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The foundation for an accurate and unifying Fourier-based theory of diffusion weighted
magnetic resonance imaging (DW–MRI) is constructed by carefully re-examining the first
principles of DW–MRI signal formation and deriving its mathematical model from scratch.
The derivations are specifically obtained for DW–MRI signal by including all of its elements
(e.g., imaging gradients) using complex values. Particle methods are utilized in contrast to
conventional partial differential equations approach. The signal is shown to be the Fourier
transform of the joint distribution of number of the magnetic moments (at a given location
at the initial time) and magnetic moment displacement integrals. In effect, the k-space is
augmented by three more dimensions, corresponding to the frequency variables dual to
displacement integral vectors. The joint distribution function is recovered by applying the
Fourier transform to the complete high-dimensional data set. In the process, to obtain a
physically meaningful real valued distribution function, phase corrections are applied for
the re-establishment of Hermitian symmetry in the signal. Consequently, the method is
fully unconstrained and directly presents the distribution of displacement integrals without
any assumptions such as symmetry or Markovian property. The joint distribution function
is visualized with isosurfaces, which describe the displacement integrals, overlaid on the
distribution map of the number of magnetic moments with low mobility. The model
provides an accurate description of the molecular motion measurements via DW–MRI. The
improvement of the characterization of tissue microstructure leads to a better localization,
detection and assessment of biological properties such as white matter integrity. The
results are demonstrated on the experimental data obtained from an ex vivo baboon brain.
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1. INTRODUCTION
Since the conception of mathematical models for the effect of
the magnetic moment diffusion in nuclear magnetic resonance
(NMR) experiments by Hahn (1950), Carr and Purcell (1954),
and Torrey (1956), several methods have been proposed for
analysis of diffusion-weighted (DW) magnetic resonance imag-
ing (MRI) signal. These advancements endowed with the non-
invasive, in vivo nature of the technique, have propelled the initial
utilization of DW imaging measures, e.g., apparent diffusion coef-
ficient in early detection of ischemia (Moseley et al., 1990; Baird
and Warach, 1998), to many highly crucial areas in research and
clinical imaging: for example in cancer diagnosis (Song et al.,
2002; Turkbey et al., 2009; Xu et al., 2009), follow-up on treat-
ment, pre- and post-operative assessment for different organs
[e.g., fiber tracking (Conturo et al., 1999; Mori and van Zijl,
2002)] white matter integrity assessment (Budde et al., 2007;
Correia et al., 2008) as in monitoring of neurological diseases such
as multiple sclerosis (Song et al., 2002) and disorders (Ciccarelli
et al., 2008) like schizophrenia (Seal et al., 2008; Voineskos et al.,
2010) and Alzheimer’s disease (Mielke et al., 2009), as well as
neonatal development (McKinstry et al., 2002) and traumatic
brain injury (Mac Donald et al., 2011).

In brief, diffusion weighted magnetic resonance imaging
(DW–MRI) has become an indispensable and versatile technique
playing an important role in several applications by its ability to
estimate diffusion. The abundance of DW–MRI models is an indi-
cator of room for improvement as well as the necessity for unifi-
cation [see Özcan et al. (2012) for a detailed account of the partial
differential equation (PDE) based adaptation’s implications as
well as a thorough mathematical analysis and a description of the
background of existing methods].

DW–MRI’s aim is to obtain measures and characterization
of microstructure by investigating the diffusion process. Several
methods and models have been proposed, all originating from
the seminal work of Stejskal and Tanner (1965). Therein, under
the influence of the additional motion sensitizing magnetic field
gradients, the self-diffusion PDE of the magnetic moments is
included in the Bloch PDE to model the attenuation in the
DW–NMR spectroscopy signal. The result is the estimation of
the scalar diffusion coefficient of the entire sample. In a sense,
DW–NMR added another dimension, i.e., the magnetic moment
motion, to the spectroscopic information even before the intro-
duction of magnetic moment position later by the invention of
MR imaging.
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Accordingly, herein, DW–MRI model is naturally progressed
to a higher dimensional construct that jointly presents magnetic
moment position and motion. This is achieved by carefully re-
examining the first principles of DW–MRI signal formation using
particle methods in the spirit of the work of McCall et al. (1963).
The mathematical model constructed in section 2.1 is specifically
obtained for DW–MRI signal (rather than DW–NMR) by includ-
ing all of its elements (e.g., imaging gradients) using complex
values without taking the signal’s magnitude.

The approach reveals that for an lmr-dimensional MRI slice,
the DW–MRI complex valued signal that comes out of the scan-
ner is the (lmr + 3)-dimensional Fourier transform of the joint
distribution function of the number of magnetic moments (that
are at a given position at the initial time) and their displacement
integrals. In other words, the first lmr dimensions correspond
to the usual MRI k-space with position information and the
remaining three dimensions constitute the frequency space of
displacement integrals. The values of imaging and motion sen-
sitizing magnetic field gradient vectors together define in the
(lmr + 3)-dimensional Fourier space the sampling points of the
joint distribution function’s Fourier transform. The distribution
function is recovered by taking the Fourier transform of the com-
plete data directly (i.e., without any scaling or use of magnitudes),
giving the method its name: Complete Fourier Direct (CFD)
MRI (Özcan, 2010b).

2. MATERIALS AND METHODS
2.1. COMPLETE FOURIER DIRECT MRI SIGNAL FORMATION
The MR signal is generated by the vectorial sum of transverse
magnetization of magnetic moments (Haacke et al., 1999):

M(t) =
∑

i

mi(t). (1)

By neglecting the effect of spin–spin relaxation, the evolution
of the transverse magnetization of the ith magnetic moment
is described in a standard manner by a rotating magnetization
vector according to Bloch equations (see Appendix B):

mi(t) = exp(−j γ �i) mi(t0). (2)

Here, γ is the gyromagnetic ratio, the transverse magnetiza-
tion vector, mi, is written in complex number form with mi(t0)

denoting the initial magnetization tipped to the transverse plane,

�i =
t∫

t0

G(xi, τ) · xi(τ)dτ (3)

describes the phase (when multiplied by γ) as a function of the
magnetic field gradients G(x, t) ∈ R

3, and the position of the
magnetic moment is xi ∈ R

3. The time-dependent position, xi,
in Equation (3) affects the phase, �i, thereby also affecting the
total signal in Equation (1).

Any kind of displacement (such as Brownian motion, molec-
ular movement in biological tissue with different medium and
obstacles, coherent motion or any combination thereof) is incor-
porated straight into the model, by modeling the position in a
general and direct form herein without any stochastic assump-
tions [such as Markovian property used in Wedeen et al. (2005)]
on the motion

xi(t) = xi(t0) + wi(t), (4)

where wi(t) ∈ R
3 represents the displacement of the magnetic

moment from its initial position, xi(t0), [i.e., wi(t0) = 0]. The
only physical requirement is the continuity of wi(t) since a mag-
netic moment cannot disappear at a given point and reappear at
another.

