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The prefrontal cortex (PFC) is implicated to play an important role in cognitive control.
Abnormal PFC activities and rhythms have been observed in some neurological and
neuropsychiatric disorders, and evidences suggest influences from the neuromodulators
dopamine (DA) and serotonin (5-HT). Despite the high level of interest in these brain
systems, the combined effects of DA and 5-HT modulation on PFC dynamics remain
unknown. In this work, we build a mathematical model that incorporates available
experimental findings to systematically study the comodulation of DA and 5-HT on the
network behavior, focusing on beta and gamma band oscillations. Single neuronal model
shows pyramidal cells with 5-HT1A and 2A receptors can be non-monotonically modulated
by 5-HT. Two-population excitatory-inhibitory type network consisting of pyramidal cells
with D1 receptors can provide rich repertoires of oscillatory behavior. In particular, 5-HT
and DA can modulate the amplitude and frequency of the oscillations, which can emerge
or cease, depending on receptor types. Certain receptor combinations are conducive for
the robustness of the oscillatory regime, or the existence of multiple discrete oscillatory
regimes. In a multi-population heterogeneous model that takes into account possible
combination of receptors, we demonstrate that robust network oscillations require high
DA concentration. We also show that selective D1 receptor antagonists (agonists) tend to
suppress (enhance) network oscillations, increase the frequency from beta toward gamma
band, while selective 5-HT1A antagonists (agonists) act in opposite ways. Selective D2
or 5-HT2A receptor antagonists (agonists) can lead to decrease (increase) in oscillation
amplitude, but only 5-HT2A antagonists (agonists) can increase (decrease) the frequency.
These results are comparable to some pharmacological effects. Our work illustrates the
complex mechanisms of DA and 5-HT when operating simultaneously through multiple
receptors.

Keywords: dopamine DA, serotonin 5-HT, prefrontal cortical circuit, computational model, selective dopamine and

serotonin receptor agonist and antagonist, nonlinear dynamics

1. INTRODUCTION
The prefrontal cortex (PFC) plays an essential role in many
higher brain functions such as goal-directed behavior, action
planning, learning, attention, mnemonic processes, inhibitory
control, and task switching (Miller, 2000; Fuster, 2001; Miller
and Cohen, 2001; Andrade, 2011b). Neural oscillations in the
PFC are suggested to be important for communication within the
PFC and with other brain regions, and are suggested to regulate
such higher cognitive functions (Wang, 2010; Benchenane et al.,
2011).

Neural activities in the PFC are known to be regulated by
endogenous neuromodulators. In particular, the neuromodula-
tors dopamine (DA) and serotonin (5-HT) can modulate PFC
neuronal excitability, synaptic transmission, plasticity and other
electrical and biochemical properties, and hence affect various
brain functions and behaviors (de Almeida et al., 2008; Kehagia
et al., 2010; Puig and Gulledge, 2011; Rogers, 2011; Puig and
Miller, 2012; Tritsch and Sabatini, 2012). DA alone can modu-
late the PFC in various ways through D1-like (comprising D1

and D5) receptors and D2-like (comprising D2, D3, and D4)
receptors expressed on the pyramidal cells and interneurons
(Vincent et al., 1993; Gaspar et al., 1995; Vincent et al., 1995;
Muly et al., 1998; Neve et al., 2004; Seamans and Yang, 2004;
Lapish et al., 2007; de Almeida et al., 2008; Santana et al., 2009).
D1-like receptors activation can increase the intrinsic excitability
and the input-output gain of PFC pyramidal cell (Henze et al.,
2000; Thurley et al., 2008). D1-like receptor is also found to
directly depress excitatory interaction between pyramidal cells,
increase the excitability of fast-spiking interneurons, and also
enhance inhibitory (GABAergic) synaptic transmission (Zhou
and Hablitz, 1999; Gao et al., 2001; Gulledge and Jaffe, 2001;
Gonzalez-Burgos et al., 2002; Gorelova et al., 2002; Kroner et al.,
2007). These can be attributed to D1-like receptors’ ability to
trigger a variety of ionic channel activities, e.g., enhancement of
sodium current, and attenuation of slowly-inactivating potassium
currents and glutamate mediated synaptic currents (Yang and
Seamans, 1996; Gao et al., 2001; Seamans et al., 2001a; Gonzalez-
Islas and Hablitz, 2003; Tseng and O’Donnell, 2004). Activation
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of D2-like receptors seems to lead to opposite effects of D1-like
receptors (Sesack and Bunney, 1989; Yang and Mogenson, 1990;
Gulledge and Jaffe, 1998).

