frontiers in

INTEGRATIVE NEUROSCIENCE

ORIGINAL RESEARCH ARTICLE
published: 06 March 2013
doi: 10.3389/fnint.2013.00011

=

Probing white-matter microstructure with higher-order
diffusion tensors and susceptibility tensor MRI

Chunlei Liu?*, Nicole E. Murphy' and Wei Li’

" Brain Imaging and Analysis Center, School of Medicine, Duke University, Durham, NC, USA
2 Department of Radiology, Duke University, Durham, NC, USA

Edited by:
Alpay Ozcan, Virginia Polytechnic
and State University, USA

Reviewed by:

Jongho Lee, University of
Pennsylvania, USA

Pascal Sati, National Institutes of
Health, USA

Yong Wang, Washington University
in St. Louis, USA

*Correspondence:
Chunlei Liu, Brain Imaging and

Analysis Center, School of Medicine,

Duke University, 2424 Erwin Road,

Suite 501, Durham, NC 27705, USA.

e-mail: chunlei.liu@duke.edu

Diffusion MRI has become an invaluable tool for studying white matter microstructure and
brain connectivity. The emergence of quantitative susceptibility mapping and susceptibility
tensor imaging (STI) has provided another unique tool for assessing the structure of
white matter. In the highly ordered white matter structure, diffusion MRI measures
hindered water mobility induced by various tissue and cell membranes, while susceptibility
sensitizes to the molecular composition and axonal arrangement. Integrating these two
methods may produce new insights into the complex physiology of white matter. In this
study, we investigated the relationship between diffusion and magnetic susceptibility
in the white matter. Experiments were conducted on phantoms and human brains
in vivo. Diffusion properties were quantified with the diffusion tensor model and also
with the higher order tensor model based on the cumulant expansion. Frequency shift
and susceptibility tensor were measured with quantitative susceptibility mapping and
susceptibility tensor imaging. These diffusion and susceptibility quantities were compared
and correlated in regions of single fiber bundles and regions of multiple fiber orientations.
Relationships were established with similarities and differences identified. It is believed
that diffusion MRI and susceptibility MRI provide complementary information of the
microstructure of white matter. Together, they allow a more complete assessment of
healthy and diseased brains.
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INTRODUCTION

Probing the microstructure of white matter has major applica-
tions in a number of neurological diseases and disorders. The
abilities to map brain connectivity in vivo were initially made pos-
sible because of the discovery of diffusion anisotropy in the white
matter (Moseley et al., 1990) and the development of a range of
techniques based on this phenomenon, most notably the develop-
ment of diffusion tensor imaging (DTI) and tractography (Basser
et al., 1994, 2000; Conturo et al., 1999; Mori et al., 1999). It is
often reported that DTI, or more generally diffusion MRI, is the
only method available for imaging white matter fiber tracts in vivo
and non-invasively, which is a clear testament to the importance
of DTI for studying brain connectivity. The recent discovery of
magnetic susceptibility anisotropy (MSA) in white matter and the
development of susceptibility tensor imaging (STI) may poten-
tially provide a viable complementary method for imaging fiber
tracts in vivo and non-invasively (Lee et al., 2010; Liu, 2010; Li
etal., 2011, 2012a,b; Liu et al., 2012).

The existence of MSA has now been verified in simulation,
mouse brains, specimens, and live human brains. For example,
by rotating intact mouse brains in small-bore animal 7T scan-
ner, Liu showed that the magnetic susceptibility of white matter
demonstrated strong orientation dependence (Liu, 2010). This
orientation dependence has also been observed by Lee et al. on
segments of corpus callosums from a postmortem human brain

(Lee et al., 2010). Similar to diffusion anisotropy, susceptibility
anisotropy can also be described by a rank-2 tensor, the apparent
susceptibility tensor (Liu, 2010). This susceptibility anisotropy
and susceptibility tensor can be measured based on a simple 3D
gradient-recalled-echo sequence. Variations among tissue mag-
netic susceptibility cause a tissue dependent frequency shift that
manifests as a phase shift in gradient echo images. By measuring
this frequency shift, a susceptibility tensor may be determined for
each voxel of the brain. Susceptibility anisotropy and susceptibil-
ity tensors have thus far been imaged on both 3T and 7T in vivo
(Lietal., 2011, 2012b; Schweser et al., 2012). Studies have shown
that the major eigenvector orientation of the susceptibility ten-
sor is aligned with axons in parallel (Lee et al., 2010; Liu, 2010;
Li et al,, 2012a,b; Liu et al., 2012). It has been reported that the
apparent magnetic susceptibility (AMS) of the white matter is
the most paramagnetic when the underlying axons are parallel
to the magnetic field (Lee et al., 2010; Liu, 2010). It was pro-
posed that this characteristic originates from the radially aligned
myelin lipids (Li et al., 2012a). A recent study has utilized this
relationship to perform fiber tracking in the mouse brain which
has demonstrated similar tracks with DTI tractography in large
fiber bundles (Liu et al., 2012).

An important challenge of MRI-based in vivo fiber tracking is
the relative large voxel size (on the order of millimeters) compared
to the size of axons which is on the order of micrometers. In large
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parallel fiber bundles, this mismatch of spatial scales is not
problematic as the orientations of the axons are largely similar.
However, in a large portion of the brain, each voxel of MRI images
is known to contain fibers of different orientations, thus creating
the situation of “crossing” or “kissing” fibers (Basser et al., 2000).
Achieving high angular resolution by resolving these crossing
fibers has been a major goal of diffusion based fiber tractogra-
phy in the past decade (Frank, 2001, 2002; Alexander et al., 2002;
Tuch et al., 2002; Lin et al., 2003; Liu et al., 2003a,b; Ozarslan
and Mareci, 2003; Tuch, 2004; Jensen et al., 2005). A number of
techniques have been proposed including, for example, q-space
or diffusion spectrum imaging (King et al., 1994; Lin et al., 2003;
Wedeen et al., 2008), g-ball imaging (Tuch, 2004) and higher
order tensor models (Liu et al., 2003b, 2004; Ozarslan and Mareci,
2003) to name a few. Similarly, STT may encounter the same chal-
lenges. The behavior of magnetic susceptibility in the presence of
these complex fiber architectures, however, has not been studied.

