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We studied whether vision can teach touch to the same extent as touch seems to teach
vision. In a 2 × 2 between-participants learning study, we artificially correlated visual gloss
cues with haptic compliance cues. In two “natural” tasks, we tested whether visual gloss
estimations have an influence on haptic estimations of softness and vice versa. In two
“novel” tasks, in which participants were either asked to haptically judge glossiness or
to visually judge softness, we investigated how perceptual estimates transfer from one
sense to the other. Our results showed that vision does not teach touch as efficient as
touch seems to teach vision.
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1. INTRODUCTION
Every day we obtain information about our environment using
different sensory modalities. To create a unified percept of our
environment, information from different senses needs to be com-
bined. We can learn which information about our environment
is most likely to belong together by analyzing statistical corre-
lations, and by interacting with the environment. For example,
we can learn that larger objects are heavier than smaller ones—
given that they have the same visual appearance—by lifting them.
Even more so, if we can get estimates of an environmental prop-
erty from different sensory modalities, we can calibrate the senses
with respect to each other and the world. Two important research
questions within the field of multi-sensory perception are how
such learning happens, that is how information from one sense
is transferred to the other and how information from different
senses is combined.

Studies on multi-sensory perception provide evidence for the
theory of reliability-based cue integration, meaning that infor-
mation from different senses are weighted according to their
reliability before being combined, see Ernst and Bülthoff (2004)
for a review.

Some of these studies focused on space perception, e.g., per-
ceived surface orientation and depth, and showed that touch can
teach vision (Ernst et al., 2000; Atkins et al., 2001; Ho et al., 2009;
van Beers et al., 2011). Ernst et al. (2000), for instance, have shown
that haptic feedback correlated with one of two conflicting visual
slant cues entices observers to give more weight to that cue when
judging slant. Evidence that vision can teach touch, is much thin-
ner and mainly comes from developmental studies (Gori et al.,
2008, 2011). From adult studies on stimulus properties such as
size—which is thought to be sensed more accurately by the hap-
tic system than the visual system (Gori et al., 2008)—and weight,
there is evidence that haptic estimates are influenced by visual

cues (Hillis et al., 2002; Flanagan et al., 2008; Buckingham et al.,
2009; Walker et al., 2010), i.e., vision can at least influence touch.
However, none of these studies have shown that vision can teach
touch, in the sense that learning leads to a change in weights given
to single cues, as has been shown previously for touch-to-vision
learning. Thus, it is unknown whether such transfer of informa-
tion can occur to the same extent from vision to touch. In this
study, we investigated whether vision can teach touch to the same
extent as touch seems to teach vision.

A draw-back of stimulus properties used in previous studies,
e.g., surface orientation, depth, and size, is that they are naturally
sensed by both the haptic and visual system. In addition, one sys-
tem might be able to do so more accurately, leading to unevenly
distributed weighting of visual and haptic cues, i.e., capture by
one or the other sense (Ernst and Bülthoff, 2004). The fact that
one sense might dominate the other, would make it difficult to
study information transfer in both directions. It would thus be
ideal to study multi-sensory perception of environmental proper-
ties that are naturally sensed by either of the two sensory systems,
but not by both.

In such a case, one cannot disturb the natural relation between
e.g., the haptic and visual counterparts of a particular prop-
erty as is usually done in multi-sensory perception studies. But,
one could create an artificial correlation between two unrelated
sources of information. That one can learn such arbitrary sta-
tistical correlations in a relatively short time, has been studied
by Ernst (2007). He showed that mandatory perceptual associa-
tion between brightness and stiffness of an object occurred after
exposure to an artificial statistical correlation between the two.

Using artificial correlations, we studied the influence of a non-
natural cue on a perceptual estimate, and we did so in both
directions: from-vision-to-touch and from-touch-to-vision. To
this end, we chose two material properties that are naturally
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uncorrelated to one another and can only be directly sensed by
one modality. As a “haptic material property” we used compli-
ance, which can only be directly sensed by the haptic system
(because only the haptic system has direct access to force informa-
tion) and any visual corrugate has to be learned (Drewing et al.,
2008). As a “visual material property” we chose gloss, which has
no haptic corrugate.

Real haptic objects with varying compressibility gave partici-
pants a haptic cue to the compliance of the stimulus. As a visual
cue to gloss, we varied the amount of light that was reflected by
a virtual cylindrical object and the size of the highlights on it.
Participants were given one stimulus defined by both cues and
another defined by one or the other cue and were instructed to
discriminate between the two stimuli regarding gloss or softness.
For instance, a participant was given one stimulus which was
defined by both a compliance and a gloss cue (standard stimulus)
and one which was only defined by a compliance cue (compari-
son stimulus). Now, we could ask the participant to judge one of
two material properties: gloss or compliance. The “natural task”
would consist of judging “which one feels softer,” in which case
the participant could compare the two haptic compliance cues,
even before any statistical correlation between the haptic and
visual cues was learned. In contrast, in the “novel task,” judg-
ing “which one feels less glossy,” the participant should, initially,
hardly be able to make a reliable judgment, unless he/she relied
on a pre-existing association between felt softness and seen gloss
(and transferred his/her perceived softness into some estimate of
felt glossiness).

