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Accurate mathematical modeling is integral to the ability to interpret diffusion magnetic
resonance (MR) imaging data in terms of cellular structure in brain gray matter
(GM). In previous work, we derived expressions to facilitate the determination of
the orientation distribution of axonal and dendritic processes from diffusion MR
data. Here we utilize neuron reconstructions available in the NeuroMorpho database
(www.neuromorpho.org) to assess the validity of the model we proposed by comparing
morphological properties of the neurons to predictions based on diffusion MR simulations
using the reconstructed neuron models. Initially, the method for directly determining
neurite orientation distributions is shown to not depend on the line length used to quantify
cylindrical elements. Further variability in neuron morphology is characterized relative to
neuron type, species, and laboratory of origin. Subsequently, diffusion MR signals are
simulated based on human neocortical neuron reconstructions. This reveals a bias in which
diffusion MR data predict neuron orientation distributions to have artificially low anisotropy.
This bias is shown to arise from shortcomings (already at relatively low diffusion weighting)
in the Gaussian approximation of diffusion, in the presence of restrictive barriers, and data
analysis methods involving higher moments of the cumulant expansion are shown to be
capable of reducing the magnitude of the observed bias.
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INTRODUCTION
Quantitative characterization of the dependence of the diffusion-
attenuated magnetic resonance imaging (MRI) signal intensity
on diffusion sensitization strength and direction provides a non-
invasive strategy to study cellular morphology of neurons and
glia in brain tissue (Beaulieu, 2002; Le Bihan, 2003; Mori and
Zhang, 2006). Diffusion tensor imaging (DTI) and variants of
DTI for characterizing water diffusion in brain have been utilized
in a wide range of studies directed at normal brain white matter
(WM) anatomy, and studies of WM development and pathology
(Le Bihan, 2003; Mori and Zhang, 2006; Wozniak et al., 2006).
Recently, the potential of diffusion MRI for characterizing cell
morphology within brain gray matter (GM) structures has also
been the subject of increasing recognition. Two GM structures
that have been shown to be particularly well suited for diffu-
sion MRI-based study are the cerebral cortex (McKinstry et al.,
2002; Maas et al., 2004; deIpolyi et al., 2005; Kroenke et al., 2007,

2009; Huang et al., 2008, 2009; Jespersen et al., 2010; Budde et al.,
2011; Takahashi et al., 2011; Leuze et al., 2012) (and see Leigland
and Kroenke, 2010 for review) and hippocampus (Zhang et al.,
2002; Shepherd et al., 2006; Laitinen et al., 2010; Delgado y
Palacios et al., 2011; Vestergaard-Poulsen et al., 2011). In both
contexts, a prominent morphological feature is the apical dendrite
of pyramidal neurons. Anisotropy in water diffusion in GM, first
observed in (Thornton et al., 1997), tends to be oriented paral-
lel to this dominant organization. Within the developing cerebral
cortex, morphological differentiation is associated with a loss of
water diffusion anisotropy (Leigland and Kroenke, 2010), and
the trajectory of diffusion anisotropy changes in cortex has been
demonstrated to be sufficiently sensitive to enable the detection
of abnormal morphological development (Sizonenko et al., 2007;
Bock et al., 2010). In the mature human cortex, high-resolution
diffusion MRI has revealed depth dependent anisotropy patterns,
where superficial layers preferentially show tangential diffusion,
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and deeper layers have both radial and tangential diffusion
anisotropy depending on depth and cortical location (Leuze et al.,
2012; McNab et al., 2013). Within the hippocampus, neuron mor-
phological changes associated with the response to stress have
been demonstrated to be detectable with diffusion MRI (Delgado
y Palacios et al., 2011; Vestergaard-Poulsen et al., 2011).

In order to facilitate the interpretation of diffusion MRI data in
terms of underlying anatomical properties of cells in GM, mod-
eling plays an important role. A successful model of the diffusion
weighted signal must be based on realistic assumptions, and facil-
itate tractable and physically transparent analyses. For complex
tissue such as the brain, it is challenging to avoid introducing
overly simplistic assumptions about tissue structures. Therefore,
it is necessary to incorporate simplifications into a modeling
strategy while retaining the features of most importance for the
diffusion signal. While physical intuition can guide the develop-
ment of the model, proper subsequent testing, and validation of
the model is clearly crucial.