The goal of the present study was to investigate the behav-
ior of magnetic susceptibility in the presence of fiber cross-
ings and its relationship with higher order diffusion anisotropy.
We first evaluated the variation of magnetic susceptibility as
a function of magnetic field orientation in a simulated phan-
tom of crossing fibers. The behavior was compared to that of
higher order diffusion tensors calculated based on the cumu-
lant expansion (covariance, skewness and kurtosis etc) (Liu et al.,
2003a,b, 2004; Jensen et al., 2005). Experiments were also con-
ducted in vivo to assess the effect of fiber crossings on magnetic
susceptibility.

MATERIALS AND METHODS

SUSCEPTIBILITY TENSOR AND SUSCEPTIBILITY ORIENTATION
DISTRIBUTION

Since the early 1990s, diffusion MRI based on diffusion
anisotropy has been the only means to study the orientations
and organizations of white matter fiber tracts in vivo and non-
invasively. In the past couple of years, it has become apparent
that magnetic susceptibility of the white matter also exhibits
anisotropy. While the ordered arrangement of axons largely con-
tributed diffusion anisotropy (Beaulieu, 2002; Song et al., 2002),
the ordered arrangement of myelin lipids is believed to be the
main source of MSA (Li et al., 2012a). Susceptibility anisotropy
may be quantified with the technique of susceptibility tensor
imaging. Magnetic susceptibility of the brain results in a measur-
able frequency shift in the gradient-echo images. By solving the
Maxwell’s equation, this frequency shift denoted as 6 was found
to be related to a spatially distributed susceptibility tensor field
¥ (r) following (Liu, 2010)

1A . K'FT{xH
e=1ﬁ“1{gHTFHfo—H~k——7£lL— yHt (1)

Here, FT and FT~! represent Fourier and inverse Fourier trans-
form respectively; k is the spatial frequency vector reciprocal to
r; H is the magnitude of the applied magnetic field; H is the unit
vector of the applied magnetic field; ¢ is the echo time (TE) in a
gradient echo sequence and vy is the gyromagnetic ratio.

The susceptibility tensor y (r) is assumed to be a 3 x 3 sym-
metric matrix with 6 independent elements (3 diagonal and 3 off
diagonal). When the demagnetization field [the second term of
Equation (1)] is ignored, this symmetry property is evident as
swapping the indices of x (r) does not change 6. Given this sym-
metry assumption, a minimum of 6 independent measurements
are needed to determine a susceptibility tensor. Each indepen-
dent measurement will require the magnetic field to be oriented
in a different direction with respect to the object. As an analogy
to DTI, this is equivalent to changing the directions of diffusion
encoding gradients. And, similar to the measurement of the dif-
fusion tensor, the angle separation between orientations should
ideally spread apart. As in any other experimental measurements,
more orientations will improve the matrix condition and allow
a more accurate determination of the tensor elements. Once the
susceptibility tensor is calculated, it can then be decomposed into
its eigensystem with the eigenvalue decomposition. One advan-
tage of eigenvalue decomposition is that it expresses susceptibility
tensor in a coordinate system that is independent of the experi-
mental coordinate system. As a result, the values can be compared
between different scans and different subjects.

The relationship between susceptibility tensor and fiber orien-
tations has been established in the case of parallel fibers. It has
been shown that the direction of the major eigenvector of the
susceptibility tensor (most paramagnetic) is parallel to the direc-
tion of the axons (Lee et al., 2010; Liu, 2010). The relationship
has been confirmed broadly with theory, simulation, brain speci-
mens, ex vivo and in vivo brain imaging at 3T and 7T. In the case
of fiber crossing, however, a single susceptibility tensor is unlikely
to convey the existence of multiple fiber orientations. One way to
address this limitation is to use multiple susceptibility tensors to
characterize the susceptibility property of a voxel. Alternatively,
we can plot the AMS as a function of the field orientation. The
orientation variation of the AMS may depict the existence of mul-
tiple fibers. These orientations can then be compared to those
based on diffusion models.

HIGHER-ORDER TENSOR (HOT) RECONSTRUCTION

In the cumulant expansion, the diffusion-weighted MRI signal is
related to a set of higher-order tensors following (Liu et al., 2003b,
2004)

o0
s(b) = s(0) exp{ > (—j)”Dgl’“’)izy_“i” bﬁf}izp_“in } (2)

n=2

Here, s(b) is the diffusion weighted signal and s(0) is non-
diffusion weighted signal; j is the imaginary number; D™ is the
n-th order cumulant tensor with n = 2 corresponding to the
covariance matrix, 7 = 3 corresponding to the skewness tensor
and n = 4 corresponding to the kurtosis tensor; b(n) is an n-th
order tensor describing diffusion weighting factors. The Einstein’s
summation rule is assumed for the subscripts of D™ and b™. It
has been shown that D™ is a symmetric tensor as it is related to
the partial differentiation of the particle concentration in Fick’s
second law (Liu et al., 2003b, 2004).