The signal is calculated using Equations (1– 4) in reverse
order. Following the motion described by Equation (4), the phase
of the ith magnetic moment in Equation (3) during the dig-
ital acquisition period of the two dimensional imaging (lmr =
2) pulsed-gradient spin-echo (PGSE) sequence of Figure 1, is
obtained after tedious but routine derivations [see Appendix B
for a brief exposition of the derivations and Özcan (2012)] using
the definitions of the variables in Figure 1 with G∗ ∈ R

3 denot-
ing the magnetic field gradient vectors labeled as read-out, ro;
phase encode, pe; slice select, ss; and diffusion, D. Omitting rou-
tine calculations for trapezoidal shapes for clarity, the derivation
is carried out assuming ideal gradient amplifiers providing rect-
angular shaped gradient pulses. The initial time, t0, is the end time

SS−EX d3 td4

π

t0 trw

tΔ rw

Diff Diff

td1 td2

RO−ACQ

δ

Δ

RO

PE

timeSS tacq

π/2

SS−PI

t

FIGURE 1 | The pulsed-gradient spin-echo (PGSE) pulse sequence and

the definition of the variables used in the calculations. SS–EX is for the
slice select gradient during the excitation (π/2) pulse, RO for read out, PE for
phase encode, SS for is the slice select gradient, Diff marks the motion

sensitizing pulses, SS–PI is the slice select gradient during the π-pulse
and ACQ stands for digital acquisition period. In practice, the MR pulse
sequences implement the rewind (rw) gradients such that the amplifiers
are turned on and off at the same times.
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of π/2 radio frequency (RF) pulse when the magnetization is fully
tipped to the transversal plane. The resulting phase of the trans-
verse magnetization is a function of time, t, and, the imaging and
diffusion gradients (see Appendix B):

�i(t, Gpe, Gss, GD)

= (
(t − tacq − �trw) Gro − �trw Gpe

) · xi(t0) − �trw Gss · xi(t0)

(5)

+GD · Wd + ((td4 − td3) − (td2 − td1))GD · xi(t0) + �πi (6)

+Gro ·Wacq
i (t)−(Gro +Gpe +Gss)·W rw

i . (7)

The second term in Equation (6) removes the injection of the
initial position into the DW signal because of equal pulse dura-
tion times, δ = td4 − td3 = td2 − td1. The term �πi describes
the systematic phase (see Appendix B1) created by the π-pulse
slice select gradient (SS–PI) and in this work it will be auto-
matically taken out by the phase correction algorithm in sec-
tion 2.2. Equations (6) and (7) incorporate three integrals of the
displacement wi(t) : (Wd

i , W
acq
i , W rw

i ) corresponding to the dis-
placement integrals for diffusion (d), analog to digital conversion
acquisition (acq), and initial rewind (rw) gradient time periods,
respectively

Wd
i =

td4∫
td3

wi(τ) dτ −
td2∫

td1

wi(τ) dτ, (8)

W
acq
i (t) =

t∫
tacq

wi(τ) dτ, W rw
i =

trw∫
t0

wi(τ) dτ. (9)

First term in Equation (5) is the definition of the k-space in
regular MRI, kmr ∈ R

2 :

kmr(t, Gpe) = (t − tacq − �trw) Gro − �trw Gpe (10)

with the additional term,

ϕslice = −�trw Gss · xi(t0), (11)

which is constant because the slice select axis component of xi(t0)

is the slice position1.
Without loss of generality, by adopting the imaging coor-

dinate frame defined by the directions of the read-out, phase
encode and slice select gradients, Gro = [gro1, 0, 0], Gpe =
[0, gpe2, 0], Gss = [0, 0, gss3], time and gpe2 become functions
of kmr = [kmr1, kmr2, kmr3] using Equation (10):

t = kmr1/gro1 + tacq + �trw and gpe2 = −kmr2/�trw.

Accordingly, W
acq
i (t) becomes a function of kmr1 and the coeffi-

cients of W rw in Equation (7) are written as a vector which is an

1The refocusing lobe of the slice select gradient after the RF pulse denoted
by SS in Figure 1 adjusts ϕslice to be constant throughout the slice in the slice
select direction.

affine function of kmr :

krw = [−gro1, kmr2/�trw, −gss3
]
. (12)

Consequently, the phase, �i, of Equation (3) is expressed con-
cisely by defining kD = GD :

�i = kmr · xi(t0) + kD · Wd
i + krw · W rw

i

+ Wacq
i,1 (kmr1) gro1 + ϕslice, (13)

reflecting the effect of initial position and displacement integrals
on the phase2 of each magnetic moment. Since ϕslice is constant
for all i, it is taken out of Equation (13) with the appropriate
rotation of the magnetization coordinate frame on a slice by slice
basis.

Finally, assuming that all of the magnetic moments have
the real valued initial magnetization mi(t0) = m0, Equation (1)
can be re-written using Equation (13) to reveal a Fourier
relationship,

Scfd(kmr, kD, krw) = m0

∑
i

exp(−j γ �i(kmr, kD, krw)). (14)

A more efficient way to evaluate the sum in Equation (14) is
first to group the magnetic moments with the same position-
displacement properties and then to count the numbers elements
in the groups.

Definition 1. The joint position-displacement integral distribu-
tion function, Ptotal

cfd (x, W), is defined as the number of mag-
netic moments with the initial position x ∈ R

3 at time t0,
possessing the displacement integral values of W = (Wd, W rw,

W
acq
1 ) ∈ R

7.

The signal in Equation (14) is calculated by integrating over
the whole position-displacement space (absorbing m0 into Ptotal

cfd
for ease of notation):

Scfd(kmr, kD, krw) =
∫

Ptotal
cfd (x, W)

× exp(−j γ (kmr · x + kD · Wd + krw · W rw

+ W
acq
1 (kmr1) gro1)) dx dW (15)

= F{Ptotal
cfd }(kmr, kD, krw). (16)

Equation (15) is by definition the Fourier transform of Ptotal
cfd with

non-linearities added by W
acq
1 .

Among the elements of W , the focus is on the most descriptive
MRI observable, Wd. Its distribution is obtained by marginalizing

2The unit for kmr is magnetic field×time
distance but for kD and krw it is magnetic field

distance .

They are both in accordance with the units of the position and the displace-
ment integrals in Equation (13). After kcfd is multiplied by the gyromagnetic
ratio γ, with unit (magneticfield × time)−1, the product becomes unitless in
Equation (14).
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W rw from Equation (15)

Pcfd(x, Wd) =
∫

Ptotal
cfd (x, Wd, W rw) dW rw

= F−1
(kmr,kD)

{Scfd(kmr, kD, 0)}. (17)

However, the affine dependence of krw in Equation (12) makes it
impossible to fix krw = 0 and to sample in (kmr, kD, 0) subspace.
The following example demonstrates how the affine dependence
affects the measurements by using a two dimensional Gaussian
function, exp

(−(k2
1 + k2

2)
)
, with the “undesirable” variable k2

sampled on a line k2 = a k1 + b :

F−1
k1

{
exp

(− (
k2

1 + (a k1 + b)2))} = 1

2
√

π(1 + a2)

exp

(
−x2

1 + j 4a b x1 + 4b2

4a2 + 4

)
.

The result is complex valued in comparison to the real valued
Fourier transform of exp(−k2

1) which can be obtained by setting
a = b = 0.

2.2. PHASE CORRECTIONS FOR THE ESTIMATION OF Pcfd

In addition to inherent affine dependence and non-linearities,
different experimental factors, noise, hardware imperfections
etc., affect the DW–MR signal adversely. CFD–MRI addresses
these issues by adopting a pivotal, physically meaningful
standpoint originating from the following Fourier transform
property (Bracewell, 2000):

(real valued function) � F � (Hermitian symmetric function).

Accordingly CFD–MRI reconstruction is based on the
following:

Since by definition Ptotal
cfd is real valued, Scfd is Hermitian symmetric.