We used a 2 × 2 between-participants design [2 senses or judg-
ment modalities, (haptic or visual) × 2 judged dimensions (gloss
or softness)], with a two alternative forced choice task (2-AFC
task). In a 2-AFC task, the participant is forced to make a dis-
criminative decision between two stimuli. Such a task makes
it possible to measure the point of subjective equality (PSE)—
which assesses the stimulus parameter value at which the two
stimuli are perceived to be identical—and the just noticeable dif-
ference (JND)—which assesses the discrimination threshold. The
judgment modality, or sense used to judge a particular stimulus
property (dimension), not only refers to how participants had to
judge (“feel” or “look”), but also reflects which cues were avail-
able. For the haptic sense, there was always a haptic cue for two
stimuli (and a visual cue for just one stimulus), whereas for the
visual sense, there was a visual cue for two stimuli (and a haptic
cue for just one stimulus). We thus had two novel-task conditions
(“which one looks softer” and “which one feels less glossy”) and
two natural task conditions (“which one feels softer” and “which
one looks less glossy”).

Since we could not be a 100% sure that participants did not
have some pre-existing association between the two cues, we
tested that in an initial (control) session in which we made sure
that there was no overall correlation (Pearson’s product-moment
correlation coefficient was 0) between the two cues. Then in a sec-
ond session (on another day), participants were first subjected
to a short (56 trials) training in which the overall correlation
(Pearson’s product-moment correlation coefficient) between the
two cues was 0.94, followed by training trials interleaved with test
trials (the overall correlation was 0.85 in this part).

To make comparisons between experimental conditions easier,
we refer in the rest of the manuscript to the cues we used as main
and associated cues. The main cue always refers to that cue which
is naturally sensed by the judgment modality, i.e., the haptic
compliance cue for haptic judgments (“which stimulus feels . . .”)
and the visual gloss cue for the visual judgments (“which stimu-
lus looks . . .”). The associated cue then refers to the other cue of
the standard stimulus, i.e., the visual gloss cue for the haptic judg-
ments and the haptic compliance cue for the visual judgments. In
addition, the judged dimension relates to the material property
participants had to judge: less glossy or softer.

We measured learning of the arbitrary association by changes
in the estimation of the PSE and JND as follows: we introduced
small discrepancies between the main and associated cue values
in our test stimuli.

We predicted for the two natural tasks (haptic softness judg-
ments and visual gloss judgments) that learning the arbitrary
association would lead to estimations derived from reliability-
based weighting of cues. This means that, before learning, the
PSE should only depend on the main cue, because gloss and
softness are not (naturally) related to one another. Learning the
arbitrary association should lead to a shift in the PSE in the
direction of the associated cue value, thus giving some weight
to the associated cue in the judgment. In the novel task, the
participant should have learned how perceived softness can be
transferred into an estimate of gloss before comparing the two
stimuli and thus be able to make a reliable judgment of felt gloss.
After learning, cues should be combined similarly as in the natu-
ral task, leading to a similar shift in the PSE in the direction of the
associated cue.

Learning the arbitrary association should lead to a decrease
in the JND in all tasks. We predicted that the largest changes
would occur in the novel tasks, since we did not expect par-
ticipants to perform the task very well in the initial session. In
addition, we predicted that after learning, the JND should be
same for all tasks, given that we tried to have similar JND val-
ues for visual and haptic cues. Otherwise, the biggest difference in
JND should arise between judgment modalities, but not judged
dimensions.

With the experimental paradigm as sketched, we investigated
how participants in the novel task learned to transfer percep-
tual estimates from one sense to another. And, by interchanging
both the single cue stimuli (gloss vs. compliance cue only) and
the dimension to be judged, we were able to compare learn-
ing between touch-to-vision and vision-to-touch transfers. In
addition, the natural tasks allowed us to study whether learning
arbitrary correlations influenced the integration of the associated
cue into a combined percept similarly for vision-to-touch and
touch-to-vision.

2. MATERIALS AND METHODS
2.1. PARTICIPANTS
All 29 participants (three male, mean age 24 years with a standard
deviation of 4 years, one left-handed participant, and by accident,
one participant more in the haptic soft condition) had normal
or corrected-to-normal vision, a stereoacuity of at least 60 arcsec
(Randot Stereo Fly, graded circle test) and no sensory or motor
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deficits. They were either paid for their participation (8 Eur/h) or
given credits as part of their psychology curriculum.

2.2. APPARATUS
Figure 1 shows a sketch of the experimental setup. Participants
sat in front of the setup resting their heads on both a chin- and
headrest to minimize head movements. To track the position of
the hand, the index finger of participant’s preferred hand (par-
ticipants could be either left or right handed) was attached to a
force-feedback device (Phantom Premium 1.5, 1000 Hz, spatial
resolution: 0.03 mm), by gluing a reusable plastic finger nail with
a small magnet onto the finger (see Figure 2B). The participants
viewed the visual scene through a mirror while wearing shutter
glasses (NVIDIA, 3D vision kit). The visual scene was displayed
on a Samsung Syncmaster 2233RZ (120 Hz) and generated on
a DELL Precision 380. Because a mirror rotates polarized light
(emitted by any LCD) by 90◦, we had to rotate the screen by
the same amount to realign the polarizing filters of the screen
and those of the shutter glasses. Due to the fact that brightness
was dependent on the viewing angle along the vertical axis of the
LCD screen, we corrected the whole visual scene using shaders
(OpenGL/GLSL: Woo et al., 1997; Rost, 2006).