Although Equation (2) can be readily solved with least-squares
estimations given a set of measurements at different diffusion
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encoding directions and b-values, the solution for the higher-
order tensor (HOT) may be easily biased by the noise at large b-
values. Specifically, because s(b) is Rician distributed, it does not
decay to zero. Instead, it approaches the noise floor as the b-value
increases, resulting in an overestimate of the non-Gaussianity
and higher-order tensors. To reduce this overestimation, we apply
Tikhonov regularization by solving the following minimization
problem for a fourth-order approximation

min

Hln(s(b) /s5(0) +b® P —p® . p®
D2 D®

i,i7 1,02 i1,02,03,04" 11,02,13,14

2
4
+ H ril,iz,i3,i4D( ) (3)

i1,12,13,1a

The Tikhonov matrix I is a diagonal fourth-order tensor with a
diagonal element of

» = trace(b®) (D/Do)5 (4)

Here, D is the mean diffusivity of a given voxel estimated by
DTI using the smallest b-value; Dy is a diffusion coefficient cho-
sen to be 1.5 x 1073 mm?/s, slightly smaller than that of cerebral
spinal fluid but larger than that of gray matter. With this choice
of regularization parameter, the fourth-order tensor of the CSF is
suppressed assuming the diffusion is mainly Gaussian in the CSF.
By raising the ratio of D and Dy to the fifth power, the effect of
regularization is reduced for the white matter. The scaling fac-
tor of trace[b™® ] is included to ensure the regularization term is
dimensionless.

Coordinate system independent quantities can be defined
with eigenvalue decomposition. There have been some increasing
efforts to better understand the algebra of fourth-order tensors
in the past decade (Miehe, 1993; Browaeys and Chevrot, 2004;
Muti and Bourennane, 2005). Nevertheless, a standard of decom-
position for fourth-order tensors is not fully established yet. We
chose to convert the fourth-order diffusion tensor with a dimen-
sion of 3 X 3 x 3 x 3 to a two-dimensional 9 x 9 matrix denoted
as T. This technique has been widely used in describing the stift-
ness tensor of materials’ mechanical property (Nemat-Nasser and
Hori, 1999; Basser and Pajevic, 2007). This can be accomplished

by transferring each p'*

i\ bisi, COMponent to element Tpq. The rule
of transformation between 4D index and 2D index is given in
Table 1. For example, the fourth-order element Dj,3; is trans-
formed to element T,; following the rule. Decomposing tensor
T results in 9 eigenvalues.

Once the higher order diffusion tensors are measured, the
probability density function (PDF) of the underlying diffusion
process can be computed using the Gram-Charlier series (Liu
et al., 2003b, 2004). The Gram-Charlier series is widely used

Table 1| Indices for unwrapping a fourth-order tensor D into a
9 x 9 matrix Tpq.

p(q) 1 2 3 4 5 6 7 8 9
ij (ki) n 12 13 21 22 23 31 32 33

expansion based on the Hermite tensor (Zucker and Schulz,
1982).

PHANTOM EXPERIMENTS AND SIMULATION

A phantom of crossing fibers was used for diffusion experiments.
The phantom consisted of sheets of parallel plastic capillaries
with an inner diameter of 50 um and an outer diameter of
350 wm (PTFE ultramicrobore tubing P-06417-70, Cole-Parmer
Instrument, Vernon Hills, IL). Two sets of capillaries were over-
lapped at a 90° angle. Imaging was performed on a 3T MRI system
with a high-performance insert gradient set. Scan parameters
were: FOV = 25 x 25cm?, TR = 1900 ms, TE = 13.8 ms, single
slice, NEX = 4 and matrix size = 32 x 32. Diffusion-weighted
images were acquired with a stimulated echo for 160 diffusion
encoding directions and for b-values of 500, 1000, 2000, 4000, and
8000 s/mm?.

However, this phantom did not mimic the susceptibility effect
of myelin structures while it is known that myelin is the primary
origin of susceptibility anisotropy. Secondly, the bulk suscepti-
bility effect was also a concern in part due to imperfect elimi-
nation of air bubbles in this type of phantoms. To control these
effects, we constructed a numerical phantom that simulates the
structures of packed axons in the white matter more precisely.
Specifically, a cubic voxel packed with an ensemble of parallel
axons was generated. The voxel had a dimension of d = 256 pm
on all sides. The axons were aligned along the z-axis. The inner
radius of the axon was 3.5 wm and the outer radius was 5.0 pm.
The distance between two neighboring axons was 11.0 pm. The
susceptibility of the axons was set to be —0.082 ppm and the
susceptibility anisotropy (x — 1) of the myelin sheath was
0.163 ppm with x| being —0.1 ppm (Li et al., 2012a). Here ¥
is defined as the susceptibility along the direction parallel to the
axon. The susceptibility of the interstitial space was assumed to be
zero as the reference. The voxel was divided into a 512 x 512 x
512 grid resulting in a grid size of 0.5 wm. A susceptibility ten-
sor was assigned to each grid point depending on the tissue type
(myelin, axon, or interstitial space). Only grid points within the
myelin sheath had anisotropic tensors. The major eigenvectors of
the myelin tensors were perpendicular to the long axis of the axon.

Once the susceptibility of each grid point within the voxel
was assigned, the magnetic field at each grid point was com-
puted via the forward Fourier relationship between susceptibility
tensor and magnetic field as expressed in Equation (1). This com-
puted magnetic field is what needed to satisfy Maxell’s equations
given the distribution of magnetic susceptibility and the pres-
ence of the external By field. The MR signal generated by the
voxel was evaluated at TE = 20ms and a field strength of 3T.
Specifically, each grid point within the voxel (a total of 512°
grid points) was assumed to have the same proton density; how-
ever, each grid precessed at its own frequency corresponding
to the magnetic field of its specific location. For a given exter-
nal field orientation, the total signal of the voxel was computed
as a complex summation of signals originating from all grid
points within the voxel. A total of 10,000 field orientations were
simulated. The mean frequency shift of the whole voxel was
computed for each orientation by computing the phase of the
summed signal. From this mean frequency shift, the AMS was
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computed by inverting Equation (1). Because only a single voxel
was present, the second term in Equation (1), i.e., the demag-
netization term was ignored when computing the AMS for each
orientation.