Furthermore, an immediate implication of the transform
property and the Hermitian symmetry of Scfd is that theoret-
ically, taking its magnitude before Fourier transforming will
result in a symmetric real valued distribution under ideal condi-
tions. As noted above, in practice the experimental Scfd is never
Hermitian symmetric resulting in an asymmetric magnitude.
Consequently, the magnitude’s Fourier transform used in exist-
ing methods (Callaghan, 1991; Wedeen et al., 2005), results in
a complex valued (Hermitian symmetric) distribution function.
The difficulty of a physical interpretation forced those methods
to take the magnitude of the transform as well to obtain a real
valued function.

Herein, in order to obtain a real valued Pcfd, the re-
establishment of Hermitian symmetry in the signal during the
computation of the inverse transform for Equation (17), is real-
ized by phase corrections. The strategy is similar in principle to
the correction of the kmr-space center’s (echo time) shift during
the read-out period of acquisition in MR imaging. The resulting

linear phase shift in the physical read-out axis uniformly and
systematically appears in all of the data. The shifts in both phase-
encode (e.g., due to sample shaking) and read-out directions are
corrected by first determining from the Fourier transform in kmr,

I
complex
kmr

((xro, xpe), kD) = F−1
kmr

{Scfd(kmr, kD, krw)}, (18)

the angle (� Icomplex
kmr

) from the signal regions along the center lines
of each physical direction at kD = 0,

rro(xro)≈� I
complex
kmr

((xro, 0), 0), rpe(xpe)≈� I
complex
kmr

((0, xpe), 0).

(19)
The phase corrections are then applied systematically at each
value of kD (see Figure 3):

Ikmr(x, kD) = I
complex
kmr

(x, kD) exp(−j (rro(xro) + rpe(xpe))).

(20)
The Fourier transform in the remaining variables,

Pcfd(x, Wd) = F−1
kD

{Ikmr(x, kD)}, (21)

is evaluated sequentially in each kD-dimension with the aim of re-
establishing the Hermitian property, Ikmr(x,−kD) = I∗

kmr
(x, kD),

using the following steps.

CFD Phase correction algorithm:

1. Pick a pixel at location xc, preferably near the center of the
image where tissue or a good signal area is located.

2. Starting from the first direction, l = 1 of the kD space cal-
culate the phase on the line passing through the origin
(i.e., [kD1, 0, 0], [0, kD2, 0], [0, 0, kD3], respectively for l =
1, 2, 3), e.g., � Ikmr (xc, (kD1, 0, 0)).

3. Investigate the plot of the phase versus kDl. Pick as many
as possible consecutive values of kDl near 0 without sudden
changes to assure high signal to noise value.

4. Construct a polynomial of degree m (with m less than the
number of points) that approximates the phase at the selected
points. The polynomial’s constant term must be set to be 0
to guarantee that Ikmr(xc, 0) remains unchanged. For example,
for the first direction, at selected values of kD1 the polynomial
looks like

� Ikmr(xc, (kD1, 0, 0)) ≈ rD1(kD1)
.= am (kD1)

m

+ am − 1 (kD1)
m − 1 + . . . + a1 kD1 (22)

as demonstrated in Figure 2.
5. Apply the same phase correction systematically to the

entirety of the data along the lth direction at each of the
other dimensions, at all of the pixel locations. For exam-
ple in the first direction, kD1, update Ikmr to be equal
to Ikmr (x, (kD1, kD2, kD3)) exp(−j rD1(kD1)) for all kD2, kD3

and x.
6. Repeat steps 2–5 for the remaining directions.

The algorithm transfers the signal to the real channel by
preserving its energy as the phase corrected spin-echo image
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FIGURE 2 | Özcan (2012): Top row: The Nyquist plots of uncorrected (left)

and corrected (right) Scfd obtained from the experimental data described

in section 2.4. The plots show data acquired at each diffusion gradient value
kD1 on the complex plane. Bottom row: The magnitude and phase plots of
the data. Uncorrected data (bottom row left, second column) exhibit a linear

phase shift around 0 frequency, indicative of coherent motion. After the phase
corrections obtained using the polynomial 0.266 kD1 estimated from the points
kD1 = −6, 0, 6, 12 Gauss/cm, the magnitude is unchanged but the signal’s
imaginary part is smaller for the corrected values visible by the difference
between the vertical axis spans of Nyquist plots and the phase plots.

without diffusion gradients, Ikmr(x, 0). The distribution of the
magnetic moments with low mobility in all three directions [i.e.,
Pcfd(x, 0)] shows the result of the transfer in Figure 3 for the
sample described in section 2.4.

In Pcfd(x, 0), areas with high level of organization inducing low
mobility, such as the corpus callosum (CC), the external capsule
(EC), the mid-brain and the pons, appear brighter. The image is
not an anisotropy map, e.g., mineral oil would appear brighter
than water due to a smaller diffusion coefficient despite both liq-
uids being isotropic. Spin-echo image is more blurred because it
is a low pass filtered version of Pcfd:

I
complex
kmr

(x, kD) = F−1
kmr

{Scfd(kmr, kD, krw)} ⇒ Ikmr(x, 0)

= 2π

γ

∫
Ptotal

cfd (x, W) dW (23)

(see Appendix C).
CFD phase correction algorithm outperformed the fitting of

the phase values up to the fourth degree multinomials in R
3.

The reasons behind this outcome, which will provide information
about DW–MR signal artifacts, as well as inclusion of different
functions for corrections will be investigated in the future.

2.3. CFD-MRI SAMPLING AND WINDOWING
Whereas the standard MRI field of view (FOV) calcula-
tions (Haacke et al., 1999) are used for kmr-space, the infinite
bandwidth in kD-space due to Pcfd’s finite support in Wd-space
(originating from finite length displacements) falls beyond the

reach of the gradient hardware’s limits for small diffusion gra-
dient duration and separation times (δ and �, respectively in
Figure 1). Even with a powerful gradient system, a large mag-
nitude of kD causes substantial signal uncertainties due to an
increasing performance deterioration as the power requirements
push the hardware to its limitations.

With such a hardware constraint, in order to reduce ripple
effects caused by truncation, Pcfd’s bandwidth (i.e., Scfd’s sup-
port) is shrunk by increasing δ and � causing the dispersion
(covariance) of the displacement integral Wd (and therefore Pcfd’s
support) to increase. This is directly visible in the special case
of Brownian Motion characterized by the diffusion tensor D in
Figure 4. Pcfd and Scfd are zero mean Gaussians with covariances,
respectively equal to (see Appendix A)

E[Wd (Wd)T] = bt D and (bt D)−1 where bt
.= δ2 (� − δ/3)

(24)
(see Özcan, 2009, 2010a) because the Fourier transform of a
Gaussian with a covariance matrix D̂ is also a Gaussian with
covariance D̂−1 :

F
{

exp

((
Wd

)T
D̂−1 Wd

)}
∼ exp

(
kT

D D̂ kD

)
. (25)

The procedure is graphically displayed in Figure 4 also empha-
sizing the effect of ripples on the small values of Pcfd which are
especially important in revealing microstructure as explained in
section 3.1.
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FIGURE 3 | On the left, the fixed baboon brain images acquired in the

anatomical-coronal plane. On the top row, the real and imaginary parts of
Ikmr (x, 0) and on the bottom row, Pcfd(x, 0) are displayed. The imaginary part
is approximately 10% of the real part in both cases. On the right, full

representation of Pcfd with isosurfaces (P̄cfd = 0.17, see section 3.1) around
CC and EC junction. Starting from left bottom going clockwise, the sample
pixels are from cerebro-spinal fluid (CSF), CC, white matter (WM) and CC,
and EC junction, respectively (see also Figure 5).