2.3. STIMULI
A stimulus consisted of either a haptic compliance cue or a visual
gloss cue or a combination of both (standard stimulus). The
haptic compliance cue was obtained by pressing onto custom
made silicone cylindrical objects, for an example see Figure 2A.

force sensor

screen

force-feedback
device

shutterglasses

FIGURE 1 | The experimental setup. Participants were seated in front of
the virtual reality setup, with their heads resting on a chin- and headrest for
stabilization purposes. Participants wore shutter glasses and viewed the
visual 3D scene via a silver-coated mirror. The real haptic objects were
placed in front of the participant on the force sensor. We used a
force-feedback device to track the location of the participant’s index finger.
Participants responses were registered by tracking (with the force-feedback
device) which virtual decision button was touched.

They had compliance values of: 0.124, 0.136, 0.148, 0.159, 0.177,
0.189, and 0.198 mm/N, identical to the ones used by Kaim and
Drewing (2011). We measured the compliance of each object
using a cylindrical probe of 1 cm2. The difference between con-
secutive compliance values was equal to approximately half a JND
value (and see Kaim and Drewing, 2011). Instead of referring to
the compliance values, we used a JND scale with one unit approx-
imately equal to 0.5 JND (−3 . . . 3, with 0 equal to a compliance
value of 0.159).

The visual gloss cue was conveyed by a virtual 3D cylindri-
cal NURB (non-uniform rational basis spline) surface that was
generated with a custom made C(++) program using OpenGL,
see Figure 2C. NURB refers to a mathematical technique using
polynomials to describe smooth surfaces, which is available in
OpenGL (Woo et al., 1997). Using this mathematical technique,
we were able to generate virtual cylindrical objects that had a sim-
ilar non-flat top surface as our real objects, which were slightly
convex. The virtual cylinders had the same dimensions (height
and diameter) as the real objects. Differences in gloss appear-
ance were established by co-varying two OpenGL defined object
parameters: the shininess component, which regulates the size
and brightness of specular highlights on a surface, and the spec-
ular component, which defines how a material reflects specular
light. In order to generate more than one highlight on the virtual
cylinders, we used several light sources to illuminate the scene,
which were spread symmetrically around the vertical meridian. In
a separate pilot experiment (four subjects, magnitude estimation
of identical surfaces but with sparser lighting), we determined
that perceived glossiness depended linearly on the specular com-
ponent. In addition, there was an interaction effect between the
shininess component and the specular component on perceived
gloss, which became non-linear for extreme values of these two

A B

160°160°

C

FIGURE 2 | Stimuli and setup detail. (A) Sketch of a haptic object. (B)

Attachment of finger to force-feedback device. (C) Sketch of a visual scene
showing the two extreme cases of our gloss axis. Note that in reality the
visual correlate would only be visible when the participant pressed on the
object (or in its presumable location for visual-only comparisons). Also note
that the shader has been turned off to generate these images and that the
actual scene was dimmer than shown here.
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components. We stayed within the perceptually linear range and
varied the shininess component between 30 and 90 (total range
[0, 128]), and the specular component was varied between 0.25
and 0.55 (total range [0, 1]). We then chose a set of parameter val-
ues for which the difference between consecutive gloss values was
approximately half a JND. We verified this assumption in another
pilot experiment (almost identical to the study reported here but
with longer visual stimulus exposure times, 10 subjects, 2-AFC
task), in which the mean JND was 2.4 with a standard deviation
of 2.66. In the current study we found a mean JND of 3.3 with a
standard deviation of 2.0. Instead of referring to the gloss param-
eters, we used a JND scale, with one unit being approximately
0.33 JND (in the current study, range between −3 . . . 3 and with 0
equal to a specular component of 0.4 and a shininess component
of 60).

The virtual cylinders were positioned such that they com-
pletely coincided with the haptic objects in real space. These visual
correlates were only visible when observers pressed onto the hap-
tic object, otherwise a ring was shown to identify the location of
the object. In cases without the haptic object, participants had
to place their finger in the empty space where the comparison
stimulus was, to make the visual cue visible.

2.4. TASK AND PROCEDURE
2.4.1. Task
Before starting the experiment, participants were told that they
had to judge which stimulus felt or looked as being softer, or less
glossy, respectively. In addition, we told them which type of stim-
uli would be present in the experiment. For instance, a participant
in the haptic soft condition was told that he/she would be able to
(and had to) press onto two haptic stimuli, but that only one stim-
ulus would also be shown on the screen. After that, he/she was
told to judge which one of the stimuli felt softer and then touch
the virtual decision button (“fuehlt sich weicher an”) above the
softer stimulus. We additionally instructed participants to press
in the middle of the haptic objects and not to slide their finger
across them [a natural movement made by participants to judge
surface roughness (Lederman and Klatzky, 1993)].

They were then given four initial trials, in which we used the
stimuli that had the most extreme gloss and/or compliance values.
After that the experiment began.