MRI EXPERIMENTS In vivo

A healthy adult was scanned on a 3T MRI system (GE MR750, GE
Healthcare, Waukesha, Wisconsin) equipped with an 8-channel
head coil and a maximal gradient strength of 50 mT/m. Diffusion
weighted images were acquired using a dual-echo sequence and
following parameters: FOV = 256 x 256 cm?, matrix size
128 x 128 (reconstructed to 256 x 256 by zero filling), TR =
10.2s, TE = 98.5ms, number of slices = 73, number of diffu-
sion directions = 30 and b-values of 1000 and 2500 s/mm?. Five
images with b = 0 were also acquired. All images were acquired in
a single run to maintain the same T2-weighting for both b-values.

Gradient-echo images were also acquired on the same scan-
ner. A quadrature head coil was employed for the gradient
echo imaging to allow a wider range of head orientations inside
the coil. Gradient-echo images with various head orientations
with respect to the main magnetic field were acquired using
a standard flow-compensated 3D spoiled-gradient-recalled-echo
(SPGR) sequence with the following parameters: TE = 40 ms,
TR = 60 ms, flip angle = 20°, FOV = 256 x 256 x 256 mm?,
matrix size = 128 x 128 x 128. Shimming was performed at
each head orientation. A total of 16 orientations were acquired
to achieve the rotation angle of —42~52° (around the anterior-
posterior direction) and —43~39° (around the left-right direc-
tion). All human studies were approved by Institutional Review
Board.

Image phase was unwrapped with a Laplacian-based phase
unwrapping algorithm (Li et al., 2011; Wu et al., 2012) and
filtered with the sphere mean value filtering, with a radius of
25 voxels with the radius decreasing toward the brain bound-
ary (Li et al., 2011). Phase value was normalized by the TE to
yield the frequency shift. AMS was first quantified at each brain

orientation with respect to the main magnetic field using the algo-
rithm for sparse linear equations and sparse least squares (LSQR)
(Paige and Saunders, 1982). The multi-orientation gradient echo
images were linearly registered to the non-diffusion weighted DTI
images using FSL-FLIRT (Oxford Center for Functional MRI of
the Brain, Oxford, UK). The resulting transformation matrix was
used to rotate the phase and susceptibility maps and to determine
the brain orientation with respect to the main magnetic field.

RESULTS
HOT OF CROSSING-FIBER PHANTOM
Figure 1 shows the geometry and signal behavior in the diffu-
sion phantom. The phantom consisted of two sets of capillar-
ies intersecting at 45° as illustrated by the T2-weighted image
(Figure 1A). Four voxels were selected within the phantom. One
voxel situated in the intersecting area represented by a green box;
a second voxel situated in an area with a single fiber orienta-
tion (45°) represented by a blue box; a third voxel situated in
a area with vertically oriented fibers represented by a magenta
box; a fourth voxel situated in the surrounding liquid repre-
sented by a red box (Figure 1A). The SNR at b = 0 was 2536,
1134, and 75 respectively for liquid, single fibers, and crossing
fibers. The diffusion signal in these four voxels was plotted as a
function of the b-value along the diffusion encoding direction of
[0, 0, 1] (Figure 1B). The signal curves were displayed in loga-
rithmic scale and coded with the color as the voxels were labeled
in Figure 1A. In the fluid, the signal decayed exponentially up to
b = 2000 s/mm?. At b = 4000 s/mm?, the signal was approach-
ing the noise level and the decay curve bent upward (arrow in
Figure 1B), giving a false impression of non-Gaussian diffusion.
Similar behavior was observed in the single fiber voxel. In the
voxel of crossing fibers, the signal decay curve bent upward rather
early at b = 1000 s/mm? while the signal strength was still more
than 10 times higher than the noise level.

Figure2 compares the higher order tensors estimated with
and without Tikhonov regularization. Figures 2A,C compares the

s (a.u.)

FIGURE 1 | Signal behavior of diffusion weighted images of a phantom.
(A) A T2-weighted image shows the crossing fiber structure of the
phantom. Four voxels highlighted regions of fiber crossing (green), single
fiber in a 45°-angle (blue), vertical fiber (magenta) and isotropic fluid (red).

B 10°

10

@
g Gradient Direction [0 0 1]
\ —o-Fluid
——Crossing fibers
—=-45° fiber
—o—Vertical fiber
----- Noise mean
0 2000 4000 6000 8000
2
b (s/mm®)
(B) Diffusion-weighted signals as a function of the b-values showed
distinctive characteristics for the four voxels highlighted in (A). In the fluid
and the single fiber along the direction of [0, 0, 1], the signals approached the
noise floor when b > 2000 s/mm? (arrow).
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Without Tikhonov

FIGURE 2 | Higher-order tensors estimated with and without Tikhonov
regularization. (A,B) Eigenvalues of the second and the fourth order tensor
estimated without regularization. The fourth order tensor was overestimated

With Tikhonov

-0.7 == 1.2 %108

for the fluid (arrows). (C,D) Corresponding eigenvalues of the second and the
fourth order tensor estimated with regularization. The contrast between
regions of fiber crossing and surrounding areas was significantly improved.

three eigenvalues of the second order tensor while Figures 2B,D
compares the nine eigenvalues of the fourth order tensor. Without
Tikhonov regularization, the fourth order tensor elements were
severely overestimated in the liquid region. Without regulariza-
tion, the eigenvalues of the fourth order tensor in the liquid
was similar or slightly larger than those of the crossing fibers
(Figure 2B) which is not physical as the diffusion in the lig-
uid is expected to be largely Gaussian. The application of reg-
ularization suppressed the fourth order tensor in the liquid
(arrows in Figure 2D). Note that the eigenvalues of the fourth
order tensor can be negative as the tensor is not restricted to
be positive definite in general. Similar results were observed
in vivo. ®3

DIFFUSION PDF AND AMS ORIENTATION DISTRIBUTION IN CROSSING
FIBERS

Figure 3 compares the fiber crossing reconstructed by higher-
order diffusion tensors and that by the apparent magnetic sus-
ceptibility. From the PDF glyphs, regions of fiber crossing and
regions of single fibers were readily identifiable (Figure 3B).
These regions matched exactly as shown in the anatomi-
cal T2-weighted image (Figure3A). The crossing angle mea-
sured based on the PDF glyphs also agreed with the true
crossing angle of 45°. AMS profile was evaluated on a sim-
ulated fiber crossing in a cubic voxel. Figure3C illustrates
the arrangement of axons within the voxel. Each fiber con-
sists of an axon and insulating myelin sheath which has an
anisotropic susceptibility tensor (Figure3B). The orientation
distribution of the calculated AMS demonstrated two com-
ponents intersecting at 45° consistent with the underlying
geometry.

