal., 2005). In this loop, a copy of the motor
command arising from the SC, which specifies the velocity and
amplitude of a saccade, is sent via the nucleus reticularis tegmenti
pontis to the cerebellar vermis lobules VI-VII (Scudder, 2002;
Scudder etal., 2002). The error signal, which is the difference
between the fovea and visual target after an initial dysmetric sac-
cade is also to vermis lobules VI-VII via the inferior olive (Soetedjo
etal., 2008). The cerebellar oculomotor vermis projects to the cau-
dal region of the fastigial nucleus, which in turn, projects back
to the pontine pre-motor nuclei, as well as the thalamus, basal
ganglia, and cortical regions (Scudder, 2002). The cerebellar ver-
mis lobules VI-VII and caudal fastigial nucleus are thought to
be critical in fine-tuning saccade amplitude and dynamics, and
minimize saccade error via the direct modulation of pre-motor
circuitry (Noto and Robinson, 2001; Scudder, 2002; Xu-Wilson
etal.,, 2009). It is this second loop that has been proposed to
result in increased variability of saccade gain in HFA (Takarae
etal., 2004; Stanley-Cary etal., 2011); findings from our study
support this.

In typically developing children and adults, saccade endpoint
accuracy changes over amplitude, with larger saccade eccentric-
ities associated with greater hypometria (Fioravanti etal., 1995;
Ploner etal., 2004; Irving etal., 2006). In the present study TD
children conformed with these findings, performing hypometric
to larger target amplitudes (10°), but not smaller amplitudes (5°).
By contrast, children with HFA not only were more hypometric

than TD children at the 10°, but first saccade gain was also more
variable across both small and large target amplitudes. We found
no evidence of additional disturbances of the velocity profile, or
relationship between saccade metrics and dynamics in HFA or
AD. That primary saccade accuracy was more variable in HFA,
without an accompanying change in saccade dynamics is com-
parable to observations following cooling of the fastigial nuclei
in non-human primates (Vilis and Hore, 1981). Cooling of the
fastigial nucleus results in consistently hypometric saccades with-
out a change to saccade dynamics. This was proposed to relate to
impaired tuning of the internal representation of the eye muscles,
such that ocular muscle strength is overestimated. This is thought
to result in insufficient input to the brainstem pre-motor neurons
from the fastigial nuclei, as the internal model predicts that the
eye has achieved the correct target position sooner than it actually
has (Vilis and Hore, 1981). Disruption to the oculomotor vermis—
fastigial nuclei in autism network in HFA (Courchesne et al., 1988;
Bauman, 1991; Allen and Courchesne, 2003), but not AD (Catani
etal., 2008), may account for the functional differences in primary
saccade accuracy in this group.

Of note is that FEP of visually guided saccades was hypomet-
ric and more variable at large saccade amplitudes in children
with HFA, but not in AD. This is similar to findings previously
found during volitional saccade paradigms comparing HFA and
AD (Stanley-Cary etal., 2011). Despite ample time for visual feed-
back and correction, the displacement between the eye and target
was not fully corrected for in children with HFA. This finding
implies a fundamental deficit in online visual error monitoring
and correction, consistent with more pronounced cerebellar dis-
ruption in HFA than AD. In addition to greater inaccuracy and
greater variability of FEP, the HFA group also demonstrated poorer
overall MABC-2 performance, as well as balance and aiming and
catching, which further supports the proposal of greater functional
disturbance of the cerebellum in HFA.

Deficits in performing accurate, ongoing corrective saccades
may also have additional implications for accurate visual per-
ception (Glazebrook etal., 2009) and coupling of eye—hand
movements (Reina and Schwartz, 2003; Glazebrook etal., 2009)
during motor tasks in children with HFA. Previous findings by
Glazebrook etal. (2009), who examined the role of vision during
manual aiming movements, found evidence of greater saccade
amplitude variability as well as greater upper limb amplitude
variability. Of key interest, however, is that children with AD
performed more poorly on the aiming and catching component
of the MABC-2, yet did not demonstrate greater saccade inac-
curacy, or greater FEP inaccuracy. This finding implies that the
difficulties children with AD have with aiming and catching may
relate to upper limb or whole body coordination, or visuomo-
tor integration, but not saccade accuracy. Moreover, it highlights
that saccade accuracy and upper limb aiming accuracy, while
coordinated, are relatively independent processes (Glazebrook
etal.,, 2009), and further highlights that the underlying source
of motor coordination difficulties may differ between HFA and
AD. That saccade accuracy and motor abilities can be dissoci-
ated is of central importance when examining the elements that
underpin visual and motor coordination impairments in these
groups.
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While groups in the present study did not differ on age, VCI,
PRI, and full scale IQ measures, we did not control for the numbers
of males and females between groups. There is no precedence for
sex differences in saccade metrics or dynamics in typically develop-
ing children (Salman, 2006) or those with autism (Goldberg etal.,
2000) however, this possibility cannot be eliminated. Our study
was also limited by small samples size of groups, which may have
hampered identification of abnormalities in the saccadic profile
of AD, due to the subtlety of abnormality in the AD populations
(Takarae et al., 2004, 2008).

CONCLUSION

Ocular motor impairment associated neurodevelopmental abnor-
malities of the cerebellum are often more subtle than the

symptoms classically associated with cerebellar damage (Salman
etal., 2006; Tavano etal., 2007; Stanley-Cary etal., 2011), such
as ataxia or lesioning (Barash etal., 1999; Fielding etal., 2010;
Federighietal.,2011). Our findings support a growing body of evi-
dence implicating greater functional disturbance of the cerebellum
in HFA than AD (Takarae et al., 2004; Nayate et al., 2005; Nowinski
etal.,2005; Rinehart et al., 2006a,b; Stanley-Cary et al., 2011), con-
sistent with current understanding of the neuropathology of these
disorders (Abell etal., 1999; Bauman and Kemper, 2005; McAlo-
nan etal., 2008, 2009; Yu etal,, 2011). Our findings distinguish
HFA from AD on the basis of ocular motor performance, which
raises the concern that combining groups on the autism spectrum
with different language and cognitive development histories may
obscure important motor control features.
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