The second sampling criterion is an appropriate sampling rate
i.e., sufficient number of points in kD-space to prevent aliasing
artifacts on Pcfd. This is constrained by the time available for
acquisitions as each point in kD-space requires the scan time of
the entire kmr-space.

2.4. EXPERIMENTAL SETUP AND ANALYSIS METHODS
A fixed baboon brain immersed in 4% paraformaldehyde
was used for the experiments. The primate was prematurely
delivered on the 125th day and sacrificed on the 59th day
after delivery. All animal husbandry, handling, and procedures
were performed at the Southwest Foundation for Biomedical
Research, San Antonio, Texas. Animal handling and ethics were
approved to conform to American Association for Accreditation
of Laboratory Animal Care (AAALAC) guidelines. Further
details of the preparation are described in Kroenke et al.
(2005).

The experiments were carried out on a 4.7 Tesla MR scan-
ner (Varian NMR Systems, Palo Alto, CA, USA) with a 15 cm
inner diameter gradient system, 45 Gauss/cm maximum gradi-
ent strength and 0.2 ms rise time using a cylindrical quadrature
birdcage coil (Varian NMR Systems, Palo Alto, CA, USA) with
63 mm inner diameter. CFD–MRI data were obtained using the
standard pulsed-gradient spin-echo multi-slice sequence. The
kmr-space was sampled to result in images of 128 × 128 pixels
with a FOV 64 × 64 mm2 and 0.5 mm slice thickness. The kD-
space was sampled in a uniformly spaced Cartesian grid in a
cube [−30, 30 Gauss/cm]3 with 6 Gauss/cm sampling intervals
at each dimension resulting in 11 × 11 × 11 voxels. The repeti-
tion time TR = 1 s, echo time TE = 56.5 ms, diffusion pulse sep-
aration time � = 30 ms and diffusion pulse duration δ = 15 ms
were used.

The data were transferred to a two quad core 2.3 GHz Intel
Xeon� cpu and 8 GB memory Dell Precision Workstation 490
running Windows XP� 64-bit operating system. The DWI data
were placed in a 5-dimensional array in the computer mem-
ory and the discrete Fourier transform (DFT) was computed
along with the phase corrections. In-house Matlab� (Mathworks,
Natick, MA, USA) programs were used for all of the computations
and to display the graphics and maps.

3. RESULTS
3.1. VISUALIZATION OF THE CFD DISTRIBUTION
The joint distribution’s high-dimensionality [e.g., two dimen-
sions for position in regular MR images (lmr = 2), plus three
more for displacement integrals] creates a visualization challenge
which is addressed herein by using Pcfd(x, 0) as the background
image. Furthermore, the isosurface3 of normalized Pcfd,

P̄cfd(x, Wd) = Pcfd(x, Wd)

Pcfd(x, 0)

is overlayed on the pixel at location x, as in Figure 3. For the
sake of an objective assessment, the isosurfaces are defined using
a common level value c (0 < c ≤ 1),

{
Wd ∈ R

3 : P̄cfd

(
x, Wd

)
= c

}
,

3Another approach in the literature is to present the value of the function
over a sphere (Tuch, 2004; Wedeen et al., 2005). However, uniqueness is lost
in this representation as demonstrated by these functions: f (x, y, z) = x2 +
y2 + z2, h(x, y, z) = (f (x, y, z))2, which have the same value on the unit
sphere but different isosurfaces.

Frontiers in Integrative Neuroscience www.frontiersin.org April 2013 | Volume 7 | Article 18 | 6

http://www.frontiersin.org/Integrative_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Integrative_Neuroscience/archive


Özcan Complete Fourier direct MRI

10 5 0 5 10
0.0

0.2

0.4

0.6

0.8

1.0
CFD Space, D 5

4 2 0 2 4

0

1

2

3

Displacement Space

10 5 0 5 10
0.0

0.2

0.4

0.6

0.8

1.0
CFD Space, D 4

4 2 0 2 4

0

1

2

3

Displacement Space

10 5 0 5 10
0.0

0.2

0.4

0.6

0.8

1.0
CFD Space, D 2

4 2 0 2 4

0

1

2

3

Displacement Space

FIGURE 4 | Effects of fitting the bandwidth within the field of view (FOV)

in the Fourier space on the left, with the covariance of the Gaussians

given as D̂ = (δ2 (� − δ/3) D)−1. The sampling is done in the fixed interval,
[−5, 5], of the Fourier Space followed by reconstruction on the right using the

discrete Fourier transform. Theoretically this is equivalent to convolution with
the sinc function (see Brigham, 1988) in physical space. The ripple effects
created by sinc lobes diminish on the left as the Gaussian falls into the FOV
with increasing δ,� but constant D.

over all locations. The key point is the choice of an appropriate
c-value that will reveal the outskirts of Pcfd corresponding to the
small number of “scout” magnetic moments that travel further
away thereby portraying the microstructure of the environment.
In summary,

1. Too high values do not provide enough structural information
(see first rows in Figure 5).

2. The appropriately informative value depends on the properties
of the motion (thus of the microstructure) at a given location
(compare columns of Figure 5, right side).

3. Too low values force the isosurfaces to become extremely noisy
(see last row of Figure 5).

As the motion in highly organized tissue is less dispersed (i.e.,
a smaller support for Pcfd which implies a larger support for Scfd
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FIGURE 5 | On the left, one dimensional graphical representation of the

choice of c-value. The drawing below the horizontal axis displays the
structure of the sample in the infinitesimal volume element [−dx, dx] as
seen by the magnetic moments from their initial position. The right side of
the sample has less restrictive properties as on the boundary of tissue with a
liquid, such as CC and cerebrospinal fluid (CSF). The noiseless isosurfaces
consist of two points shown as dots on the graph. Low c-values correspond

to the magnetic moments with longer travel paths providing more structural
information than high c-values. However, too low values create noisy and
disconnected isosurfaces represented with more than two points on the
drawing. On the right, isosurfaces from different pixels in the baboon brain
marked in Figure 3 demonstrate the effect of c-value on the information
content from top = insufficient to bottom = noisy (see the text for the CSF
column).

thereby causing bigger truncation effects), increasing the diffu-
sion gradient times δ and � in section 2.3 will create almost “flat”
displacement integral distributions at an isotropic medium like
CSF. In this case, the small valued distribution [caused by con-
stant integral value

∫
Pcfd(x, Wd) dWd = number of particles] is

susceptible to noise, creating noisy isosurfaces of Figure 5 for all
level values. In contrast, for the experiments conducted with an
isotropic (water) phantom at much lower δ and � values, the
isosurfaces were spheres for a wide range of c-values (not shown).

Figure 6 presents different isosurfaces that elucidate the tis-
sue structure on the pons and the mid-brain of the fixed baboon
brain sample described in section 2.4. The tracts on the left and
right side of the mid-brain are visible with the ellipsoidal looking
isosurfaces. Five isosurfaces from the same row of pixels marked
on Figure 6 are displayed on Figure 6 corresponding to two dif-
ferent c-values. The green isosurfaces with larger level values are
smoother and less informative than the red ones with smaller c-
values. Different viewpoints at each row of Figure 6 emphasize
that the isosurfaces are 3-D objects. The figure demonstrates one
of the challenges of presentation: the displacement integral val-
ues must be considered in R

3 to grasp the complete information
offered by CFD–MRI.

Overall, the isosurfaces are not constrained to given forms like
Gaussians, spherical harmonics or to any expansions. In fact, they
are typically not even symmetric. They are structureless, general
and direct.