HUMAN BRAIN in vivo

The SNR of the diffusion-weighted brain images at b = 0 was
60 for the parenchyma on average. The SNR of the gradient-
echo images was 34.8 for the parenchyma. Figure 4 illustrates the
quality of fitting based on the susceptibility tensor model. The
expected frequency maps based on the fitted susceptibility tensors
are slightly smoothed but demonstrate similar contrast as the cor-
responding experimental frequency maps (Figure 4A). The root-
mean-squared-error (RMSE) map for a representative orientation
shows elevated error around tissue boundaries, but demon-
strating small errors in most areas of the brain (Figure4B).
This consistency is further illustrated by three line profile plots
(Figure 4C) and a correlation analysis (Figure 4D). Small devia-
tions between experimental and fitted values were observed in the
line profiles. Deviations within the white matter regions indicate
potential inadequacy of the tensor model that may be induced
by more complicated fiber structures. Overall, the correlation
coefficient was high with R?> = 0.8833.

Figure 5 shows the fiber orientations reconstructed by HOT
and the corresponding behavior of AMS as a function of fiber
angle determined by DTI. In the top row of Figure 5A, the PDF
glyphs showed parallel fibers in a selected region of interest (ROI);
in the bottom row of Figure 5A, the PDF glyphs of the selected
ROI showed extensive fiber crossings. In the ROI with parallel
fibers, AMS followed a sine-squared relationship with the fiber
angle (top row of Figure 5B). The fiber angle was computed as
the angle between the major eigenvector of the diffusion ten-
sor and the By field. The principal orientations provided by STI
showed resemblance to those by DTT in this region; however, sig-
nificant differences also existed, consistent with previous reports
(Lietal., 2012a,b). These discrepancies were thought to be caused
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Diffusion

Susceptibility

FIGURE 3 | Comparison of HOT (A,B) and AMS (C,D) glyphs in fiber
crossing. (A) A T2-weighted image illustrated a region of complex fiber
structures with both single fibers and crossing fibers (red box). (B) The
PDF glyphs over this ROl reconstructed by HOT agreed with the

known phantom structure. (C) An illustration of myelinated axons
crossing at 45°. Each voxel in the myelin sheath contained an
anisotropic susceptibility tensor. (D) The distribution of AMS depicted
a 45° crossing.

by residual field gradients. ®* On the other hand, in the ROI
with fiber crossings, AMS no longer followed the sine-squared
relationship (bottom row of Figure 5B).

DISCUSSION

The discovery of anisotropic diffusion has led to an explosive
development of diffusion based MRI techniques for probing the
microstructure of brain white matter and brain connectivity.
Until very recently, diffusion MRI, in particular diffusion ten-
sor MRI, had been only way capable of imaging white matter
fiber orientations in vivo and non-invasively. The findings of
anisotropic magnetic susceptibility in the white matter may even-
tually provide an alternative method. In this study, we explored
for the first time the behavior of AMS in the case of fiber crossing.
The behavior was investigated both in phantoms and in vivo. The
relationship between complex AMS profile and non-Gaussian dif-
fusion in these situations were evaluated based on the high-order
tensor model of diffusion.

Previous studies have shown that in the case of parallel fibers,
the orientation dependence of magnetic susceptibility can be
described by a rank-2 tensor (Liu, 2010). The orientation of
the major eigenvector of the susceptibility tensor was found
to be aligned with the underlying fibers (Liu, 2010; Li et al,
2012a,b). Initial fiber tracking based on STI demonstrated sim-
ilar tracts with DTI tractography in major white matter tracks
of mouse brains ex vivo (Liu et al., 2012). However, it is also
known that the eigenvector orientations of susceptibility tensors
may not completely agree with those of diffusion tensors in vivo.

Part of the mismatch has been attributed to residual field gradi-
ents and imperfect image registration (Li et al., 2012a,b). Another
important source of the mismatch could be the complex fiber
architecture of white matter fibers that deviate from the simple
model geometry of parallel axons. The current study extended the
analysis to cases of crossing fibers. In the phantom of 45° cross-
ing, the angular distribution of AMS did not show an ellipsoidal
shape. Rather, extremal AMS was found in directions along the
fibers. In brain white matter of mainly parallel fibers such as the
corpus callosum, AMS follow the typical sine-squared relation-
ship as a function of fiber angles with respect to the main field. In
regions of fiber crossing, AMS no longer followed this simple rela-
tionship. Although we were not able to illustrate the orientation
distribution of AMS in 3D due to the limited number of orien-
tations available, the observed deviation from the sine-squared
relationship clearly indicated the existence of microstructures that
differed from parallel fibers.