Before each trial, participants were asked to position the finger
attached to the force-feedback device in the left-bottom corner
of the virtual environment, which was visualized by the word
“WARTEN” (wait). This gave the experimenter the opportunity
to place the haptic object(s) for the next trial in the designated
area(s), without touching the observer. After placement of the
stimuli, the next trial started. Participants would then move their
index finger (either to the left or the right stimulus) and press on
the haptic object—or in the space where it should have been—
and thus trigger the visual cue to be shown. They then could
either touch the same object again, or move to the other object.
After touching each stimulus location, they indicated which stim-
ulus was “less glossy” or “softer” by pressing the corresponding
virtual decision button. After that, the wait sign would reappear.
Participants were only allowed to press each haptic object twice.

Touching a third time set off a loud beep without the visual object
being shown.

Participants were allowed, even encouraged, to have breaks
whenever they wanted and the experimenter asked at least every
hour, whether or not the participant wanted a break.

2.4.2. Procedure
We used a balanced 2 × 2 between-participants design and a
2-AFC task with seven participants per experimental condition.
The complete experiment consisted of four experimental con-
ditions, which are visualized in Figure 3. In each condition, an
observer was asked to make a 2-AFC judgment based on a partic-
ular stimulus property (judged dimension), either glossiness or
softness, using either vision or haptics as judgment modality.

We used a balanced design (each pair of stimuli was shown
twice with stimuli changing sides) and trials were randomized
across participants.

In all conditions, we presented a standard stimulus, defined
by both a haptic and a visual cue. The type of comparison stim-
ulus we provided was based on the judgment modality: it was
either defined by a haptic compliance cue for haptic judgments
or a visual gloss cue for visual judgments. Thus, when making
a haptic judgment of softness (“which one felt as being softer”),
observers were given a standard stimulus and a haptic-only com-
parison stimulus, whereas when making a visual judgment of
softness (“which one looks as being softer”), they were given a
standard stimulus and a visual-only comparison stimulus.

Because compliance and gloss are unrelated cues, we defined
the compliance and gloss values in JND-related units (−3 . . . 3).
The haptic cue with the lowest compliance (hardest) and the most
glossy visual cue were assigned a value of −3 and the haptic
cue with highest compliance (softest) and respectively the least
glossy visual cue, were assigned a value of 3. This assignment was
in agreement with our imposed artificial correlation (Pearson’s)
between increasing gloss and decreasing compliance (increasing
hardness).

For each experimental condition, we ran two separate ses-
sions, on different days. In the “initial” session, we tested for
any pre-existing associations between haptic compliance and
visual gloss cues and in the second session learning and testing

visual haptic

softness

gloss

haptic judgment of
softness (HS)

visual judgment of
gloss (VG)

visual judgment of
softness (VS)

haptic judgment of
gloss (HG)

judged 
dimension

judgment 
modality

FIGURE 3 | The four experimental conditions. In our 2 × 2
between-participants design, participants judged on one of two
dimensions, gloss or softness, using one of two judgment modalities,
visual or haptic. This resulted in two natural judgment task: visual judgment
of gloss and haptic judgment of softness, and two novel judgment tasks: a
haptic judgment of gloss and a visual judgment of softness (both in light
blue).
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were combined. The set of standard stimuli that we used to test
for pre-existing associations was defined by the following main
cue-associated cue combinations ([main cue, associated cue]):
[−1, −1], [−1, 0], [−1, 1], [0, −1], [0, 1], [1, −1], [1, 0], [1, 1].
To ensure that there was no overall Pearson correlation between
the two cues, we used two additional main cue-associated cue
combinations: [0,−2], [0, 2]. All of these combinations were
compared to all seven comparison stimuli and were repeated six
times (three repetitions and presentation on each side). In addi-
tion, we added some “noise” trials in which the following stan-
dard stimuli were only compared to the three nearest (neighbors
of main cue) comparisons: [3, −1], [3, 1], [−3, −1], [−3, 1]. The
total session consisted of 492 (8 × 7 × 3 × 2 + 2 × 7 × 3 × 2 +
4 × 3 × 3 × 2) trials. Participants did not receive any feedback
on their performance during and after this session. On average,
participants needed around 2 h to complete this session.

The second session consisted of a training or learning part,
and a second part in which learning and testing trials were
interleaved. In the training part, we used the following main
cue-associated cue combination as standard stimuli ([main cue,
associated cue]): [−1,−1], [−1,−2], [1, 1], [1, 2]. These com-
binations were compared to all seven comparison stimuli and
repeated twice (balanced design, total of (4 × 7 × 2 × 2) 56,
trials). The overall Pearson’s product-moment correlation coef-
ficient in this part was 0.94. In the second part, the following
standard stimuli were compared to the seven comparison stimuli
a total of six times (including balancing): the test set: [−1,−1],
[−1, 0], [−1, 1], [0, −1], [0, 1], [1, −1], [1, 0], [1, 1] and a “cor-
related cue set”: [−3,−3], [−2, −2], [0, 0], [2, 2], [3, 3]. An addi-
tional set was repeated four times: [−3,−2], [−2,−3], [−2,−1],
[−1, −2], [2, 1], [1, 2], [3, 2], [2, 3]. This part consisted of 770

trials (13 × 7 × 3 × 2 + 8 × 7 × 2 × 2). The overall Pearson’s
product-moment correlation coefficient in this part was 0.85.
Participants did not receive any feedback on their performance
during either part. Note that learning and testing took part on the
same day within this session. Participants needed 3 h to complete
this session.