Isosurface visualizations constitute only one method to
present the high dimensional information obtained from CFD–
MRI. Another example is the dimension reduction by means
of computing the so called orientation distribution func-
tion (ODF) (Wedeen et al., 2005) obtained from radial inte-
grals. However, for CFD–MRI the ODF raises the concern of

inadequately presenting the “outskirts” of the Pcfd because the
dispersion of the outgoing rays shown in Figure 7 jeopardizes
the inclusion of the values further away from the origin (see also
Figure 6).

New methods, additional elaborate schemes such as color cod-
ing for representation of three dimensional functions aimed at
displaying relevant microstructural information of CFD are left
for future studies.

4. DISCUSSION
4.1. COMPARISON WITH EXISTING METHODS
From a fundamental point of view, guided by the microstructure
that surrounds them, the molecules are displaced due to ther-
mal energy whether they are in the scanner or not. All existing
DW–MR methods are designed with the same goal in mind: the
reconstruction of the propagator4 that describes the displacement
of the magnetic moment from the DW–MR signal.

However, as CFD–MRI demonstrates, from a systems science
perspective the MRI scanner acts as a time-delay linear system
with the input wi [displacement in Equation (4)], and the out-
put Wi [displacement integral in Equation (8)], in Figure 8. The
parameters � and δ define the delay and filter parameters. Special
attention is paid in CFD–MRI to isolate the Fourier variable,
kD = GD from these parameters in contrast to the q-space vari-
able (Callaghan, 1991): q = (2π)−1 γ δ GD and the b-value of
DTI: b = γ2 ‖GD‖2

2 δ2 (� − δ/3) (see Appendix A).
The inverse problem of obtaining the propagator from the

distribution of the displacement integrals is singular because of

4Also named nuclear spin self-correlation function (Callaghan et al., 1988)
and translation probability (Cory and Garroway, 1990).
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FIGURE 6 | The isosurfaces (P̄cfd = 0.14) on the pons and the

mid-brain. Each of the boxes indicate an isosurface presented,
respectively on the right. Each column presents the same isosurface
from different view angles. The dots on top of the frames are placed for

orientative purposes. The surfaces are not necessarily ellipsoids and they
have mostly an asymmetric structure. The outer red surface is the set
P̄cfd = 0.14 and the green surface is P̄cfd = 0.21. The red surface
envelops the green one.

FIGURE 7 | An example of a set of rays from the origin along

which the distribution function is integrated to obtain orientation

distribution function. As the rays disperse with increasing distance from
the origin the points describing the displacement of a smaller number of
particles contributes less and less to the numerical integration due to

sparse sampling on both surfaces. The encapsulation of the isosurfaces
on the right with larger level values by the smaller ones in Figure 6

shows the information that would be missed with numerical radial
integration. The utilization of isosurfaces is more informative as discussed
in Figure 5.

the one-to-many relationship between the displacement and its
integral:

Wd
i =

td4∫
td3

wi(τ) dτ −
td2∫

td1

wi(τ) dτ → wi(t), (26)

because all of the displacements with the same low frequency
content in time are mapped to the same displacement integral

value. This statistical accumulation prevents the determination of
the propagator in a general environment from the distribution of
displacement integrals5.

5One exception is the basic case of isotropic diffusion analyzed in Appendix A
where the diffusion coefficient that describes the Gaussian propagator can be
recovered using the adjustment factor for the displacement integral covariance
namely bt in Equation (24) and the b-value in DTI formulation.
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FIGURE 8 | The DW–MRI signal from a signals and systems

perspective (Özcan, 2010b) describing the MRI observables of the

diffusion phenomenon. The input is the magnetic moment displacement
wi and the output is the displacement integral, W d

i , defined in Equation (8).

Existing methods’ attempts to estimate the propagator relies
on the narrow pulse approximation by assuming negligible pulse
duration (δ = td2 − td1 = td4 − td3 in Figure 1) compared to
pulse separation time, Δ, i.e., (δ << �) ⇒ (δ → 0) specifi-
cally in (� − δ/3) (Callaghan, 1991, p. 342). Under this short
integration time assumption, in Wedeen et al. (2005) it is fur-
ther argued that the approximation, Wd

i ≈ (xi(td3) − xi(td1)) δ =
(wi(td3) − wi(td1)) δ, is plausible. Although by the intermediate
value theorem and the sample path continuity of the Brownian
motion (Shiryaev, 1995), the values of each integral in Wd

i are
attained at a time point within the respective integration intervals,
[td1, td2] and [td3, td4], the nowhere-differentiability of the sample
paths (Shiryaev, 1995) implies that the intermediate time points
satisfying the equality are not fixed as td1 and td3, but are them-
selves random variables. In consequence, without the inference of
the displacements at fixed time points the propagator cannot be
reconstructed.

Moreover, elaborate derivations carried in Wedeen et al.
(2005) to model the propagator as a conditional probability,
p(x(td3)|x(td1)), describing a Markovian process raise concerns
specially in environments such as biological tissue since the
particle’s past collisions with microstructure guides its future dis-
placements. In fact, while it violates the conditions of Wiener
process (see Appendix A), this displacement memory provides the
inference of the microstructure by way of affecting the displace-
ments and consequently their displacement integral distributions.
Accordingly, in CFD–MRI is indifferent to memory properties
by modeling Pcfd as a joint distribution function of random
variables instead of the conditional probability of a stochastic
process.

A summary of CFD–MRI’s detailed comparison with existing
methods (Özcan, 2011; Özcan et al., 2012) is presented below for
completeness of exposure. Namely, there exits two avenues for the
path from DW–NMR to DW–MRI in the literature:

1. Model matching methods initiated by diffusion tensor imag-
ing (DTI) (Basser et al., 1994; Mattiello et al., 1994) and
further expanded with high angular resolution DW imaging
(HARDI) (Frank, 2001), composite hindered and restricted
model of diffusion (CHARMED) (Assaf and Basser, 2005), dif-
fusion orientation transform (DOT) (Özarslan et al., 2006),
two versions of the generalized DTI (GDTI) (Özarslan and

Mareci, 2003; Liu et al., 2004), and diffusional kurtosis imag-
ing (DKI) (Jensen et al., 2005).

2. Spectral methods originating from Callaghan’s q-
space (Callaghan et al., 1988) followed by the diffusion
spectrum imaging (DSI) (Wedeen et al., 2005) and Q-ball
imaging (Tuch, 2004).

With the exception of the GDTI presented in Liu et al. (2004)
[see also the discussion in Özarslan et al. (2009)], all of the
DW–MRI methods estimate symmetric quantities. The model
matching methods project the data onto symmetric structures,
such as ellipsoids in DTI or spherical harmonics in HARDI. The
spectral methods use the magnitude of the signal in the Fourier
transform resulting in symmetric functions (see section 2.2). It is
difficult to imagine that molecular motion in a biological envi-
ronment populated with different types of fluids, barriers and
tissue would be symmetric at any given location, e.g., at the fiber
junctions. Symmetry or lack of it ought to be determined by
the data free of any constraints imposed by the model as in the
implementation of CFD–MRI’s unconstrained structure.