These behaviors of AMS are reminiscent of that of ADC in
the situation of non-Gaussian diffusion. To explore whether the
observed behavior of AMS indeed corresponded to the charac-
teristics of crossing fibers, we reconstructed the underlying fibers
with the higher order tensor model of diffusion. Diffusion ten-
sors up to the fourth order were computed for both the phantom
and the human brain. To control the bias caused by the non-
zero noise floor in Rician distributed diffusion-weighted signals,
we applied a Tikhonov regularization based on the mean diffu-
sion coefficient. If the mean diffusion coefficient is larger than
1.5 x 1072 mm?/s, then the corresponding higher order tensor
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FIGURE 4 | Comparison of frequency maps measured experimentally
and those fitted with susceptibility tensors. (A) Comparison of
representative experimental and fitted frequency maps along three
orientations. Fitted maps were slightly smoothed but showing similar
contrast. (B) A representative root-mean-squared-error (RMSE) map between

—_ exﬁe imental
---- fitted

RMSE

oy
n

y = 0.8787x - 0.012
R? = 0.8833

-

e
in

o
n

Experimental Frequency (Hz)
- (=)

.
in

)

-1 0 1
Fitted Frequency (Hz)

the experimental and fitted frequency along one orientation. Significant
errors were only observed around tissue boundaries. (C) Line profiles of
experimental and fitted frequency maps for the same three orientations

as in (A). (D) Experimental and fitted frequency values along the line shown
in (C) demonstrating high correlation.

elements are penalized. This regularization effectively suppressed
the otherwise artificially high higher order tensor elements in the
liquid of the phantom and the CSF of the brain. In addition,
the tensors of fiber crossings were more accurately estimated as
evidenced by the enhanced contrast of areas of fiber crossings.
Alternatively, the issue of Rician distributed signal may also be
resolved with a maximum likelihood estimator once the statis-
tics of the Rician signal is estimated (Sijbers and den Dekker,
2004; Basu et al., 2006). However, this alternative strategy is gen-
erally computationally expensive over a 3D volume of images. The
Tikhonov approach was efficient without any significant increase
of computational burden. The corresponding PDF reconstructed
based on these tensors accurately matched the fiber crossing fea-
tures in the phantom. In the human brain, the PDF showed single
fiber orientations in the corpus callosum which explained the
sine-squared behavior of AMS. Away from these simple struc-
tures, the corresponding PDF clearly illustrated the underlying
fiber crossings which explained the deviation of AMS from the
sine-squared behavior.

Our preliminary investigation of magnetic susceptibility
behavior in crossing fibers indicated that magnetic susceptibility
may provide sufficient information for resolving fiber crossings
in certain cases. To fully capture the structural characteristics, it
appeared that more orientational sampling would be necessary.
This was demonstrated on a simulated voxel of crossing fibers.
The complex signal of the voxel was evaluated at multiple field
orientations. It was found that the orientation distribution of
AMS was indicative of the fiber structure. The associated chal-
lenge obviously is the increased scan time and necessity to change
the position of the brain with respect to the main magnetic field.
For example, while we showed that AMS no longer follows a
sine-squared relationship in vivo in the case of fiber crossing
(Figure 5), the limited number of orientations did not allow us
to plot the 3D distribution of AMS. With the available number of
orientations, we were able to detect fiber crossing but not able
to determine the multiple fiber orientations. ®* Currently, this
challenge is substantial in vivo but the technique can be read-
ily applied ex vivo or in some cases of small animal imaging.
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FIGURE 5 | Comparison of fiber orientations reconstructed by HOT and the
orientation dependence of AMS. (A) Color coded FA map reconstructed by
DTI (left) and fiber orientations of selected ROl reconstructed by HOT. The color
scheme was: red representing left-right, green representing anterior-posterior
and blue representing superiorinferior. In the top row, fiber orientations were
primarily unidirectional in the left-right direction; in the bottom row, fiber
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crossings were extensive and clearly visible in the PDF glyphs. (B) STI
eigenvector orientation map (left) and corresponding AMS plot as a function of
fiber angle over the same ROl in (A). AMS was calculated using the adjacent
green ROl as a reference to reduce global heterogeneity of magnetic
susceptibility. Fiber angles were computed as the angles between DTI fiber
orientations and the By field (superiorinferior).

When a sufficient number of orientations are provided, the struc-
tural information may be decoded by analyzing the orientation
distribution of the AMS. A simple graphic display of AMS in 3D
may be sufficient to identify the underlying fiber orientations.
More sophisticated or quantitative method may also be developed
such as with the use of spherical harmonic functions, higher order
tensors or the recently proposed multipole tensors (Liu and Li,
2013).

Further studies are needed to determine whether combin-
ing susceptibility and diffusion information may provide a more
complete characterization of tissue microstructure. It has been
shown that susceptibility anisotropy originates from two prop-
erties of the white matter. One is the diamagnetic property
of the lipid molecules of the myelin bilayer; the other is the
ordered arrangement of the lipid molecules around the axons
(Lee et al., 2010; Liu, 2010; Li et al., 2012a). On the other hand,
diffusion anisotropy appeared to originate primarily from the
axon itself. When the myelin is removed from the white mat-
ter, for example, in the shiverer mouse, diffusion anisotropy is
reduced by about 10-15% while susceptibility contrast and sus-
ceptibility anisotropy of the white matter largely disappeared
(Liu et al,, 2011). The information provided by susceptibil-
ity and that by diffusion are thus complementary. Probing the
microstructure of white matter simultaneously with susceptibil-
ity and diffusion imaging may be beneficial for differentiating
abnormalities that are due to axon degeneration and demyelina-
tion. Susceptibility imaging may be advantageous in situations
when high spatial resolution is required as the resolution of
diffusion-weighted images has largely been limited to be around

2 x 2 x 2mm’. Susceptibility images, on the other hand, can
be readily acquired at much higher spatial resolution and they
are inherently three dimensional. Susceptibility contrast is also
inherently advantageous at ultra-high field strength (>7T) due
to increased phase contrast (Duyn et al., 2007), low specific
absorption rate and minimal sensitivity to Bl field inhomo-
geneity. The application of diffusion weighted images at 7T
has been significantly hampered by increased RF heating and
B1 inhomogeneity. Integrating susceptibility and diffusion con-
trast at ultra-high field strength may therefore become especially
beneficial.