2.5. ANALYSIS
From the collected (judgment) data, we calculated the propor-
tion of trials in which the comparison was perceived as softer/less
glossy than the standard per softness/glossiness value of the com-
parison. We then fitted cumulative Gaussian distributions to these
proportional values per phase of the experiment (initial or learn-
ing) under the assumption that the JND was equal for each stan-
dard stimulus (per experimental phase). To this end, we simulta-
neously fitted eight cumulative Gaussian distributions to the data
collected with the eight standard stimuli using eight biases (PSE)
and a single standard deviation (JND) as free parameters in a
least-square error fit (for an example of these fits see Figure 4).
The PSE is defined as the softness/glossiness of the comparison
stimulus at which discrimination performance is random (here a
performance of 0.5). The 84%-discrimination threshold (JND) is
defined as the difference between the PSE and the softness/gloss
of the comparison when it is judged softer/matter than the stan-
dard 84% of the time. After fitting, we selected data based on
the fitted JND parameter. If the JND of both the initial and
the learning phase deviated more than two standard deviations
from the average JND (calculated per phase), a participant was
removed, because it meant that the participant displayed random
behavior in both phases. With this criterion a total of three par-
ticipants were removed from further analysis, resulting in one
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FIGURE 4 | Example of psychometric curve fits. (A) The proportion of trials
in which the comparison was perceived as softer than the standard is plotted
against the softness of the comparison, for one participant in the haptic soft
condition in the initial session [data and fits of the learning session are shown
in panel (B)]. Series of data points represent the percentage of judgments
that the comparison was judged as being softer than the standard separated
by the different standard stimuli (different symbols and colors). Lines
represent a set of cumulative Gaussian functions that was fitted to the data
points. Functions share the standard deviation (as defined in the fit), but differ

in mean (or PSE). In the inset, PSE values are plotted against the main cue
value. PSEs of data with the same associated cue value are connected by
(dotted) lines. Note that contrary to our predictions, PSEs of same main cue
value did not overlap, but depended on the associated cue. For this
participant, the PSE values were greater than 1 (a boundary defined by a
reliability-weighted cue combination model). (B) Fitted psychometric curves
(and actual data) of the same participant in the learning session. In the inset,
PSE values are plotted against the main cue value, with PSEs of data the
same associated cue value connected by lines.
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participant less in the haptic gloss, visual soft and visual gloss
conditions.

To test for differences in learning between the four experi-
mental groups, we used a MANOVA (multi-variate mixed-design
general linear model, SPSS) on the estimated PSE and JND values.
Even if the data do not perfectly comply to the assumptions of
normally distributed data and homoscedasticity, these are robust
test, meaning that deviations from these assumptions generally
do lead to acceptable test results. Depending on the parameter
to be tested, we used different within-participant and between-
participant variables of which the details can be found in the
corresponding results section. We used a significance criterion
of p < 0.05. Where appropriate, we tested on individual groups
using one- or two-sided Student’s t-tests in order to clarify statis-
tically significant differences between groups and/or sessions.

3. RESULTS
An example of the data we fitted under the assumption that
the JND was equal for each standard stimulus (per experimental
phase), can be seen in Figure 4, where we plotted the proportion
of trials in which the comparison was perceived as softer than
the standard against the softness of the comparison, for one par-
ticipant in the haptic soft condition. Data and fits of the initial
phase are given in panel A, and those of the learning phase in
panel B. Series of data points represent the percentage of judg-
ments that the comparison is softer than the standard separated
by the different standard stimuli (different symbols and colors).
Lines represent a set of cumulative Gaussian functions that was
fitted to the data points. Functions share the standard deviation
(as defined in the fit), but differ in mean (or PSE).

In each inset, we plotted the PSE against the main cue for
each associated cue. We predicted that in the initial phase, the
PSE should correspond to the main cue value and not depend on
the associated cue value, which would yield overlapping curves
in the inset of panel A. Whereas after learning, the PSE should
depend on both cues, if cue integration did occur, and the curves
should no longer overlap (inset panel B). As predicted, the PSE
values of this participant did depend on the value of the main
cue, the PSE increased with increasing main cue value, see both
insets. Contrary to our predictions, the PSE (of this participant)
also depended on the associated cue value in both experimental
phases (the curves for different associated cues did not over-
lap). Note that reliability-weighted cue combination should yield
slopes ≤ 1, because in this theory the sum of weights should
always equal 1 and the slope (in the current figure) defines the
weight given to the main cue. Thus, for this participant an other
type of interaction between main and associated cues is observed.

In both novel-task conditions, haptic gloss and visual soft,
there were four participants (one in the visual soft condition and
three in the haptic gloss condition) of whom the data fitted better
to a cumulative Gaussian distribution that was tilted in the direc-
tion opposite to the one defined by the correlation between the
two cues in the learning phase. The data of these mirror-model
participants suggested that they, at least in the initial phase, asso-
ciated an increase in compliance (softness) with an increase in
gloss (whereas in the training trials we correlated an increase in
compliance with a decrease in gloss).

3.1. ESTIMATED POINTS OF SUBJECTIVE EQUALITY
Following the same style as that of the insets in Figure 4, we plot-
ted the average PSE across participants with standard errors in
Figure 5.