We have previously proposed a biophysical model that relates
the observed MRI signal to microstructural parameters includ-
ing neurite volume fraction, intrinsic diffusion anisotropy within
cellular axon/dendrite processes as well as the organization of
cellular processes (Kroenke et al., 2004; Jespersen et al., 2007,
2012). The fundamental assumption of the model is that diffusion
can be described in terms of two non-exchanging components.
One component is associated with diffusion in cylindrically sym-
metric structures, such as cell processes with exchange of water
being sufficiently slow to be considered impermeable on the time
scale of the diffusion experiment. Dendrites and axons, collec-
tively termed neurites, were assumed to fulfill these assumptions.
The second component of the diffusion signal accounts for dif-
fusion everywhere else, in particular in cell bodies, extracellular
space, and glia cells. Here diffusion is assumed to be hindered,
and molecular displacement is approximated to be a Gaussian
function of displacement distance. The latter component is char-
acterized by an effective diffusion tensor. This model has been
shown to fit diffusion-weighted MRI data well (Jespersen et al.,
2007) and to compare to histology and stereology with good
agreement (Jespersen et al., 2010). More recently, experimental
validation was sought for the ability to characterize the neurite
orientation distribution, a characteristic of cellular morphology,
using diffusion MRI data (Jespersen et al., 2012). This was done
by expressing the orientation distribution of axonal and dendritic
processes as a scatter matrix (or orientation matrix), and defin-
ing fractional anisotropy (FA) in the scatter matrix by reference
to its eigenvalues in a manner analogous to DTI calculations. In
the regime in which molecular displacement is Gaussian, FA in
water diffusion is predicted to be linearly related to FA in the
scatter matrix, and a linear relationship was observed between
experimentally determined scatter matrices and diffusion tensors
in post mortem brain tissue (Jespersen et al., 2012). However,
the limitations of the Gaussian approximation in the context of
comparing scatter matrices to diffusion MRI data have yet to be
characterized.

The aim of the current work is to further develop the theory
linking diffusion MRI data to neuron morphology by examin-
ing the Gaussian regime predictions in (Jespersen et al., 2012)

for the intra-neuronal water component using numerical sim-
ulations. Specifically, the goodness-of-fit of the diffusion ten-
sor model, which follows from the Gaussian phase approxima-
tion, is known to increase with decreasing b-value (Stepišnik,
1999; Sukstanskii and Yablonskiy, 2002; Zielinski and Sen, 2003;
Kiselev, 2011). In order to characterize this phenomenon, we use
the NeuroMorpho.org database (http://www.neuromorpho.org),
which is a centralized repository for 3D recordings of neural
morphologies (Ascoli, 2006; Ascoli et al., 2007), to obtain digital
representations of real neurons, allowing us specifically to address
the model simplifications concerning the geometric structure of
neurons as collections of long cylinders. This approach has at
least three advantages: (1) by focusing on only the intra-cellular
compartment, we avoid possible confounding with other sim-
plifications in the modeling, (2) the model component is tested
under conditions representative of GM and (3) the ground truth
is known.

METHODS
DETERMINATION OF THE SCATTER MATRICES, T, FOR NEOCORTICAL
NEURONS IN THE NeuroMorpho DATABASE
We previously proposed a relationship between diffusion
weighted MRI measurements and the distribution of cellular
process orientations in brain tissue (Jespersen et al., 2012).
Quantification of the orientation distribution of cellular pro-
cesses is facilitated by the scatter matrix, T (Fisher and Embleton,
1987), which by the theory in Jespersen et al. (2012) is related
to the diffusion tensor D. A complete description of diffusion in
biological tissue is clearly of a non-gaussian nature (e.g., Mitra
and Halperin, 1995; Stepišnik, 1999; Sukstanskii and Yablonskiy,
2002; Jespersen et al., 2007; Ozcan, 2010; Kiselev, 2011); nev-
ertheless, the diffusion tensor remains a well-defined quantity
which can be estimated from the cumulant expansion (Kiselev,
2011). Herein, scatter matrices are determined from the axonal
and dendritic arbors of each neocortical neuron obtained from
the NeuroMorpho.org database1, version 5.4 (Ascoli, 2006; Ascoli
et al., 2007). Neuron reconstructions were downloaded from
NeuroMorpho.org in SWC format (see Cannon et al., 1998;
Ascoli, 2006; Ascoli et al., 2007, as well as the website, for a def-
inition of this file structure), along with relevant reconstruction
metadata, e.g., species, neuron type, laboratory of origin, etc. In
order to retrieve the metadata for each neuron, a custom Internet
information harvester written in python was created, and a local
database connecting the neuron reconstruction data with the
metadata was made. We have chosen to focus on a subset of the
available 4639 neocortical neurons, yielding a total of 4558 neu-
rons, distributed as: Human: N = 2147, monkey: N = 360, rat:
N = 936, mouse: N = 1019, cat: N = 20, and elephant: N = 76.

1Reconstructions were downloaded from the following archives of
NeuroMorpho.Org: “Allman,” “Barbour,” “Bergstrom,” “Bikson,” “Brown,”
“Brumberg,” “Cauli,” “DeFelipe,” “Dendritica,” “Destexhe,” “Eysel,”
“Gonzalez-Burgos,” “Helmstaedter,” “Hirsch,” “Hirsch, DIADEM,” “Jacobs,”
“Kawaguchi,” “Kilb,” “Korngreen,” “Kubota,” “Lewis,” “Luebke,” “Markram,”
“Martin,” “Meyer,” “Monyer,” “Nolan,” “Poorthuis,” “Povysheva,” “Smith,”
“Staiger,” “Sun_Prince,” “Svoboda,” “Timofeev,” “Vuksic,” “Wearne_Hof,”
and “Yuste”. A total of 62 publications are associated with these 37 Archives
and could not be cited here, but are included in Appendix B.
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The procedure for converting the raw data obtained in SWC
fileformat to scatter matrices consists of four steps, and was
implemented using Matlab (The Mathworks, Boston, MA). A
schematic of the process for the initial steps is provided in
Figure 1. In the first step, a data structure is created, in which
each of its elements corresponds to a segment of an axon or
dendrite, and the information contained in each data structure
element includes, among other relevant characteristics, the begin-
ning and ending coordinates of a line segment, and the identities
of all “children” segments that emanate from the end coordi-
nate. In Figure 1A, a hypothetical neuron represented by such a
data structure is illustrated. Due to the close similarity between
the data structure and the organization of the NeuroMorpho.org
SWC file format, data structures that correspond to Figure 1A
can be created by serially interpreting consecutive lines of a SWC
text file. We note here that the conversion from raw data to the
tree structure has been verified by computing the same measure-
ments as is available in the metadata, e.g., the number of stems
and branches, total length/surface/volume, maximum distances,
and path lengths, etc.