In conclusion, we showed that magnetic susceptibility may
be used to probe complex white matter structures in the pres-
ence of fiber crossings. When the tissue contains only parallel
fibers, the corresponding susceptibility can be characterized by
a rank-2 tensor; when the tissue contains multiple fiber orien-
tations, the behavior of magnetic susceptibility no longer follows
the sine-squared relationship and cannot be characterized by a
single rank-2 tensor. The orientation information provided by the
magnetic susceptibility was consistent with that by HOT diffusion
model. Susceptibility and diffusion together may provide a more
complete characterization of white matter microstructure.

ACKNOWLEDGMENTS

The authors thank Arnaud Guidon for implementing the Hermite
tensor function in the C language. The authors thank Ching-Po
Lin, Ph.D., for providing the phantom diffusion data. The study
was supported in part by the National Institutes of Health through
grant ROOEB007182.

Frontiers in Integrative Neuroscience

www.frontiersin.org

March 2013 | Volume 7 | Article 11 | 8


http://www.frontiersin.org/Integrative_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Integrative_Neuroscience/archive

Liu et al.

Diffusion cumulants and susceptibility tensors

REFERENCES

Alexander, D. C., Barker, G. J., and
Arridge, S. R. (2002). Detection and
modeling of non-Gaussian appar-
ent diffusion coefficient profiles in
human brain data. Magn. Reson.
Med. 48, 331-340.

Basser, P. J., and Pajevic, S. (2007).
Spectral decomposition of a 4th-
order covariance tensor: applica-
tions to diffusion tensor MRI. Sig.
Process. 87, 220-236.

Basser, P. ]., Mattiello, J., and LeBihan,
D. (1994). MR diffusion tensor
spectroscopy and imaging. Biophys.
J. 66, 259-267.

Basser, P. J., Pajevic, S., Pierpaoli, C.,
Duda, J., and Aldroubi, A. (2000).
In vivo fiber tractography using DT-
MRI data. Magn. Reson. Med. 44,
625-632.

Basu, S., Fletcher, T., and Whitaker,
R. (2006). Rician noise removal in
diffusion tensor MRI. Med. Image
Comput. Comput. Assist. Interv. 9(Pt
1), 117-125.

Beaulieu, C. (2002). The basis of
anisotropic water diffusion in the
nervous system — a technical review.
NMR Biomed. 15, 435-455.

Browaeys, J. T., and Chevrot, S. (2004).
Decomposition of the elastic ten-
sor and geophysical applications.
Geophys. J. Int. 159, 667—-678.

Conturo, T. E., Lori, N. E, Cull, T.
S., Akbudak, E., Snyder, A. Z,
Shimony, J. S., et al. (1999). Tracking
neuronal fiber pathways in the living
human brain. Proc. Natl. Acad. Sci.
U.S.A. 96, 10422-10427.

Duyn, J. H., van Gelderen, P, Li, T. Q.,
de Zwart, J. A., Koretsky, A. P., and
Fukunaga, M. (2007). High-field
MRI of brain cortical substructure
based on signal phase. Proc. Natl.
Acad. Sci. U.S.A. 104, 11796-11801.

Frank, L. R. (2001). Anisotropy in
high angular resolution diffusion-
weighted MRI. Magn. Reson. Med.
45, 935-939.

Frank, L. R. (2002). Characterization of
anisotropy in high angular resolu-
tion diffusion-weighted MRI. Magn.
Reson. Med. 47, 1083—-1099.

Jensen, J. H., Helpern, J. A., Ramani,
A., Lu, H., and Kaczynski, K.
(2005). Diffusional kurtosis imag-
ing: the quantification of non-
gaussian water diffusion by means
of magnetic resonance imaging.
Magn. Reson. Med. 53, 1432—1440.

King, M. D., Houseman, J., Roussel, S.
A., van Bruggen, N., Williams, S. R.,
and Gadian, D. G. (1994). q-space
imaging of the brain. Magn. Reson.
Med. 32, 707-713.

Lee, J., Shmueli, K., Fukunaga, M., van
Gelderen, P., Merkle, H., Silva, A.
C., et al. (2010). Sensitivity of MRI
resonance frequency to the orienta-
tion of brain tissue microstructure.
Proc. Natl. Acad. Sci. US.A. 107,
5130-5135.

Li, W, Wu, B., and Liu, C. (2011).
Quantitative susceptibility mapping
of human brain reflects spatial
variation in tissue composition.
Neuroimage 55, 1645-1656.

Li, W., Wu, B., Avram, A. V., and Liu,
C. (2012a). Magnetic susceptibility
anisotropy of human brain in vivo
and its molecular underpinnings.
Neuroimage 59, 2088-2097.

Li, X., Vikram, D. S., Lim, I. A,
Jones, C. K., Farrell, J. A., and
van Zijl, P. C. (2012b). Mapping
magnetic susceptibility anisotropies
of white matter in vivo in the
human brain at 7T. Neuroimage 62,
314-330.

Lin, C. P, Wedeen, V. J., Chen, J.
H., Yao, C, and Tseng, W. Y.
(2003). Validation of diffusion spec-
trum magnetic resonance imag-
ing with manganese-enhanced rat
optic tracts and ex vivo phantoms.
Neuroimage 19, 482—495.

Liu, C. (2010). Susceptibility tensor
imaging. Magn. Reson. Med. 63,
1471-1477.

Liu, C., and Li, W. (2013). Imaging neu-
ral architecture of the brain based
on its multipole magnetic response.
Neuroimage 67, 193-202.

Liu, C., Bammer, R., Acar, B,
and Moseley, M. E. (2004).
Characterizing non-Gaussian

diffusion by using generalized dif-
fusion tensors. Magn. Reson. Med.
51, 924-937.