The Fourier relationship between signal and joint distribution
function provides a complete understanding of model matching
methods. The methods start by applying DFT to the data in the
first lmr (imaging) dimensions. Thus, in the analysis of model
matching methods the first lmr independent variables are the phys-
ical location. The three remaining untransformed variables are the
independent variables of the Fourier reciprocal of displacement
integral space, i.e., they are in the Fourier domain. The goal of
model matching methods is to fit the preferred model to the dis-
placement distribution function’s Fourier transform, sampled at
the (vector) values defined by the diffusion sensitizing gradients.
In the case of Brownian motion this mixed variable (physical and
frequency variables) approach is applicable because the diffusion
coefficient D can be directly estimated from the Fourier domain
by Equations (24) and (25). The mixed space, which works well
for DW–NMR signal peak attenuation, is translated to DW–MRI
at each position x by

|Icomplex
kmr

(x, kD)| = |Icomplex
kmr

(x, 0)| exp(−H(kD)) (27)

where I
complex
kmr

is given in Equation (18) and the function H
defines the model, e.g., the quadratic form of DTI, spherical
harmonics of HARDI or higher tensor expansions of GDTI
[see Özcan et al. (2012) for a detailed exposition]. In a sense, these
methods’ aim could be summarized as expanding the Fourier por-
tion of the mixed signal space. The basic example with a single
term in the expansion is DTI for which:

H(kD) = γ2 bt kT
D D kD (28)

where the calculation of bt from the PDE approach in Özcan
(2010a) and covariance of displacement integrals in Appendix A
resulted in the same value: δ2 (� − δ/3). In CFD parlance, by
the Fourier relationship between Gaussians in Equation (25), the
diffusion quadratic form, D, is estimated in kD-space, without
recourse to a Fourier transform because of its direct appearance
in Equation (28) rather than its inverse, D−1, in the Gaussian
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of motion space. The coefficient matrix defined by carefully
selected vectors in kD-space that satisfy the invertibility condi-
tions (Özcan, 2005) is used for the estimation of D in the linear
algebraic framework of symmetric matrices (Papadakis et al.,
1999; Özcan, 2010a) [also refer to Özcan (2010a) and Özcan et al.
(2012) for the correspondence with the B-matrix formulation
of Basser et al. (1994)].

The magnitude-based Fourier relationship presented in q-
space methodology (Callaghan et al., 1988) is the origin of
spectral methods. In Callaghan’s book (Callaghan, 1991), par-
allel to the historical development of DW models, the the-
ory is first developed for NMR experiments [see Callaghan
(1991, Chap. 6)] using polarized neutron scattering analogy.
However, the translation from NMR to MRI is presented
[see Callaghan (1991, Chap. 8)] asserting without proof that the
imaging and displacement portions of the signal are separable
[see Callaghan (1991, Chap. 8, pp. 440)]. The derivations of
section 2.1 demonstrate that this is not the case.

In addition, by the affine dependence of krw on kmr CFD
derivations show that the inseparability partially accounts for the
non-Hermitian nature of the Scfd. Taking the magnitude of the
DW–MRI signal, as in the case of DSI (Wedeen et al., 2005), does
not count as a phase correction. Figure 9 demonstrates that by
preserving Hermitian property, CFD–MRI captures correctly the
crossing fibers at the junction of the CC and EC.

4.2. CONCLUSION AND FUTURE STUDIES
In the biomedical imaging modalities’ grand aim of biomarker
capability establishment, the discovery path for CFD–MRI passes
through the distribution function:

Scfd → Pcfd → Biologicalproperties.

With Pcfd in the middle, both sides of the path present themselves
with important challenges.

First and foremost, in DW–MRI, the displacements with-
out reference to initial positions [see Equation (45)] prevent
the inference of microstructure position. For example, the

distribution function of the biological phantom (Özcan et al.,
2011) constructed with two crossing rat trigeminal nerve fibers is
always in the form of two crossing bars across the origin regard-
less of the nerves’ position as long as their relative angle is kept
the same. Also in the same phantom, the agar gel (isotropic com-
ponent) appears as a sphere around the origin of Pcfd domain
without the possibility of identifying its location. As the distribu-
tions from various types of microstructural components accumu-
late around the origin, the discrimination level of overlaps, more
prominent with increasing biological tissue complexity, directly
defines the sensitivity and specificity for microstructure changing
pathologies. The important goal is the assessment of the theoret-
ical aspects of the distribution function in order to understand
whether it can detect in a timely manner, e.g., before signifi-
cant disease progression, those changes. The determination of
biophysical conditions behind the asymmetry (see also Özarslan
et al., 2008; Özarslan, 2009) in the distribution functions is also
part of the same goal.

However, the absence of analytical descriptions for Pcfd even
in simple environments requires the investigations to be con-
ducted with numerical simulations (Özcan et al., 2011) of par-
ticle motion within carefully designed geometries (Landman
et al., 2010) and locally variable diffusivities. Along with numer-
ical phantoms mimicking biological ones (Özcan et al., 2011),
histopathological information is also being used for interpreta-
tion and validation (Budde and Frank, 2012; Budde and Annese,
2013). Additionally varying the time parameters δ and � will
exploit the filtering effects caused by the displacement integral
that will determine whether further information extraction is
possible by expanding data acquisition with an appropriate set of
parameter values.

On the other hand, on the discovery path’s initiation by CFD–
MRI signal formation, the re-establishment of Hermitian sym-
metry requires, in addition to the theoretical reasons presented
herein, the analysis and quantification of Hermitian disruptive
artifacts and systematic conditions in real data. Constructed by
initially experimenting with elementary phantoms (e.g., water
and mineral oil), this signal model expansion is necessary for

FIGURE 9 | The comparison of Pcfd (Özcan, 2011) (first row) with the

diffusion spectrum imaging orientation distribution function (DSI–ODF)

(second row). Both functions are calculated from the same data on the
right junction of the corpus callosum (CC) and the external capsule (EC),

specifically from the pixels marked on the Figure 3. The isosurface
(P̄cfd = 0.17) captures the asymmetric structure of the fiber crossings while
the ODF is constrained to be symmetric for all of the pixels. Note that in CSF,
ODF detects structure which is not present in reality as indicated by CFD.
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the development of more elaborate systematic phase corrections,
possibly by utilizing complex analysis theory. Specifically, accu-
rate estimation of the pertinent Fourier transform of Pcfd from
real data points in a clinical setup is targeted by the adaptation
of CFD–MRI to fast sequences 6, such as echo planar imag-
ing (EPI) prone to Eddy current artifacts. The model will be
expanded up to the point of reaching only minimal incremental
improvements with new phase correction algorithms. Thereafter,
relying on the residuals’ content, which is free from displacement
effects consequent to the application of system-wide uniform
phase corrections7, more effective biomarker construction would

6Acquisition time is shortened with reduced sampling schemes aimed at spe-
cific goals, e.g., compressed sensing for tractography (Landman et al., 2012)
at the expense of some information loss.
7Instead of pixel by pixel corrections that would completely eliminate the
imaginary part in Figure 3.

be possible by the inclusion of extra information such as tis-
sue susceptibility (Liu et al., 2013). Likewise, on a larger scale
CFD–MRI’s general aim is to improve outcomes of multimodal
imaging, e.g., in prostate cancer strategies (Turkbey and Choyke,
2012).
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GLOSSARY
wi: ith magnetic moment’s displacement from its initial position
xi(t0).

Wd: The difference of magnetic moment displacement inte-
grals during the periods diffusion (d) gradients are turned
on. Its distribution is the main quantity of interest provid-
ing information about microstructure. Joined with the other
displacement integrals during acquisition and rewind times,
Wacq, W rw, respectively, it forms the total displacement integral:
W = (Wd, W rw, W

acq
1 ) ∈ R

7.

Pcfd(x, Wd): CFD joint distribution function of the number of
magnetic moments with initial position x possessing displace-
ment integral values of Wd. It is obtained by marginalizing
Ptotal

cfd (x, W).