As indicated in Figure 1A, neuronal process segments vary in
length. This variation is potentially problematic in a later step
of the analysis, in which all coordinates along a specified length

FIGURE 1 | Schematic representation of the procedure used in

representing the neuronal tree by average lines. A hypothetical neuron
is illustrated in the upper left panel (A) in the original NeuroMorpho format
as a series of coordinates (filled circles) connected as indicated by blue
lines. In the upper right (B), additional points have been inserted (open
circles) for making the distance between two points less than or equal to a
minimal distance (herein, 1 μm). In the lower left panel (C), the neuron is
represented as a set of unbranched paths, and in the lower right (D), these
are represented by average lines, each of length l.

(defined as the line length, l) are used to determine a straight
line whose orientation will contribute toward the scatter matrix.
Therefore, the second step of the analysis is to interpolate each
segment in steps of distance less than l. Herein, neural processes
are interpolated in 1 μm increments. Open symbols in Figure 1B
indicate locations of interpolated coordinates.

The third step of the procedure is to convert the interpolated
data structure to a list of unbranched paths (see Figure 1C). This
is accomplished through a recursive process that begins by record-
ing the coordinate of the “parent” node (the upper-most node
in each of the Figure 1 panels), and descending through children
nodes until a terminal node (i.e., a coordinate with no children
segments) is reached. Each path in the list consists of a series of
consecutive coordinates. The first path is generated by beginning
at the parent node, determining if there are one or more children
segments, and if there is only one, the coordinate correspond-
ing to the child segment is added to the path. If there is more
than one, the child segments are sorted in an arbitrary order, and
the first child that has not already been incorporated to a path is
added to the current path. Once a terminus is reached, a new path
is initiated at a new parent node.

In the fourth step, the obtained set of paths is used to create a
number of average line segments representing the neuronal tree.
For each path, beginning with the first coordinate, consecutive
coordinates are queried until the cumulative length of inter-
coordinate line segments exceeds the line length l. Orthogonal
distance regression, defined in Equation 18 of Jespersen et al.
(2012), is then used to determine a single line that is closest to
intersecting all points queried along the path. That process is
repeated for all remaining segments of length l on the path, and
subsequent paths from the neuron structure are similarly used to
generate additional line segments. In general for the termini of
each branch, there are a number of points that span a path length
less than l that are not used to generate a line segment. Figure 2

FIGURE 2 | Illustration of the representation of the neurons. The
transparent green cylinders represent the axons and dendrites, while the
red lines represent the average line segments. A line segment length of
5 μm has been used. The image is based on a neocortex neuron from a 44
days old rat [entry P44_DEV203 of the NeuroMorpho.org database (Furtak
et al., 2007)].
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illustrates the result of the Figure 1 procedure for a neuron recon-
struction obtained from NeuroMorpho.org, in which a neuron
(green surface) is approximated by a series of linear segments (red
lines).

The scatter matrix is determined from the set of N line
segments obtained from a neuron (N is the number of line seg-
ments). If the direction of each line segment k is expressed as
a unit column vector, uk, the scatter matrix can be obtained
from an N × 3 matrix S with row vectors

√
wkuT

k in which
wk is a scalar weight computed as the volume fraction of a
capped cylinder (volume πlr2

k ) corresponding to line segment k,
i.e., wk = r2

k/
∑

i r2
i , and where it is used that all line segments

share a common length, l. The scatter matrix is then computed
using the relationship T = STS. Subsequent steps of the analy-
sis are identical to analogous steps of the procedure for analyzing
Golgi-stained neurons (Jespersen et al., 2012).

COMPUTING THE DIFFUSION MRI SIGNAL
The diffusion equation with appropriate boundary conditions has
been solved for a small number of geometries as a means of mod-
eling restrictive barriers to diffusion. One such geometry is the
cylinder. Therefore, to take advantage of the known geometry of
neurons in the NeuroMorpho database, explicit diffusion simula-
tions were performed using boundary conditions appropriate for
local cylindrical symmetry. For a Stejskal-Tanner diffusion mea-
surement, given a diffusion-sensitization magnetic field gradient

pulse q = γgδ
def= qn̂; in direction n̂, with γ the gyromagnetic ratio

of the nuclei under consideration, g being the strength and direc-
tion of the magnetic gradient field, and δ being the duration of
the pulse, the diffusion signal S may be computed by (Jespersen
et al., 2007)

Sc(q,�) =
∫

S2

dû f (û)e−bDT e−(û·n̂)2
(DL−DT )b (1)

In the above expression, S2 is an integration surface (the sphere),
û is a unit direction vector for the local axis of symmetry for
a given axonal or dendritic process, f (û) is a direction distribu-
tion function for the neural processes, b = (�−δ/3) q2, and � is
the time between two gradient pulse onsets. In recognition of the
local cylinder symmetry of neural axonal and dendritic processes,
the intracellular diffusion coefficient is represented by a longitu-
dinal part (parallel to the neural process) and a transverse part
(perpendicular to the neural process) denoted DL and DT , respec-
tively. To simplify notation, an anisotropic diffusion coefficient
is defined as DA = DL − DT . Note that Equation (1) is obtained
from Jespersen et al. (2007) by setting the volume fraction of the
neuronal compartment ν equal to one. For the simulations per-
formed herein, the diffusion magnetic resonance (MR) signal may
be obtained from a weighted sum over the N line segments [rather
than from the integral expression in Equation (1)].