Liu, C., Bammer,
and Moseley, M. E. (2003a).
“Generalized  diffusion  tensor
imaging (GDTI) using higher
order tensor (HOT)
in Proceedings of the 11th Annual
Meeting  of ISMRM  (Toronto,
ON), 242.

Liu, C., Bammer, R., and Moseley, M.
E. (2003b). Generalized diffusion
tensor imaging (GDTI): a method

imaging

R., Acar, B,

statistics,”

for characterizing and

diffusion anisotropy caused by
non-gaussian diffusion. Isr. J. Chem.
145-154.

Liu, C., Li, W., Johnson, G. A., and Wu,
B. (2011). High-field (9.4 T) MRI
of brain dysmyelination by quanti-
tative mapping of magnetic suscep-
tibility. Neuroimage 56, 930-938.

Liu, C., Li, W, Wu, B, Jiang, Y.,
and Johnson, G. A. (2012). 3D
fiber tractography with susceptibil-
ity tensor imaging. Neuroimage 59,
1290-1298.

Miehe, C. (1993). Computation
of isotropic tensor functions.
Commun. Numer. Methods Eng. 9,
889-896.

Mori, S., Crain, B. J.,, Chacko, V. P,
and van Zijl, P. C. (1999). Three-
dimensional tracking of axonal pro-
jections in the brain by magnetic
resonance imaging. Ann. Neurol. 45,
265-269.

Moseley, M. E., Cohen, Y., Kucharczyk,
J., Mintorovitch, J., Asgari, H. S.,
Wendland, M. E, et al. (1990).
Diffusion-weighted MR imaging of
anisotropic water diffusion in cat
central nervous system. Radiology
176, 439—-445.

Muti, D., and Bourennane, S. (2005).
Multiway filtering based on fourth-
order cumulants. EURASIP J. Appl.
Sig. Process. 2005, 1147-1158.

Nemat-Nasser, S., and Hori, M. (1999).
Micromechanics: Overall Properties
of Heterogeneous Materials.
Amsterdam; New York: Elsevier.

Ozarslan, E., and Mareci, T. H. (2003).
Generalized diffusion tensor imag-
ing and analytical relationships
between diffusion tensor imaging
and high angular resolution diffu-
sion imaging. Magn. Reson. Med.
50, 955-965.

Paige, C. C., and Saunders, M. A.
(1982). Lsqr — an algorithm for
sparse linear-equations and sparse
least-squares. ACM Trans. Math.
Softw. 8, 43-71.

Schweser, F, Sommer, K., Deistung,
A., and Reichenbach, J. R. (2012).
Quantitative susceptibility mapping
for investigating subtle susceptibil-
ity variations in the human brain.
Neuroimage 62, 2083-2100.

Sijbers, J., and den Dekker, A. J. (2004).
Maximum likelihood estimation of
signal amplitude and noise variance
from MR data. Magn. Reson. Med.
51, 586-594.

Song, S. K., Sun, S. W., Ramsbottom,
M. J., Chang, C., Russell, J., and
Cross, A. H. (2002). Dysmyelination
revealed through MRI as increased

(but  unchanged axial)
diffusion of water. Neuroimage 17,
1429-1436.

Tuch, D. S. (2004). Q-ball imaging.
Magn. Reson. Med. 52, 1358-1372.

Tuch, D. S., Reese, T. G., Wiegell, M.
R., Makris, N., Belliveau, J. W., and
Wedeen, V. J. (2002). High angular
resolution diffusion imaging reveals
intravoxel white matter fiber het-
erogeneity. Magn. Reson. Med. 48,
577-582.

Wedeen, V. J, Wang, R. P,
Schmahmann, J. D., Benner, T,
Tseng, W. Y., Dai, G., et al. (2008).
Diffusion spectrum magnetic reso-
nance imaging (DSI) tractography
of crossing fibers. Neuroimage 41,
1267-1277.

Wu, B., Li, W., Guidon, A., and Liu, C.
(2012). Whole brain susceptibility
mapping using compressed sensing.
Magn. Reson. Med. 67, 137-147.

Zucker, U., and Schulz, H. (1982).
Statistical approaches for the treat-
ment of anharmonic motion in
crystals. I. A comparison of the
most frequently used formalisms
of anharmonic thermal vibrations.
Acta Crystallogr. Sect. A 38, 563—568.

radial

Conflict of Interest Statement: The
authors that the
was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

declare research

Received: 24 October 2012; paper
pending published: 28 November 2012;
accepted: 18 February 2013; published
online: 06 March 2013.

Citation: Liu C, Murphy NE and
Li W (2013) Probing white-matter
microstructure with higher-order diffu-
sion tensors and susceptibility tensor
MRI. Front. Integr. Neurosci. 7:11. doi:
10.3389/fnint.2013.00011

Copyright © 2013 Liu, Murphy and
Li. This is an open-access article dis-
tributed under the terms of the Creative
Commons Attribution License, which
permits use, distribution and reproduc-
tion in other forums, provided the origi-
nal authors and source are credited and
subject to any copyright notices concern-
ing any third-party graphics etc.

Frontiers in Integrative Neuroscience

www.frontiersin.org

March 2013 | Volume 7 | Article 11 | 9


http://dx.doi.org/10.3389/fnint.2013.00011
http://dx.doi.org/10.3389/fnint.2013.00011
http://dx.doi.org/10.3389/fnint.2013.00011
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Integrative_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Integrative_Neuroscience/archive

	Probing white-matter microstructure with higher-order diffusion tensors and susceptibility tensor MRI
	Introduction
	Materials and Methods
	Susceptibility Tensor and Susceptibility Orientation Distribution
	Higher-Order Tensor (HOT) Reconstruction
	Phantom Experiments and Simulation
	MRI Experiments In vivo

	Results
	HOT of Crossing-Fiber Phantom
	Diffusion PDF and AMS Orientation Distribution in Crossing Fibers
	Human Brain in vivo

	Discussion
	Acknowledgments
	References