The PFC also receives dense 5-HT innervation from the raphe
nuclei (Vertes, 1991; Vertes et al., 1999; de Almeida et al., 2008).
Although 5-HT can modulate neural activity through seven dis-
tinct subtypes of receptors (Hoyer et al., 2002), 5-HT1A and
5-HT2A receptors are abundant in the PFC and seem to be the
main contributors. Specifically, about 50–60% of the pyrami-
dal neurons express 5-HT1A and/or 5-HT2A receptors (Pazos
and Palacios, 1985; Pompeiano et al., 1992, 1994; Kia et al.,
1996; Lopez-Gimenez et al., 1997; Willins et al., 1997; Martin-
Ruiz et al., 2001; Santana et al., 2004; de Almeida and Mengod,
2007; Wedzony et al., 2008; Weber and Andrade, 2010), while
a subpopulation of pyramidal cells express 5-HT1A or 5-HT2A
receptors alone (Amargos-Bosch et al., 2004; Santana et al., 2004;
Weber and Andrade, 2010; Andrade, 2011a). Inhibitory interneu-
rons in the PFC also express 5-HT1A or 5-HT2A receptors
(Pazos and Palacios, 1985; Willins et al., 1997; Santana et al.,
2004; de Almeida and Mengod, 2007; Di Pietro and Seamans,
2007; Puig et al., 2010; Weber and Andrade, 2010). 5-HT1A
and 2A receptors seem to act in opposing ways. For exam-
ple, the activation of 5-HT1A receptors can lead to an increase
in potassium conductance, resulting in an inhibitory response
of the neuronal membrane potential (Andrade et al., 1986;
Beique et al., 2004; Goodfellow et al., 2009), while the activa-
tion of 5-HT2A receptors generates an excitatory response by a
decrease in the potassium conductance (Zhang and Arsenault,
2005; Andrade, 2011a) or mediating a calcium-sensitive non-
specific cation conductance (Villalobos et al., 2005; Zhang and
Arsenault, 2005). In vivo and in vitro studies demonstrate that
5-HT evokes different response on pyramidal cells: inhibitions,
excitations, and biphasic response, but the overall effect is over-
whelmingly inhibitory (Puig et al., 2005). In addition to modulat-
ing neuronal excitability, 5-HT1A and 5-HT2A receptors can also
modulate synaptic transmission. For example, 5-HT1A receptor
activation can decrease the function of AMPA (Cai et al., 2002)
and NMDA (Cai et al., 2002; Zhong et al., 2008). In contrast,
5-HT2A receptor activation can enhance the function of AMPA
(Cai et al., 2002) and NMDA (Yuen et al., 2005). Activation of
5-HT2A receptors inhibits GABAA function through phospho-
rylation of GABAA receptors (Feng et al., 2001; Zhong and Yan,
2004).

At the neuronal network level, it has been found that DA
injected in the PFC of anesthetized rats enhances hippocampal-
prefrontal coherence in the theta band oscillation (Benchenane
et al., 2010), which could be due to DA modulating the
GABAergic inhibition (Tierney et al., 2008). Blocking D1 recep-
tors has been known to increase alpha and beta band oscillations
more in local field potentials for novel than familiar associations
(Puig and Miller, 2012). Increasing extracellular DA with genetic
polymorphism of dopamine transporter (DAT1) in humans can
enhance evoked gamma response to stimulus (Demiralp et al.,
2007) 5-HT can also increase the frequency and amplitude of
slow waves by promoting the UP states in PFC via activation of
5-HT2A receptors, suggesting an excitatory effect in in vivo con-
dition (Puig et al., 2010). 5-HT2A/2C receptor agonist/antagonist

has also been found to synchronize/desynchronize frontal cortical
oscillations in anesthetized rats (Budzinska, 2009).