Sc(q,�) =
N1∑

k = 1

wke−bDT, k e−(ûk·n̂)2(DL−DT, k)b (2)

in which k iterates over the N cylinders, ûk is the direction of
cylinder k, and wk is the weight factor, given by the volume

fraction of cylinder k, as discussed previously. DT, k is a trans-
verse diffusion coefficient, which is estimated by considering the
restricted 2D self-diffusion in a circle with radius given by cylin-
der k. The formula for computing DT,k is derived based on the
work of Stepišnik (1993), and is detailed in Appendix A. In this
work we use a number of different gradient tables in the diffu-
sion MRI signal generation, in order to illustrate different aspects
of the underlying assumptions of the diffusion models to be
described. Common to the gradient tables is that they consist of
63 directions for the non-zero b-values.

In order to estimate the diffusion tensor D, a diffusion model
is fitted to the diffusion signal computed by Equation (2). In this
paper we consider two models, (1) a diffusion tensor model and
(2) a fourth order cumulant model (kurtosis model), see e.g., (Liu
et al., 2004; Jensen et al., 2005; Lu et al., 2006; Jensen and Helpern,
2010; Kiselev, 2011). The models are given as

SDTI(q,�) = S0e−bijDij (3)

Scum(q,�) = S0e−bijDij e−bijbklKijkl (4)

where summation over repeated indices is assumed, bij =
(� − δ/3) qiqj, and where Dij and Kijkl are the ij’th and ijkl’th
elements of the diffusion and kurtosis tensors, respectively. For
convenience, we here absorb some front factors into the defini-
tion of the kurtosis tensor, as compared to Jensen et al. (2005).
The models are fitted using the least squares curve fitting func-
tion available in MATLAB (2011). We note that the DTI model is
expected to be valid only for low b-values, and hence the results
presented in this work are based on a set of b-values ranging from
0 to 1 ms/μm2, unless stated otherwise. For the kurtosis model,
we simulate the same experimental settings.

The translation of SWC files to scatter matrices, diffusion sig-
nals, and diffusion tensors has been implemented in MATLAB,
where software has been written such that a set of neurons from
the aforementioned database structure may be processed in a
parallel framework.

In summary, we thus have access to the orientation distri-
bution tensor T and the diffusion tensor D. These are readily
diagonalizable, as they are symmetric 3 × 3 matrices and thus
have real eigenvalues. From Equation (10) in Jespersen et al.
(2012) with ν = 1, we note that the centralized eigenvalues of
the two matrices are related through the anisotropic diffusion
coefficient, as

(λi − λ̄) = DA(τi − τ̄) (5)

where λi is the i’th eigenvalue of the diffusion tensor, λ is the
mean of the diffusion tensor eigenvalues, τi is the i’th eigenvalue
of the orientation distribution matrix, and τ is the mean of the
eigenvalues of the orientation distribution matrix. Note that τ

always equals 1/3 by construction. From the eigenvalues, one may
also compute the FA, which for the scatter matrix is given by

FAT =
√

3

2

(τ1 − τ̄)2 + (τ2 − τ̄)2 + (τ3 − τ̄)2

τ2
1 + τ2

2 + τ2
3

(6)

in analogy to the diffusion tensor fractional anisotropy FAD

(Basser and Pierpaoli, 1996). With these definitions, it is a simple
matter to relate the anisotropy from the diffusion tensor to the
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one for the orientation matrix (Jespersen et al., 2012), the result
being

FAD

√
λ2

1 + λ2
2 + λ2

3 = DAFAT

√
τ2

1 + τ2
2 + τ2

3 (7)

As a final comment we note that the cell somas are treated as
isotropic diffusion media (in Figure 2, the cell soma is repre-
sented by a sphere), which does not contribute to the separation
of transverse and longitudinal diffusion. As a natural conse-
quence, the cell somas are not included in the calculation of the
diffusion signal.