Individual PSE values entered a MANOVA with main cue
(−1 vs. 0 vs. 1), associated cue (−1 vs. 1) and learning as within-
participant variables, and as between-participant variables judged
dimension and judgment modality. This design enabled us to sep-
arate effects of either cue. In order to get a balanced design, we did
not use conditions with an associated cue value of 0. A control
analysis including these stimuli yielded the same conclusions. In
case of mirror-model participants, the main cues were mirrored
before they entered the analysis in order to keep the direction of
gloss and softness judgments the same across participants (i.e.,
higher/positive values meaning less glossy or softer, respectively).
The associated cue was not inverted.

The overall (ANOVA) analysis showed that participants’ judg-
ments systematically depended on, and increased with, the value
of the main cue, F(2, 44) = 143, p ≤ 0.001. As predicted, the rela-
tion between main cue and judgment was modified by learning,
F(2, 44) = 3.5, p = 0.04, whereby the effect of learning was mod-
ified by the judged dimension and the judgment modality (inter-
action: main × learn × judged dimension: F(2, 44) = 6.0, p =
0.004; interaction main × learn × judgment modality: F(2, 44) =
4.7, p = 0.014; interaction main × learn × judged dimension ×
judgment modality: F(2, 44) = 3.5, p = 0.038). There were no
other reliable effects. Even though direct effects of the associ-
ated cue—as they were predicted from the weighted averaging
scheme—failed to reach significance, the manifold of interaction
effects with the main cue reject the possibility that participants
based their judgments solely on the main cue. In that case, the
participants judgments should have depended on the main cues
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value irrespective of learning, dimension or modality (i.e., a main
cue of −1, 0, or 1 should have resulted in a judgment of −1, 0,
or 1 in each and every condition). Put in other words, the results
suggest influences of the double-cue situation on the judgments
that depended on the interaction between learning, dimension
and modality condition.

In order to clarify these differences between the four tasks,
we conducted four additional analyses (MANOVA) separated by
judged dimension and judgment modality (within-participant
variables learning, main cue and associated cue). To make the
influence of the double-cue situation better visible, we con-
ducted these analyses on PSE data from which the to-be-expected
effect of a main-cue alone strategy was eliminated (simply by
subtracting the main cue value from each single PSE).

In the visual gloss condition, this analysis did not yield any
significant effect. This result is consistent with the view that
participants judged visual gloss on the basis of the visual main
cue alone, and did so similarly before and after learning the
correlation with the haptic cue. The same lack of effect was
observed for the visual soft condition, even if numerical effects
(see Figure 5) seem to suggest otherwise. Thus, the PSE analy-
ses suggest that participants based their visual judgments of both
gloss and softness solely on the (main) gloss cue.

In contrast, in the haptic soft condition, participants deviated
from the main-cue alone strategy: a remaining effect of the main
cue, F(2, 14) = 6.8, p = 0.009, indicated an “over-weighting” of
the main cue, i.e., judgments were spread wider apart than
the main cue values. The interaction main cue × associated
cue × learning, F(2, 14) = 6.9, p = 0.008, indicated a more com-
plicated modification of this effect. Additional separate analyses
(MANOVA) for each learning condition (variables: main and
associated cue) tracked down these deviations to the initial phase
(i.e., there was no reliable effect after learning the correlation).
Here, we observed a significant interaction between the main
cue and the associated cue, F(2, 14) = 6.6, p = 0.014 (corrected
according to Huynh and Feldt, 1976), indicating that over-
weighting occurred in particular with one of the two associated
cues (the glossier visual cue, value of 1) and before the correla-
tion between the two cues had been learned. Taken together, these
results revealed unexpected non-linear influences of the associ-
ated cue (i.e., interaction, over-weighting), before learning the
correlation, which vanished with learning. Finally, in the haptic
gloss condition, we observed an interaction between the main cue
and learning, F(2, 10) = 5.6, p = 0.042, which—by separate anal-
yses for the two learning conditions—could be due to an under-
weighting of the main cue in the initial phase (trend: F(2, 10) =
3.64, p = 0.081) combined with its over-weighting after learning
(trend: F(2, 10) = 3.6, p = 0.067).

Taken together, indirect influences of the associated cue on
the interpretation of the main cue were observed in the two
haptic conditions, but not in the two visual conditions. The
observed interactions between associated and main cues were
unlike predicted, of a non-linear nature including over- and
under-weighting of the main cue, and statistical interactions.

Originally, we expected only linear influences of the main and
the associated cue, which should have changed by learning the
correlation. However, the PSE analyses revealed that learning,

with regard to the overall strategy and in contrast to judgment
precision (see JND results in section 3.2), resulted in the elimina-
tion of non-linear influences. In the section 3.3, we conducted an
additional sensitive analysis which supports these findings.

3.2. ESTIMATED JUST NOTICEABLE DIFFERENCES
In Figure 6, the mean JND value across participants with stan-
dard error are shown for each experimental phase and condition.
JND values were entered in a ANOVA (mixed-design, SPSS), with
learning as a within-participants variable, and judgment modality
and judged dimension as between-participants variables. There
was a significant main effect of learning on JNDs, F(1, 22) = 6,
p = 0.025, which can be seen in the general trend of decreasing
JND with learning in all experimental conditions. This effect was
modified by judged dimension and judgment modality (trend:
learning × judged dimension × judgment modality F(1, 22) = 4,
p = 0.07). In addition, we found a between-participants effect of
judged dimension, F(1, 22) = 5, p = 0.03.