Dysregulation of DA and 5-HT in the PFC, and abnormal neu-
ral activity levels and oscillations in the PFC are implicated in
various mental illnesses such as schizophrenia, attention deficit
hyperactivity disorder, depression and addiction (Basar and
Guntekin, 2008; Robbins and Arnsten, 2009; Ross and Peselow,
2009; Artigas, 2010; Curatolo et al., 2010; Arnsten, 2011; Meyer,
2012; Noori et al., 2012). Abnormal cortical oscillations can be
observed in various neurological and psychiatric disorders, and
in particular, disrupted beta (12–30 Hz) and gamma (30–80 Hz)
band oscillations are found in schizophrenia, major depression
and bipolar disorder (Spencer et al., 2003; Cho et al., 2006;
Uhlhaas and Singer, 2006; Basar and Guntekin, 2008; Gonzalez-
Burgos and Lewis, 2008; Gonzalez-Burgos et al., 2010; Uhlhaas
and Singer, 2010, 2012). For example, schizophrenic patients have
enhanced power in the beta2 (16.5–20 Hz) frequency band in
the frontal cortex as compared to controls (Merlo et al., 1998;
Venables et al., 2009). Beta band oscillation in the frontal cor-
tex in a rat model of Parkinson’s disease is also abnormally high
compared to controls (Sharott et al., 2005). These mental dis-
orders are usually treated with neuropharmacological drugs that
target the DA and/or 5-HT systems (Di Pietro and Seamans, 2007;
Bolasco et al., 2010; Poewe et al., 2010; Meltzer and Massey, 2011),
which also seem to influence brain rhythms (Kleinlogel et al.,
1997; Nichols, 2004; Sharott et al., 2005; Budzinska, 2009) .

Although there have been extensive investigations on the mod-
ulation of DA and 5-HT on the PFC, little is known about their
comodulation effects on the PFC network dynamics and their
potential applications in drug treatments (Diaz-Mataix et al.,
2005; Di Pietro and Seamans, 2007; Artigas, 2010). In fact,
many of the DA and 5-HT induced intracellular signaling path-
ways overlap (Amargos-Bosch et al., 2004; Santana et al., 2004;
Di Pietro and Seamans, 2007; Esposito et al., 2008; Santana
et al., 2009), suggesting that DA and 5-HT may cooperatively
modulate PFC activity. One notable study has found that coad-
ministration of 5-HT2A antagonist with a D2 antagonist in
PFC significantly increase DA release which is greater than that
induced by either antagonist alone (Westerink et al., 2001). A
recent research has found that co-application of DA and 5-HT
can increase the evoked excitability of certain PFC pyramidal
cells (the gain of the neuronal input-output response) more
than when either was applied alone, while the activities of other
pyramidal cells get more suppressed (Di Pietro and Seamans,
2011). Furthermore, the same study also shows that prior DA
or 5-HT application can potentiate the subsequent effect of
the other.

In this work, we integrate the essential available experimen-
tal findings into a biologically motivated computational model
to provide insights into the possible PFC dynamics caused by the
comodulation of DA and 5-HT. The focus will be on tonic DA and
5-HT modulations, and their effects on higher frequency band
oscillations.

2. MATERIALS AND METHODS
The computational models in this work will implement DA
and 5-HT comodulation at the neuronal and synaptic levels.
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In the following, we shall discuss about the various neuronal
constituents of the PFC modulated by DA and 5-HT.