To assess the influence of non-gaussian effects on the compar-
ison between diffusion tensor and scatter matrix eigenvalues, an
additional set of simulations were performed. In these, the MRI
signal was calculated on the basis of a distribution of infinitely
long and narrow cylinders with a diffusion coefficient D equal to
1 μm2/ms. We used the Gaussian approximation for diffusion in
each single cylinder; thus, the signal contribution from a cylinder
pointing along the direction û is exp(−bD(n̂ · û)2) when diffu-
sion weighting b is applied along n̂. The diffusion signal was then
computed using 10,000 such cylinders with directions û randomly
drawn from a Watson distribution (Fisher and Embleton, 1987;
Jespersen et al., 2012)

f (û) ∝ exp
(
κ

(
û · ẑ

)2
)

(8)

with a given concentration parameter κ and principal orientation
ẑ; and this process was repeated for 191 concentration parameters
ranging from 1 to 20. The apparent diffusion coefficient, obtained
by fitting a monoexponential decay in signal intensity with b-
value, in a direction parallel to ẑ, is equal to the largest eigenvalue
of the diffusion tensor, and the apparent diffusion coefficient per-
pendicular to the principal orientation is equal to the smallest
two eigenvalues (for positive Watson concentration parameters as
used here). Correspondingly, the largest eigenvalue τ1 of the scat-
ter matrix is determined by numerically averaging (û · ẑ)2 over

the 10,000 cylinder directions, whereas the other two eigenval-
ues are determined using τ2 = τ3 = (1 − τ1)/2. The resulting
characterization of diffusion and scatter matrices enables an
additional and independent evaluation of Equations (5) and (7).

RESULTS
Prior to using neuron geometries available through the
NeuroMorpho database for simulations and validation studies,
the potential dependence of scatter matrix determinations on the
line length chosen for approximating the reconstructions, as well
as variability in neuron structure within the database, was char-
acterized. Of the 4462 neocortical neurons in the NeuroMorpho
database, 82 were excluded from the analyses presented here
because the Figure 1 procedure yielded fewer than 100 line seg-
ments for these relatively small neurons, and statistical analysis
based on this small number was considered unreliable. The fol-
lowing results are based on the remaining 4380 neurons (98% of
the initial pool).

DEPENDENCE OF T AND D ON AVERAGE LINE SEGMENT LENGTH
Figure 3 shows FA of the diffusion tensor and orientation dis-
tribution matrices for the human neurons (N = 2147) obtained
from NeuroMorpho.org, as a function of the average length of the
lines representing the neuronal tree. By inspection of Figure 3, it
is clear that the FA is nearly constant with respect to the length
of the lines used to represent the neurons. In general, both the
FA obtained from the diffusion tensor and the one from the scat-
ter matrix increase slightly as one increases the length of the path
one averages over. Specifically, the increase is characterized by a
linear slope of 0.0017 per μm for FAD from both the DTI and
kurtosis models (the latter not shown), and 0.0018 per μm for
FAT . Although this dependence is extremely weak, it is significant
due to the ability to characterize a large number of neurons (e.g.,
for FAT , r = 0.084, p < 0.0001). This weak dependence might be
a result of the distribution of lines becoming less scattered, and
thereby less isotropically distributed on a sphere. This potential

FIGURE 3 | Variation of FAT or the orientation matrix fractional

anisotropy (A) and FAD or the diffusion tensor fractional anisotropy (B)

as a function of the line length used to represent the neurons. While

there is a slight increase in both FAT as well as FAD with increases in line
length, these data suggest that there is very little variation in both FAT and
FAD due to differences in line length used to represent the neurons.
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trend is consistent with the expected result for the limiting case
of approximating an arbitrary neuronal tree by a single line, in
which the scatter matrix has two zero eigenvalues, yielding unit
(i.e., maximal) FA. Similar results as the ones presented for the
human neocortical neurons were also obtained for other species
(data not shown). Given the weak dependence of FAT and FAD on
line length, subsequent calculations presented here have utilized
a line length of 10 μm, as was done in earlier studies (Jespersen
et al., 2012).

DEPENDENCE OF T ON SPECIES, NEURON TYPE, AND LABORATORY OF
ORIGIN
If the shapes of neurons differ with respect to species or neu-
ron type, such factors could influence water diffusion anisotropy
measured in the cerebral cortex, and such a dependence would
be of interest in the interpretation of diffusion MRI data. In
Figure 4A, mean and standard error in FAT for the various sub-
types of rat neocortical neurons obtained from the research study
that reported the largest number of neurons (“Markram”) are
presented, and Analysis of variance (ANOVA), with a significance
level of α = 0.05, reveals a significant effect of neuron type on

FIGURE 4 | One-Way Analysis of Variance (ANOVA) tests were

performed to determine the effects of independent variables Neuron

Type (A), Species (B), and Laboratory (C) on the orientation matrix

fractional anisotropy, FAT . ANOVA results revealed significant effects of
all three independent variables on FAT . This suggests that variability in FAT

is potentially introduced by differences among neuron types, species, and
laboratories.

FAT [F(7, 196) = 6.22, p < 0.0001]. This dependence on neuron
type is also observed when neocortical neurons of all species,
contributed by all laboratories, are pooled [F(18, 4204) = 28.8,
p < 0.0001]. The mean and standard error in FAT for pyra-
midal neocortical neurons are shown for the six species in the
NeuroMorpho database in Figure 4B. ANOVA reveals an addi-
tional statistically significant effect of species [F(5, 3451) = 60.4,
p < 0.0001] on FAT values. The observed sensitivity of FAT to
the factors analyzed in Figures 4A,B provoked the question of
whether systematic differences in FAT exist between neurons
reconstructed from different laboratories. In order to control
for effects due to species and neuron type, mean, and stan-
dard error values for rat pyramidal neocortical neurons are
shown in Figure 4C. Significant inter-laboratory variability is
observed [ANOVA F(11, 443) = 86.7, p < 0.0001], which indicates
that inter-laboratory differences, perhaps resulting from different
techniques utilized, appear to contribute to FAT variability.