We predicted (see introduction) that, if there was any influence
of learning, the JND values should show the largest decrease in
the novel tasks. Indeed, there were trends for learning in individ-
ual conditions of the novel tasks (haptic gloss p = 0.094, visual
soft p = 0.12 and all novel tasks combined p = 0.054, 1-tailed
Student’s t-tests), but not for natural tasks (individual and com-
bined conditions p ≥ 0.2, 1-tailed Student’s t-tests). In addition,
we predicted that if there would be any interaction effects with
learning, these should be due to judgment modality, because the
JND values could have differed between the two senses (or the two
types of cues). However, there was a significant effect of judged
dimension on learning (after learning: haptic gloss vs. haptic
soft: p = 0.029, visual gloss vs. visual soft: p = 0.014, 1-tailed
Student’s t-test), and none of judgment modality (after learn-
ing: haptic gloss vs. visual gloss: p = 0.49, visual soft vs. haptic
soft: p = 0.37, 1-tailed Student’s t-tests). JND for gloss judg-
ments were higher than for softness judgments both before (trend
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p = 0.073, 2-tailed Student’s t-test) and after learning (p = 0.003,
2-tailed Student’s t-test), whereas different judgment modalities
were indistinguishable both before (p = 0.54, 2-tailed Student’s
t-test) and after learning (p = 0.95, 2-tailed Student’s t-test).

Overall, these effects show that, in agreement with our predic-
tion, JND changed with learning in the novel tasks, but not in the
natural tasks. And, against our prediction, the JND after learning
was independent of the judgment modality, or which cues were
given to the participant, but depended on the judged dimension.
Thus while given the same cues, the JND values of participants
judging softness were lower than of those judging glossiness.

3.3. RESIDUAL ANALYSIS
As we have seen in the fitted PSE values previously, both the main
and associated cue were used to make soft and gloss judgments,
but they were not combined in a way congruent with a standard
cue integration hypothesis (see Figure 5). Therefore, investigat-
ing changes in weight given to each cue, would not completely
describe effects of learning. We therefore sought of other ways
to capture learning effects. We hypothesized that by learning the
arbitrary correlation, the unpredicted interaction effects should
decrease. In addition, learning the association should lead to an
increased linear dependence on the main and associated cues,
that is cue combination instead of interaction. We decided to fit a
model to the PSE values that depended linearly on the main and
associated cue values. The residuals of such a fit then contain any
non-linear and interaction effects of the main and associated cues
on the PSE values. We used the following linear cue combination
model to fit the PSE values and slightly adapted it by letting go of
the constraint that the sum of weights assigned to the cues should
equal 1 (as in a standard cue integration model):

PSE = wm × main cue + wa × associated cue (1)

where wm defines the weight assigned to the main cue, wa defines
the weight assigned to the associated cue. Both these weights were
constrained between [0, 1] and we used an additional constraint
that the sum of wm and wa should always be less than or equal
to 1. These two fit parameters (wm, wa) thus give an indication
of how much the PSE values linearly depended on the main and
associated cue values.

The residuals of these fits now contained all the unpredicted
interaction effects, such as scaling and biasing of the main cue and
other interaction effects between the two cues, and they included
the unpredicted variance. To separate the interaction effects from
the unexplained variance, we fitted the following model to the
residuals:

fres = a1 × main cue + a2 × associated cue

+ a3 × main cue × associated cue + a4, (2)

without any constraints on the parameters. The residuals of this
fit then describe the total (or final) unexplained variance.

We now had two different measures that could show an effect
of learning the association: (1) the total variance explained by the
learnt-linear model (Equation 1) and (2) the part of the residuals
that could be fitted by our Interaction-model [because they were
due to interaction effects, Equation (2)]. Learning the arbitrary
association should first of all decrease the size of the residuals
due to interaction effects, because the association defined a linear
non-interactive correlation between the two cues. For the same
reason, it should lead to an increase in the total variance explained
by the learnt-linear model.

The results of these fits are shown in Figure 7, with in
Figure 7A, the mean variance explained by the learnt-linear
model (with standard error) per experimental phase and condi-
tion and in Figure 7B, the average amount (with standard error)
of the residuals that was due to interaction effects (i.e., was fitted
by our Interaction-model).

We then subjected the variance explained by the learnt-
linear model and the part of the residuals that were fit-
ted by our Interaction-model to a MANOVA (multivariate
mixed-design general linear model, SPSS), with learning as a
within-participants variable and judgment modality and judged
dimension as between-participants variables. Because these two
quantities are not independent from each other, they were tested
simultaneously. There was a significant main effect of learn-
ing, F(2, 21) = 6.1, p = 0.008. This effect was modified by judged
dimension (interaction learning × judged dimension, F(2, 21) =
7.1, p = 0.004), there was only a trend for the interaction with
judgment modality (interaction learning × judgment modality,
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F(2, 21) = 3.0, p = 0.072) and a significant modification by judg-
ment modality and judged dimension simultaneously, F(2, 21) =
4.3, p = 0.028. In addition, there were significant differences
between groups: a between-participants interaction effect (judg-
ment modality × judged dimension, F(2, 21) = 4.9, p = 0.018)
and an effect of judged dimension, F(2, 21) = 3.5, p = 0.05. We
further investigated the effects of learning using 1-tailed Student’s
t-tests and the interaction effects with judgment modalities and
judged dimensions using 2-tailed Student’s t-tests.