2.1. SUBGROUPS OF PFC NEURONS
The modulation of DA and 5-HT on the neuronal activity
depends on the specific receptor subtypes and their combinations
since they can evoke different intracellular signaling pathways.
Therefore, we divide the pyramidal cells and inhibitory interneu-
rons into subgroups according to their expression of receptors
(see Table 1). For simplicity, we omit neurons that do not express
DA or 5-HT receptors. We also ignore pyramidal cells express-
ing DA or 5-HT receptors only, and those co-expressing 5-HT2A
and D1-like receptors due to the relatively lower expression of
5-HT2A receptors. Thus, we consider 4 subgroups of pyrami-
dal cells expressing the following combinations of receptors:
D1+5-HT1A, D2+5-HT1A, D1+5-HT1A+5-HT2A, and D2+
5-HT1A+5-HT2A. For inhibitory interneurons, we also consider
4 subgroups: D1+5-HT1A, D2+5-HT1A, D1+5-HT2A, D2+
5-HT2A.

The instantaneous population firing rate for each neuronal
subgroup follows the established dynamics (Wilson and Cowan,
1972; Dayan and Abbott, 2001; Murphy and Miller, 2009):

τi
dri

dt
= −ri + fi(Ii, syn) (1)

where i is the index for the subgroup of neurons. For pyramidal
cells, i = 1 to 4 denote the subpopulation expressing D1+5HT1A,
D2+5HT1A, D1+5HT1A+5-HT2A, and D2+5HT1A+5-HT2A,
respectively. For interneurons, i = 5 to 8 denote the subgroup
neurons expressing D1+5HT1A, D1+5HT2A, D2+5HT1A, and
D2+5HT2A , respectively. τi is the neuronal membrane time con-
stant, set at 10 ms for pyramidal cells and 15 ms for inhibitory
neurons (McCormick et al., 1985). Ii, syn is the total synaptic
currents to the i-th subgroup. The activation function fi(Ii, syn)

follows the established form (Eckhoff et al., 2011):

f (Isyn) = CIsyn − IL

1 − exp[−g(CIsyn − IL)] + (CIsyn − IL)/rmax
(2)

where rmax denotes the saturated firing rate, rmax is 80 Hz for
pyramidal cells, and 120 Hz for inhibitory neurons. C is the

Table 1 | Percentage of prefrontal cortical neurons expressing DA and

5-HT receptor subtypes∗ .

Pyr Int

5-HT1A+5-HT2A 38–47% - - -

5-HT1A 44–59% 20–28%

5-HT2A 3–7% 11–34%

II-III V VI II-III V VI

D1 19% 21% 38% 28% 30% 38%

D2 5% 25% 13% 5% 8% 17%

*Data adapted from references, Gaspar et al., 1995; Amargos-Bosch et al., 2004;

Santana et al., 2004, 2009; Andrade, 2011a; Puig, 2011.

gain and set as 300 Hz/nA for pyramidal cells and 500 Hz/nA
for inhibitory interneurons. IL is associated with the membrane
leakage current and its value is set at 150 Hz for pyramidal cells
and 180 Hz for inhibitory interneurons. The curvature of the
activation function g is 0.2 Hz−1.

2.2. MODULATION OF NEURONAL EXCITABILITY
In DA modulation, although D1 and D2 receptors can act on
different signaling transduction pathways, they can effectively
attain opposite effects (e.g., D1 activate protein kinase A while D2
receptors inactivate it) (Trantham-Davidson et al., 2004; Beaulieu
and Gainetdinov, 2011; Tritsch and Sabatini, 2012). Therefore,
we model the modulation of D1 (D2) on neuronal activity by
increasing (decreasing) the gain factor C and decreasing (increas-
ing) the leakage factor IL of the input-output function (Thurley
et al., 2008).

With regard to 5-HT modulation, experiments have shown
that 5-HT1A can hyperpolarize the neurons through the acti-
vation of G protein-gated inwardly rectifying K+ channels,
while 5-HT2A activation can induce slow membrane depo-
larization and inhibition of the slow after-hyperpolarization
which increases membrane excitability (Andrade et al., 1986;
Beique et al., 2004; Goodfellow et al., 2009; Andrade, 2011a).
5-HT1A receptors are often localized on the axon initial seg-
ment and soma of pyramidal neurons where they act to sup-
press action potential generation, while 5-HT2A receptors are
abundant in apical dendrites where they can amplify the synap-
tic current (Amargos-Bosch et al., 2004; Santana et al., 2004).
5-HT2A receptors are also found to increase the gain of the
input-output relationship of pyramidal neurons (Zhang and
Arsenault, 2005). Therefore, the modulation of 5-HT on neu-
ronal activity can be modeled by an increase in the leakage
factor IL (for 5-HT1A) and increase of the gain factor C (for
5-HT2A).