COMPARISON TO SIMULATED DIFFUSION MRI DATA
Centralized eigenvalues of the diffusion tensor are plotted against
the corresponding centralized eigenvalues of the scatter matrix
for all human neocortex neurons from the NeuroMorpho.org
database in Figure 5A. There is a high degree of correlation
apparent in the plot, consistent with the predicted relationship
between diffusion tensor and the orientation distribution matrix
given in Equation (5). However, there is also a systematic devi-
ation. Specifically, the small eigenvalues of the diffusion tensor
tend to be larger than or equal to the prediction based on the
Gaussian model, and the primary eigenvalues tend to be smaller
than or equal to the prediction based on the Gaussian model.
As a consequence of the “less extreme” eigenvalues of the sim-
ulated diffusion tensor, FAD tends to be smaller than or equal to

its predicted value of DAFAT

(∑3
i = 1 τ2

i /
∑3

i = 1 λ2
i

)1/2
.

This systematic deviation is likely due to the DTI model
being too crude an approximation for the diffusion MR sig-
nal to model the computed MR signal at the applied diffusion
weighting. Specifically, the expression used to compute diffu-
sion tensor eigenvalues in Figures 5A,B involve the assumption
that the water displacement propagator is a Gaussian function
of position. Under conditions of restricted diffusion, for exam-
ple, this assumption is known to be only approximately true, with
deviations from Gaussian behavior being larger with increasing
diffusion weighting (Jensen et al., 2005; Kiselev, 2011). To demon-
strate the link between inaccuracy of the Gaussian approximation
and the systematic deviations observed in Figure 5, the quality of
fit of the DTI model is indicated by the color of the Figure 5 data
points. Black data points in Figures 5A,B are those for which the
fitted diffusion MR signal explains more than 95% of the vari-
ation in the simulated diffusion signal, i.e. as computed by the
diffusion model in Equation (2). In contrast, the data points in
which the explanation degree is less than 95% have been plotted
in red. The poor-fitting red data points deviate further from the
line of unit slope than do data points that are more accurately
approximated by Equation 2.

To further characterize this deviation, we consider next the
simulation results from the Watson distribution of long and
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FIGURE 5 | In (A), the centralized eigenvalues (λ1, λ2, λ3) of the

diffusion tensor matrix (D) are plotted as a function of the

corresponding eigenvalues of the orientation distribution matrix (T).

In (B), the diffusion tensor fractional anisotropy (FAD ) is plotted as a
function of a scaled version of the orientation matrix fractional
anisotropy (FAT ), see text for details. The results of fitting the simulated

diffusion MRI data using a cumulant expansion expression are presented
for centralized eigenvalues (C) and FA (D). The black and red symbols
correspond to points where the DTI model explains more (black) or less
(red) than 95% of the signal variation. Human neocortical neurons from
the NeuroMorpho.org database were used for this analysis. The
eigenvalues are in units of μm2/ms.

narrow cylinders. Consistent with the pattern shown in Figure 5,
the simulation results determined from the Watson distribution
(Figure 6) clearly display similar systematic deviations of the
eigenvalues from the Gaussian model. As shown in Figure 5,
the centralized eigenvalues of the diffusion tensor are “less
extreme” than the scatter matrix eigenvalues, resulting in

smaller FAD values than DAFAT

(∑3
i = 1 τ2

i /
∑3

i = 1 λ2
i

)1/2
shown

in Figures 5A,D. Moreover, these systematic trends become
more pronounced when the effects of restricted diffusion are
accentuated by increasing the strength of the diffusion-sensitizing
magnetic field gradients. For b = 0.5 ms/μm2 the simulated
eigenvalues nearly coincide with the Equation (1.5) prediction
(shown as a line in Figure 5), with the maximal difference
between the predicted and observed FAD being 0.0173 at an FAD

value of 0.522. Increasing deviations are found when increas-
ing the b-value to 1 and 2.5 ms/μm2 (Figures 6B,E and 6C,F,
respectively), in which maximal differences between observed and
predicted FAD values being 0.040 at FAD value 0.586, and 0.142 at
FAD value 0.580, respectively.

The Gaussian approximation can be viewed as the first term
in the cumulant expansion, a systematic series expansion in dif-
fusion weighting b of the log diffusion signal (Kiselev, 2011).
Retaining the next term in the cumulant expansion corresponds
to the so-called diffusion kurtosis imaging, which is a method
that has been used previously to account for the effects of
non-Gaussian displacements in diffusion MRI (Liu et al., 2004;
Jensen et al., 2005; Lu et al., 2006; Jensen and Helpern, 2010;
Kiselev, 2011), resulting in a more accurate description of the
diffusion signal over a wider range of diffusion weightings. The
additional degrees of freedom in this expression relative to a
diffusion tensor have also been found to yield more accurate
estimates of the diffusion tensor (Veraart et al., 2011). The
results of fitting the simulated diffusion MRI data using a sec-
ond order cumulant expansion expression [Equation (1.4)] are
presented for centralized eigenvalues and FA in Figures 5C,D,
respectively. As expected, improved agreement with the Equation
(1.5) prediction is observed in Figures 5C,D than in the cor-
responding Figure 5 panels A and B, as made evident by the
narrower confidence bands (dashed lines in Figure 5), because
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FIGURE 6 | Diffusion and scatter matrix centralized eigenvalues (λ and τ,

respectively) plotted for simulated data (A–C; see text for details) and

fractional anisotropy computed from the centralized eigenvalues for the

diffusion tensor and orientation distribution matrices (D–F). These data

demonstrate that deviations in the predicted relationship between the
diffusion tensor matrix (D) and the orientation distribution matrix (T) are found
when the strength of the diffusion-sensitizing magnetic field gradients is
increased.