Scfd(kmr, kD, krw): DW–MRI signal that comes out of the scanner
which is equal to the Fourier transform of Ptotal

cfd . Theoretically it

must be Hermitian symmetric since Ptotal
cfd is real valued.

(kmr, kD): kcfd-space variables corresponding to imaging gradi-
ents (mr) and diffusion (D) gradients, respectively.
krw: Rewinding (rw) frequency variable affine dependent on kmr.

It cannot be sampled at 0 because of its dependence. For Ptotal
cfd

marginalization, phase corrections are applied to estimate Scfd at
krw = 0.

I
complex
kmr

(x, kD): Complex valued images obtained by taking the
Fourier transform of Scfd with respect to imaging frequency kmr.

Ikmr (x, kD): Image domain phase corrected I
complex
kmr

(x, kD).

APPENDICES
A. SECOND ORDER STATISTICS FOR DISPLACEMENT INTEGRALS OF

SELF DIFFUSION
In this section, the covariance of displacement integrals is
derived for the special case of particles executing Brownian
motion. The following preliminaries are necessary to calcu-
late the second order statistics for the displacement integrals
of Equation (9). It is assumed for ease of notation below that
tm ≤ tm + 1.

The Wiener process (Shiryaev, 1995), w, which describes
the diffusion in an isotropic homogenous medium, is sam-
ple path continuous, has w(0) = 0 and independent incre-
ments (i.e., Markovian property) with a normal distribu-
tion, meaning w(t) − w(s) ∼ N(0, (t − s) D) where t > s ≥ 0
and D > 0. Using these properties, the covariance of the
displacement is:

E
[

w(t) wT(s)
]

= E
[
(w(t) − w(s) + w(s)) wT(s)

]

= E
[

w(s)wT(s)
]

= min(t, s) D. (29)

It is straightforward to show that the mean for the displacement
integral processes is 0. The covariance in the case of a single
interval is calculated as

E

⎡
⎣
⎛
⎝ t2∫

t1

wi(τ) dτ

⎞
⎠
⎛
⎝ t2∫

t1

wT
i (s) ds

⎞
⎠
⎤
⎦ =

t2∫
t1

t2∫
t1

E
[

wi(τ) wT
i (s)

]
dτ ds

=
t2∫

t1

t2∫
t1

min(τ, s) D dτ ds = 1

3
(t2 − t1)

2(2t1 + t2) D, (30)

and for a non-overlapping interval:

t4∫
t3

t2∫
t1

E
[

wi(τ) wT
i (s)

]
dτ ds =

t4∫
t3

t2∫
t1

min(τ, s) D dτ ds

= 1

2
(t4 − t3)(t2

2 − t2
1) D. (31)

Finally, using the formulas above, the time points of Figure 1,
[t1 t2 t3 t4] = [td1 td2 td3 td4], and these substitutions,

δ = t2 − t1 = td2 − td1 = t4 − t3 = td4 − td3,

� = t3 − t1 = td4 − td2 = t4 − t2 = td3 − td1,

the following is obtained for Wd
i :

E

[
Wd

i

(
Wd

i

)T
]

= [(
(t2 − t1)

2(2t1 + t2) + (t4 − t3)
2

(2t3 + t4))/3 − (t4 − t3)(t2
2 − t2

1)
]

D

= δ2 (� − δ/3) D. (32)

The scalar factor, δ2 (� − δ/3), defined as bt -value in Özcan
(2009, 2010a), is a function of time directly related to the
measured quantity, the displacement integrals. It is completely
detached from the measurement parameters such as diffusion
gradient strength, in contrast to the b-value used in the lit-
erature, b = γ2 ‖GD‖2

2 bt . The dependence of the derivations
on Markovian property restricts the validity of the calcula-
tions to isotropic samples where the diffusion is character-
ized by the diffusion coefficient, D, in the distribution of
magnetic moment displacement w. For an isotropic homoge-
nous medium, D is estimated from the displacement inte-
gral’s (Wd) covariance bt D = δ2 (� − δ/3) D using DW–MRI
acquisitions.

The rigorous treatment of the theory of the stochastic pro-
cesses in Doob (1990, p. 62) demonstrates that the sample paths
of stochastic processes are Lebesgue integrable under certain
conditions and these integrals are well defined random vari-
ables. Although a rigorous mathematical analysis, which proves
that these conditions are met, is out of the scope of this
manuscript, it is important to note that Equation (32) does
not prove that the displacement integrals are Gaussian ran-
dom variables. In this case, the central limit theorem does not
apply because the displacement integrals of Equations (8, 9),
are not the sums of independent variables since in the integral
approximating sum

∫ t1

t0

wi(τ) dτ ≈ lim
N→∞

N∑
k = 1

wi(t0 + k dτ) dτ

(N → ∞, dτ → 0, N dτ = t1 − t0), (33)
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wi(τ), rather than independent increments, wi(t) − wi(s), is
present. A variant of central limit theorem for sums of dependent
variables satisfying certain conditions (Shiryaev, 1995, p. 541)
might provide the theoretical validation of this highly theoretical
open problem.

B. DERIVATION OF THE PHASE EQUATION
B1. Bloch equations and their solutions
The time evolution of the magnetization, m̄i(t) ∈ R

3, that gener-
ates the MR signal is modeled by the Bloch equations:

dm̄i(t)

dt
= γ m̄i(t) × B(xi, t) −

⎡
⎢⎣

1
T2i

0 0

0 1
T2i

0

0 0 1
T1i

⎤
⎥⎦ m̄i(t)

+ 1

T1i

⎡
⎣ 0

0
m3i

⎤
⎦ (34)

with T1i and T2i denoting spin–lattice and spin–spin relaxation
constants, respectively. In the MR scanner the magnetic field as a
function of time and position is given by

B(x, t) =
⎡
⎣ 0

0
B0

⎤
⎦+ Bm

1 (t) +
⎡
⎣ 0

0
G(x, t) · x(t)

⎤
⎦ (35)

where B0 is the static (strong) magnetic field, Bm
1 (t) is the radio

frequency (RF) pulse modulated at the precession frequency of
B0 and G(x, t) ∈ R

3 describes the magnetic field gradients. The
expression of the magnetic field simplifies further in the rotating
frame:

B(x, t) = B1(t) +
⎡
⎣ 0

0
G(x, t) · x(t)

⎤
⎦ . (36)

When the magnetic field gradients are turned on without the RF
pulse the system matrix becomes

m̄i×
⎡
⎣ 0

0
ω(xi(t))

⎤
⎦ =

⎡
⎣ 0 ω(xi(t)) 0
−ω(xi(t)) 0 0

0 0 0

⎤
⎦ m̄i = A(t) m̄i. (37)

with ω(xi(t)) = G(xi, t) · xi(t). As the time-dependent system
matrix A(t) commutes with its integral

∫
A(τ)dτ, when the

relaxation terms are negligible the solution of Equation (34) is
obtained [see Rugh (1995, pg. 59)] as:

m̄i(t) = exp

(
γ

∫ t

t0

A(τ)dτ

)
m̄i(t0) (38)

by calculating the matrix exponential using �(xi(t), t0) =∫ t
t0

ω(xi(τ))dτ = ∫ t
t0

G(xi, τ) · xi(τ)dτ:

exp

(
γ

∫ t

t0

A(τ)dτ

)
=
⎡
⎣ cos(γ�(xi(t), t0)) sin(γ�(xi(t), t0)) 0
− sin(γ�(xi(t), t0)) cos(γ�(xi(t), t0)) 0

0 0 1

⎤
⎦.