The activation of D1, D2, 5-HT1A and 5-HT2A receptors
are concentration dependent (Trantham-Davidson et al., 2004;
Hurley, 2006; Solt et al., 2007). For simplicity, we apply the sig-
moid function to describe the concentration dependent modula-
tion of DA and 5-HT on the gain and leak factors (Tables 2 and 3),
similar to previous work (Fellous and Linster, 1988; Scheler,
2004). In these formulae, [DA]1 denotes the half maximal effec-
tive concentration (EC50) of DA for D1 receptor, and [DA]2 is the
EC50 of DA for D2 receptor. Similarly, [5-HT]1 and [5-HT]2 are
the EC50 for 5-HT1A and 5-HT2A receptors, respectively. In brief,
we depict the modulation of DA and 5-HT on neuronal activity
by changing the activation function through multiplying C with a
gain factor shown in Table 2, and IL with the leakage factor shown
in Table 3.

The concentrations of DA and 5-HT in Tables 2 and 3 can be
inferred from experiments such as those using microdialysis and
voltammetry techniques. It is shown that the basal extracellular
DA and 5-HT concentrations in the PFC is about ∼0.2–2.5 nM/L
in resting condition, and can increase by as much as 10–200%
when performing behavioral tasks (Adell et al., 1991; Watanabe
et al., 1997; Lena et al., 2005; Winstanley et al., 2006; Rogoz and
Golembiowska, 2010; Seeman, 2010; Staiti et al., 2011; van Dijk
et al., 2012).
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Table 2 | Gain factor for the neuronal subgroups.

Neuron Receptors Gain factor

Pyr1 D1+5-HT1A
(

1 + ε1

1 + e−β1([DA]− [DA]1)

)

Pyr2 D2+5-HT1A
(

1 − ε2

1 + e−β2([DA]− [DA]2)

)

Pyr3 D1+5-HT1A+5-HT2A
(

1 + ε1

1 + e−β1([DA]− [DA]1)

)

×
(

1 + δ2

1 + e−α2([5-HT]− [5-HT]2)

)

Pyr4 D2+5-HT1A+5-HT2A
(

1 − ε2

1 + e−β2([DA]− [DA]2)

)

×
(

1 + δ2

1 + e−α2([5-HT]− 5-HT]2)

)

Int1 D1+5-HT1A
(

1 + ε1

1 + e−β1([DA]− [DA]1)

)

Int2 D1+5-HT2A
(

1 + ε1

1 + e−β1([DA]− [DA]1)

)

×
(

1 + δ2

1 + e−α2([5-HT]− [5-HT]2)

)

Int3 D2+5-HT1A
(

1 − ε2

1 + e−β2([DA]− [DA]2)

)

Int4 D2+5-HT2A
(

1 − ε2

1 + e−β2([DA]− [DA]2)

)

×
(

1 + δ2

1 + e−α2([5-HT]− [5-HT]2)

)

Pyr, Pyramidal cells; Int, Interneurons.

See text for parameter values.

D1- and D2-like receptors can have a high affinity state
with a binding constant around the nM/L level or a low
affinity state with a binding constant around the μM/L level
(Richfield et al., 1989). Since we are studying only tonic con-
centration levels, we shall only focus on the high affinity recep-
tors, by assuming that low affinity ones are activated more in
the phasic or evoked mode, e.g., during behavioral tasks. In
particular, we assume that the high affinity D1- and D2-like
receptors are sensitive within a range of 0–50 nM/L with dif-
ferent EC50 values. We chose [DA]1 = 4 nM/L and [DA]2 =
8 nM/L (Koshkina, 2006), suggesting lower [DA] activates D1
receptor only while higher [DA] activates both D1 and D2
receptors, similar to the observed activation order of these recep-
tors depending on DA concentration (Trantham-Davidson et al.,
2004).