There were at least trends for an effect of learning in both
visual tasks. For the visual gloss condition, both the variance
explained by the learnt-linear model (p = 0.023, 1-tailed) and
that explained by the Interaction-model (p = 0.020, 1-tailed)
changed with learning in the predicted directions. In the visual
soft condition, there was only a trend for learning for both the
variance explained by the learnt-linear model (p = 0.098) and
that explained by the Interaction-model (p = 0.095).

For both haptic tasks, however, we found only a trend for
learning in the Interaction-model for haptic soft (p = 0.091)
and no significant effects of learning within the learnt-linear
model (p = 0.32) and no effects of learning in either model for
the haptic gloss condition (learnt-linear: p = 0.41, Interaction:
p = 0.22).

In addition, learning had a differential effect on the two novel
tasks. Whereas they did not differ before learning (learnt-linear:
p = 0.18, Interaction: p = 0.8, 2-tailed Student’s t-tests), they
did so afterward (learnt-linear: p = 0.034, Interaction: p = 0.044,
2-tailed Student’s t-tests). Both before and after learning, the vari-
ance explained by the learnt-linear model was lower for the haptic
gloss condition compared to those of the two natural tasks (ini-
tial: vs. haptic soft: p = 0.005, vs. visual gloss: p = 0.013, learning:
vs. haptic soft: p = 0.024, vs. visual gloss: p = 0.026, 2-tailed
Student’s t-tests) and higher for the Interaction-model only after
learning (vs. haptic soft: p = 0.021, vs. visual gloss: p = 0.040,
2-tailed Student’s t-tests). The visual soft condition, however,
was not different from either natural task both before and after
learning.

Taken together, these results support the previous findings
of the PSE analyses, namely that learning—in agreement with
the correlation—occurred in visual judgment tasks (there were
trends in both visual tasks), but not in either haptic judgment
task. Moreover, they showed participants performed better in the
visual novel task (visual soft judgment) than in the haptic novel
task—reaching the same high-level performance as in the natural
visual task.

4. DISCUSSION
In this study, we investigated whether learning from touch-to-
vision is similar to learning from vision-to-touch. To this end, we
introduced an artificial correlation between visual gloss and hap-
tic compliance cues and investigated how learning this association
influenced two natural judgments (visually judging gloss, hapti-
cally judging softness) and two novel judgments (visually judging
softness and haptically judging gloss).

Our analyses of PSEs revealed unexpected non-linear inter-
actions, whereas our sensitive analyses of explained variance
revealed that learning (including de-learning of non-linear

interactions) occurred, in particular, in visual tasks. In addi-
tion, the analyses of explained variance showed that “perfor-
mance” after learning was better in the visual novel task (similar
to “performance” in the natural visual task), than in the hap-
tic novel task. Taken together, these results suggest that vision
does not educate touch as efficiently as touch seems to educate
vision.

To our knowledge, our study is the first to show that learning
between the senses depends on its direction. In many previous
studies, it has been shown that touch teaches vision, however, the
reverse whether vision can teach touch had not been investigated
thoroughly in adults, so far.

Our study is in agreement with the results from Ernst (2007)
that humans have ability to learn from cue-associations and that
previously unrelated cues can be recruited for a judgment task,
if they are positively correlated [see also Haijiang et al. (2006)
for cue recruitment in binocular rivalry tasks]. Our result that
touch teaches vision is also in agreement with previous stud-
ies investigating e.g., surface orientation and depth (Ernst et al.,
2000; Atkins et al., 2001; Ho et al., 2009; van Beers et al., 2011).
However, we did not find any sign of reliability-weighted cue
combination, as reported previously, but found cue-interaction
instead. Although the difference may have occurred due to lack of
learning, van Beers et al. (2011) have shown that learning to inte-
grate haptic cues for surface slant estimation can occur quickly
(with 55 trials) and within the same day. However, these time
scales may apply to studies where the properties to be estimated
can be sensed by both senses and not to our study in which the
material properties to be estimated could only be estimated by
one or the other sense.

We found that the JND depended on the judged dimension
(gloss vs. soft), irrespective of the judgment modality—and thus
irrespective of which cues were available for making the judg-
ment; an effect that became clearer after learning. This may
mean that participants were using different cues, or using the
cues differently, in the novel tasks compared to the natural tasks.
Thus, these results showed that after learning, at least in the
novel tasks, estimation of the stimulus property was similar
for the two senses; i.e., was the same for touch-to-vision and
vision-to-touch.

In this work, we studied a kind of unconstrained basic learn-
ing. Although the cues were correlated in the learning session,
participants did not receive feedback on their performance and
this kind of learning could mimic learning in infants. We propose
that, with our study, we tapped into the neural learning process
before cue integration might occur. As a precursor to maximum-
likelihood-estimated integration [see Ernst et al. (2000) for a
short review], the cues both influenced the judgment, but are
not yet linearly integrated. We hypothesize that given enough
time, neural mechanisms related to cue integration would come
to play even for seemingly arbitrary cues. However, in the case of
inter-modal cue-integration, such integration is often not com-
pulsory (Hillis et al., 2002; Gori et al., 2011) and might therefore
be overshadowed by single cue effects.

Taken together, our data revealed differences in learning from-
touch-to-vision and from-vision-to-touch. Learning from-touch-
to-vision did occur, but not the other way around.
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