the cumulant expansion model provides improved fitting of dif-
fusion MRI data affected by restrictive barriers than does the
DTI model.

DISCUSSION
In this work, we have utilized the NeuroMorpho database to char-
acterize the expected diffusion MRI signal derived from water
within geometries representative of real neocortical neurons. This
comparison was achieved by combining the structural informa-
tion in the database with a simple analytical model of diffusion in
cylinders. The fact that the reconstruction data enables a complete
characterization of single neuron structure provides a unique
situation, in which fundamental questions about the microstruc-
tural underpinnings of diffusion MRI can be addressed in a
realistic setting where ground truth is known. In the present
paper, we have focused on the relationship between anisotropy
in the orientation distribution matrix and anisotropy in water
diffusivity in neocortical neurons. We focus on neurons in this
GM structure because diffusion anisotropy measurements in neo-
cortex have specifically been related to anisotropy in neuron
morphology, organized around a primary apical dendrite. In
principle, however, this approach could be extended to any GM
structure in which water diffusion anisotropy is observed. We find
that the dependence of neuron process orientation distribution
anisotropy on the line length used to parameterize neurons is
weak (0.002 μm2/ms per μm) over the range from 5 to 25 μm.
Thus, it was concluded to be acceptable to continue previous

practices (see Jespersen et al., 2012) of utilizing a 10 μm line
length in approximations of neural structures.

From the standpoint of comparing neuron morphology
between different neuron types and species, it was interest-
ing to find considerable variability in scatter matrix anisotropy
within the reconstructions available through the NeuroMorpho
database. Significant differences in FAT were revealed through
ANOVA for different neuron types, with bipolar, and double bou-
quet neurons exhibiting highest anisotropy, and stellate neurons
showing the least amount of anisotropy. Significant inter-species
differences in pyramidal neuron FAT , with cat neurons having
lowest anisotropy, and monkey being characterized by the highest
mean FAT , were also observed. This pattern does not paral-
lel the phylogenic complexity of species, however. For example,
the mean FAT is lower for human than for monkey, and the
mean FAT for mouse and rat is higher than that of cat. There
is a possibility that technical differences associated with standard
tissue preparation procedures, for example, could be a (poten-
tially dominant) contributor to these inter-species differences.
The results of ANOVA for rat pyramidal neurons revealed signif-
icant inter-laboratory differences, which suggests that differences
in experimental procedures adopted by different research groups
can give rise to variability in the characteristics of reconstructed
neuron structures. In principle, a multiple-factor ANOVA could
add clarity to those factors that are most influential in neuron
structure within the NeuroMorpho database. Unfortunately how-
ever, we were unable to conduct reliable multiple-factor analyses,
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because there was little overlap between laboratories in the species
and neuron types studied, and this precluded our ability to quan-
tify interactions between the proposed factors influencing FAT .

The results of the MR diffusion simulations were used to com-
pare the orientation distribution estimated based on Equation 7
to that determined directly from neuronal reconstructions. For
human neocortical neurons, a systematic deviation was observed
between the MR-predicted and actual orientation distributions,
such that the anisotropy in orientation distributions are erro-
neously predicted to be low (Figure 5B). This effect is due to both
an underestimation of the primary eigenvalue, and overestima-
tion of minor eigenvalues of the orientation matrices, and the
systematic discrepancy is larger for intermediate FA values than
for extreme FA (Figures 5A,B).

One factor that contributes to the difference between predicted
and observed orientation matrix eigenvectors is the approxima-
tion that the MR signal decays as a mono-exponential function
of b (the Gaussian approximation). However, the accuracy of
the Gaussian approximation is influenced by the amount of dif-
fusion weighting as well as the form of the neurite orientation
distribution. Therefore, an additional series of calculations were
performed specifically for Watson-distributed sets of neurites for
multiple diffusion weighting conditions. The more pronounced
discrepancy observed at higher b-values (Figure 6) supports that
the Gaussian approximation is the source of the observed sys-
tematic deviations, because the effects of restricted diffusion,
which lead to non-monoexponential decay in MR signal inten-
sity with b-value, are larger at higher b-values. Previous work
(Veraart et al., 2011), has demonstrated that more general alter-
natives to the DTI model of water diffusion, such as the cumulant
expansion/kurtosis models (Liu et al., 2004; Jensen et al., 2005;
Lu et al., 2006; Jensen and Helpern, 2010; Kiselev, 2011), facil-
itate improved accuracy in the description of water diffusion
within tissue. Here we found that accounting for non-gaussian
effects by incorporating higher-order cumulant expansion terms
into the expression for water diffusion provided improved agree-
ment between observed and MR-predicted neurite orientation
distribution eigenvalues (Figures 5C,D).