Similarly, 5-HT1A and 5-HT2A receptors can also operate in
high-affinity and low-affinity states (Glennon et al., 1998; Watson
et al., 2000). In this work, we assume that 5-HT1A and 5-HT2A
receptors operate at high-affinity state since tonic 5-HT concen-
tration at the nM/L level is far below the affinity of 5-HT for
the low agonist affinity state (Watson et al., 2000), and we vary
the 5-HT concentration within the range 0–5 nM/L. The affin-
ity of 5-HT for 5-HT1 is higher than most of other subtype of

Table 3 | Leakage factor for the neuronal subgroups.

Neuron Receptors Leakage factor (Ii )

Pyr1 D1+5-HT1A
(

1 − ε̄1

1 + e−β̄1([DA]− [DA]1)

)

×
(

1 + δ̄1

1 + e−ᾱ1([5-HT]− [5-HT]1)

)

Pyr2 D2+5-HT1A
(

1 + ε̄2

1 + e−β̄2([DA]− [DA]2)

)

×
(

1 + δ̄1

1 + e−ᾱ1([5-HT]− [5-HT]1)

)

Pyr3 D1+5-HT1A+5-HT2A
(

1 − ε̄1

1 + e−β̄1([DA]− [DA]1)

)

×
(

1 + δ̄1

1 + e−ᾱ1([5-HT]− [5-HT]1)

)

Pyr4 D2+5-HT1A+5-HT2A
(

1 + ε̄2

1 + e−β̄2([DA]− [DA]2)

)

×
(

1 + δ̄1

1 + e−ᾱ1([5-HT]− [5-HT]1)

)

Int1 D1+5-HT1A
(

1 − ε̄1

1 + e−β̄1([DA]− [DA]1)

)

×
(

1 + δ̄1

1 + e−ᾱ1([5-HT]− [5-HT]1)

)

Int2 D1+5-HT2A
(

1 − ε̄1

1 + e−β̄1([DA]− [DA]1)

)

Int3 D2+5-HT1A
(

1 + ε̄2

1 + e−β̄2([DA]− [DA]2)

)

×
(

1 + δ̄1

1 + e−ᾱ1([5-HT]− [5-HT]1)

)

Int4 D2+5-HT2A
(

1 + ε̄2

1 + e−β̄2([DA]− [DA]2)

)

Pyr, Pyramidal cells; Int, Interneurons. See text for parameter values.

5-HT receptors, and lower concentrations favor 5-HT1A recep-
tor activation (Ramage, 2010). One recent research shows that
5-HT1A receptors has lower EC50 than that of 5-HT2A recep-
tors in concentration-electrophysiological response relationship
(Goodfellow and Lambe, 2009). Thus, we adopt a lower affin-
ity for 5-HT2A receptors than that of 5-HT1A. In particular,
we assign [5-HT]1 = 1 nM and [5-HT]2 = 2 nM. For brevity,
we shall drop the 1/L units for the dopamine and serotonin
concentrations.

The specific gain modulation parameter values are as follows:
ε1 = 0.15 for D1, ε2 = 0.1 for D2, and δ2 = 0.2 for 5-HT2A.
The parameter values reflecting the curvature of gain modula-
tion are chosen as: β1 = β2 = 1/nM for D1 and D2, and α2 =
4/nM for 5-HT2A. The parameters describing the amplitude of
leak modulation are chosen as: ε̄1 = 0.15 for D1, ε̄2 = 0.1 for
D2, δ̄1 = 0.15 for 5-HT1A. The parameters reflecting the cur-
vature of leak modulation are chosen as: β̄1 = 1/nM for D1,
β̄2 = 1/nM for D2, δ̄1 = 4/nM for 5-HT1A. The modulation fac-
tors due to D1, D2, 5-HT1A and 5-HT2A receptors are shown in
Figure 1.
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FIGURE 1 | Concentration dependent modulation factor of DA and

5-HT. Black (red) line: gain modulation factor due to D1 (D2) receptors as a
function of DA concentration (A); modulation factor due to 5-HT1A (5-HT2A)
receptors as a function of 5-HT concentration (B).