Equation (38) defines a system with a rotating transverse magne-
tization component that can be written in a complex form mi =
mix + j miy. The corresponding first order differential equation is

dmi(t)

dt
= −j γ ω(xi(t)) mi(t), (39)

with the solution

mi(t) = exp(−j γ�(xi(t), t0)) mi(t0). (40)

For the portion of the pulse sequence involving the RF pulses,
in general (Bernstein et al., 2004) the magnetic moments are
assumed to be immobile [i.e., wi(t) ≡ 0 in Equation (4)] thereby
defining a constant system matrix that has a standard matrix
exponential that solves the differential equation. Herein, however,
the effect of the displacements specifically during the π-pulse
results in a time varying system matrix. Without loss of gen-
erality, the π-pulse is applied in the direction 8 [1, 0, 0]T as
in Hinshaw and Lent (1983), along with the slice select gradi-
ent, Gπ = [0, 0, gπ3], active only during the RF pulse. The RF
pulse modulated at the same frequency corresponding to the cen-
ter of the slice, B0 + gπ3 xc3, becomes a constant vector, B1(t) =
[B1a, 0, 0]T , in Equation (36). The system of equations in this
rotating frame is

mi ×
⎡
⎣ B1a

0
ωπ(xi(t))

⎤
⎦ =

⎡
⎣ 0 ωπ(xi(t)) 0
−ωπ(xi(t)) 0 B1a

0 −B1a 0

⎤
⎦mi = A(t) mi

(41)
with9 ωπ(xi(t)) = Gπ · (xi(t0) + wi(t) − xc) = gπ3 (x3i(t0)+
w3i(t) − xc3). The procedure would be to solve Equation (41)
and then express the solution in the initial rotating frame to
obtain a phase component, �πi, that would be a function of
the displacement integral and the initial position from the slice
center.

However, the new system matrix, A(t), does not commute with
its integral preventing the calculation of a matrix exponential for-
mulating a convenient analytical solution as in Equation (40).
With the rigorous analysis describing the exact manifestation of
the RF pulse left to future studies, herein due to the large magni-
tude of the RF field in comparison to the magnetic field gradient,
its effect will be approximated as a sign reversal of the phase.

8The choice of direction does not matter (Haacke et al., 1999, p. 387).
9The absence of a rewinding slice select gradient, in contrast to π/2-pulse
in Figure 1, requires the addition of the slice center, xc, in the formulation
as there will be a phase shift along the slice select direction in the slab [see
Equation (11) and footnote 1].
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In this work, the phase change induced by the magnetic field gra-
dient is considered as a factor that is automatically corrected by
the phase correction algorithm of section 2.2.

On the other hand, the effect of the displacement induced
by the RF slice select gradient (SS–EX in Figure 1) during the
excitation period is systematic. As both the RF pulse and the mag-
netic field gradient remain fixed, statistically speaking, the phase
of the total transverse magnetization is affected by the displace-
ments in the same amount at each acquisition prior to the tipping.
The position and displacement encoding occurs thereafter dur-
ing the remainder of the pulse sequence (see also footnote 1 for
the phase correction along the slice select direction within the
slab) leaving the π/2-pulse out of the derivation of the phase
equations below.

B2. Phase equation
For clarity of exposition, the calculations are carried out with
the assumption of ideal gradient amplifiers creating rectangular
shaped gradient pulses in the time domain and perfect linear-
ity in physical space. In short, during the time interval when the
amplifiers are powered on G(x, t) = G ∈ R

3.

The derivation of Equations (5– 7) provided in Özcan (2012)
is briefly presented in this section for reference purposes. Using
the definitions of the variables in Figure 1, the evolution of the
phase is described as:

1. First, imaging gradients for read out rewinding, Gro ∈ R
3,

phase encoding, Gpe ∈ R
3 and slice select Gss ∈ R

3 on the
time interval [t0, trw] are turned on. After these gradients are
applied the phase and the magnetization become

�rw =
trw∫

t0

(Gro(τ) + Gpe(τ) + Gss(τ)) · xi(τ) dτ

= (Gro + Gpe + Gss) ·
⎛
⎝�trw xi(t0) +

trw∫
t0

wi(τ) dτ

⎞
⎠

= �trw (Gro + Gpe + Gss) · xi(t0)

+(Gro + Gpe + Gss) ·
trw∫

t0

wi(τ) dτ. (42)

mi(trw) = exp(−j γ�rw) mi(t0). (43)

2. The RF π-pulse between the diffusion gradient pulses, GD ∈
R

3, and the accompanying slice select gradient provide the-
oretical sign reversal of the phase. The slice select gradient’s
encoding of magnetic moment motion into the signal is
expressed by �πi (see Appendix B1). Since xi(tdk) = xi(t0) +
wi(tdk), k = 1, . . . , 4; at t = td4

�D = �πi +
td4∫

td3

GD · xi(τ) dτ −
td2∫

td1

GD · xi(τ) dτ (44)

= �πi + GD ·
⎛
⎝(td4 − td3) xi(t0) +

td4∫
td3

wi(τ) dτ

⎞
⎠

− GD ·
⎛
⎝(td2 − td1) xi(t0) +

td2∫
td1

wi(τ) dτ

⎞
⎠

= �πi + GD ·
⎛
⎝ td4∫

td3

wi(τ) dτ −
td2∫

td1

wi(τ) dτ

⎞
⎠

+ ((td4 − td3) − (td2 − td1)) GD · xi(t0). (45)

If the diffusion gradient times are equal, i.e., td4 −
td3 = td2 − td1 = δ, then the last term in Equation (45)
is equal to zero, erasing the influence of initial posi-
tion from motion encoding part of the signal. This is
the insight gained by using the formulation with dis-
placement integrals,

∫
wi(τ) dτ, rather than the center of

mass (COM) of random walk,
∫

x(τ) dτ, introduced in
Mitra and Halperin (1995).
The sign reversal affects also previously accumulated phase:

mi(td4) = exp(−j γ�D) exp(j �rw) mi(t0). (46)

3. The last part of the sequence is where the data are collected:

�ro(t) =
t∫

tacq

Gro · (xi(t0) + wi(τ)) dτ = (t − tacq) Gro

· xi(t0) +
t∫

tacq

Gro · wi(τ) dτ, (47)

leading to

mi(t) = exp(−j γ (�ro(t) + �D − �rw)) mi(t0). (48)

and Equations (5– 7).

C. TOTAL NUMBER OF PARTICLES FROM CFD-MRI
The fundamental Fourier relationship of Equation (16),
Scfd(kmr, kD, krw) = F{Ptotal

cfd }(kmr, kD, krw) establishes the rela-
tionship between the standard MR image space and the higher
dimensional CFD space. By Equation (16)

Scfd(kmr, 0, 0) =
∫

Ptotal
cfd

(
x′, W

)
exp

{−j γ kmr · x′} dx′ dW

(49)

and by Equation (18), I
complex
kmr

(x, kD, krw) = F−1
kmr

{Scfd(kmr,

kD, krw)}, the image obtained without the diffusion encoding
magnetic field gradients is

I
complex
kmr

(x, 0, 0) = F−1
kmr

{Scfd(kmr, 0, 0)} (50)

=
∫

Ptotal
cfd (x′, W) exp{−j γ kmr

· (x′ − x)} dkmr dx′ dW
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(
by the Fourier Property :

∫
exp{±j 2π k x} dk = δ(x)

)
(51)

=
∫

Ptotal
cfd

(
x′, W

)
δ
( γ

2π
(x′ − x)

)
dx′ dW (52)

= 2π

γ

∫
Ptotal

cfd (x, W) dW (53)

∼ total number of particles at x. (54)
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