Some limitations in our ability to use results obtained here in
the interpretation of diffusion MR data obtained from biological
tissue merit recognition. First, the NeuroMorpho database does
not provide information related to the structure of the extra-
cellular space. In ours and others previous work (Assaf et al.,
2004; Jespersen et al., 2007; Alexander et al., 2010), a parameter
representing the volume fraction of the compartment exhibiting
local cylindrical symmetry has been made explicit. This has been

equated to the volume fraction of the neuropil in our applications
of diffusion MR to studies of brain GM (Jespersen et al., 2010,
2012). Herein, the volume fraction of the cylindrical compart-
ment has been fixed at a value of 1, reflecting our exclusive focus
on diffusion within neurites from individual neurons, rather than
on tissue volume elements as in our previous work. Further,
another assumption of our previously-described model concerns
the slow exchange of water across neuronal cell membranes. The
validity of this assumption is supported by the highly selective
expression of aquaporins (membrane water channels) in astro-
cytes, but not in neurons (Amiry-Moghaddam and Ottersen,
2003). It is also consistent with MR (Quirk et al., 2003; He et al.,
2012) and PET (Larson et al., 1987) studies indicating a neu-
ronal residence time of several seconds compared to a typical
diffusion time of tens of milliseconds in diffusion MR experi-
ments. However, it was not possible to specifically characterize
the effect of water exchange in the context of neuron reconstruc-
tions provided by the NeuroMorpho database. Last, the effect of
myelin on water diffusion anisotropy, which has been proposed to
influence water diffusion anisotropy even within GM structures
such as the mature cerebral cortex (Leuze et al., 2012; McNab
et al., 2013) could not be addressed in this study due to the
lack of glial cells in the NeuroMorpho data. Thus, although the
analyses presented here do provide a unique opportunity to char-
acterize the influence of diffusion in known neuron structures
on diffusion-weighted MR data, there are factors that influence
water diffusion in tissue that could not be addressed in this
study.

In conclusion, reconstructed neurons from the NeuroMorpho
database were shown to span a wide range of scatter matrix
anisotropy, making them suitable for extensive testing and model
validation. Here we used them to verify a close relationship
between the scatter matrix of neuronal structures and the dif-
fusion tensors characterizing diffusion MRI, especially if care is
taken to account for violations of Gaussian diffusion which affect
the estimation of the diffusion tensor. These results will be help-
ful for a quantitative interpretation of GM diffusion anisotropy in
terms of neuronal morphology.
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APPENDIX A
ESTIMATING THE TRANSVERSE DIFFUSION COEFFICIENT
In this appendix, we present the key points in deriving an expres-
sion for the transverse diffusion coefficient DT . Following the
work of Stepišnik (1993), one may compute the diffusion of a sin-
gle proton based on a cumulant expansion of the self-diffusion
expression. We choose to truncate the expansion at second order,
yielding

S(q,�) = S0e−bDT = S0e−β(�) (A1)

where β (�) is the second order term in the cumulant expansion,
and it has been used that the longitudinal part of the diffusion
signal is zero, as we focus solely on diffusion orthogonal to the
cylinder direction. In Equation (A1), the first equality is the sig-
nal corresponding to Equation (2) for a single proton diffusing
transversely in a cylinder. The second equality models the phase
of a single proton, and depends on the type of experiment per-
formed, the boundaries if the diffusion compartment, etc., see
Stepišnik (1993). Relating the left and right hand sides of the
second equality sign, one obtains an expression for DT

DT = 1

b
β(�) (A2)

Following the derivations in Stepišnik (1993), we now express
β (�) in terms of the longitudinal diffusivity DL and the neurite
radius R, as

β (�) = 2

(
γG

DL

)∑
k

Bk

a2
k

[
akDLδ − 1

+ e−akDLδ + e−akDL� (1 − cosh (akDLδ))

]
(A3)

where γ is the gyromagnetic ratio of the nuclei under consid-
eration, g is the magnetic field gradient strength. In Equation
(A3), Bk and ak depend on the boundaries of the self-diffusion
compartment. In the case of a cylindrical compartment of radius
R, which is the relevant compartment in our case, one obtains
(Stepišnik, 1993)

Bk = 2
(R/μk)

2

μ2
k − 1

and ak =
(μk

R

)2
(A4)

where μk is the k’th root of the first derivative of the first order
Bessel function of the first kind. It is now a simple task to combine
Equations (A2), (A3), and (A4) to obtain an expression for the
transverse diffusion coefficient in terms of a fixed radius and pulse
parameters � and δ. The final expression being

DT = 4R6 (
(δD)2 (� − δ/3)

)−1 ∑
k

(
μ6

k

(
μ2

k − 1
))−1

[
μ2

kDδ

R2
− 1 + e

− μ2
k Dδ

R2 + e
− μ2

k D�

R2

− 1

2
e
− μ2

k D(� − δ)

R2 + 1

2
e
− μ2

k D(� + δ)

R2

]
(A5)

In which it has been used that b = (
γgδ

)2
(� − δ/3). In this

work the summation in Equation (A5) is truncated after the tenth
root, which is deemed sufficient in terms of convergence of the
series.
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