2.3. SYNAPTIC CURRENTS
The synaptic currents are mediated by AMPA, NMDA, and GABA
receptors. We adopt an all-to-all connectivity among neuronal
subgroups, thus, the synaptic currents to one neuron in the
i-th subgroup can be approximated by summing all presynap-
tic neurons (Nj) and normalized by the neurons in the i-th
subgroup (Ni):

Ii, syn =
⎛
⎝ 4∑

j = 1

(GA, ijSA, j + GN, ijSN, j)rj −
8∑

j = 5

GG, ijSG, jrj

⎞
⎠ Nj

Ni

+ τAGA, ext, irext (3)

where the term τAGA, ext, irext describes the constant part of
the AMPA mediated background Poisson input with rate rext

(2.4 KHz) (Wong and Wang, 2006). Unlike (Wong and Wang,
2006; Eckhoff et al., 2011), we do not include synaptic noise into
the model as we find that noise does not significantly affect our
results (not shown).

GX, ij in Equation (3) denotes the averaged coefficient or
strength of the synaptic currents mediated by receptors X (A for
AMPA, N for NMDA, and G for GABA) from neuron j to i.
Their values are constrained by the experimentally observed neu-
ral circuit oscillation frequencies and are assigned as: GA, PP =
4.42 nA, GA, IP = 4.21 nA, GN, PP = 0.10 nA, GN, IP = 0.83 nA,
GG, PI = 2.275 nA, GG, II = 1.75 nA, GA, ext, P = 0.0929 nA, and
GA, ext, I = 0.0716 nA. SX, j is the averaged synaptic gating vari-
able mediated by receptors X expressing on neuron in the j-th

Table 4 | Fraction of neuronal subgroups.

Pyr1 Pyr2 Pyr3 Pyr4 Int1 Int2 Int3 Int4

Pyr1 1
3
5

1
3
5

1
2

1
2

3
10

3
10

Pyr2
5
3

1
5
3

1
5
6

5
6

1
6

1
6

Pyr3 1
3
5

1
3
5

1
2

1
2

3
10

3
10

Pyr4
5
3

1
5
3

1
5
6

5
6

1
6

1
6

Int1 2
6
5

2
6
5

1 1
3
5

3
5

Int2 2
6
5

2
6
5

1 1
3
5

3
5

Int3
10
3

2
10
3

2
5
3

5
3

1 1

Int4
10
3

2
10
3

2
5
3

5
3

1 1

Pyr, Pyramidal cells; Int, Interneurons.

subgroup and follows the established dynamical forms (Brunel
and Wang, 2001; Wong and Wang, 2006; Eckhoff et al., 2011):

dSA, j

dt
= −SA, j

τA
+ rj

1000
(4)

dSN, j

dt
= −SN, j

τN
+ 0.641(1 − SN, j)

rj

1000
(5)

dSG, j

dt
= −SG, j

τG
+ rj

1000
(6)

where τA = 2 ms, τN = 100 ms, and τG = 10 ms are the decay
time constants for AMPA, NMDA, and GABA receptors, respec-
tively. The fraction Nj/Ni can be approximated according to
the experimental observations on the DA and 5-HT receptors
distribution (Pazos and Palacios, 1985; Amargos-Bosch et al.,
2004; Beique et al., 2004; Santana et al., 2004; de Almeida
and Mengod, 2007; Santana et al., 2009). Based on experi-
mental observations (see Table 1), we assume that the ratio
for pyramidal cells expressing D1 to D2 receptors is approxi-
mately 25:15%, and the ratio for interneurons expressing D1
to D2 receptors is approximately 30:10%. We also assume that
the ratio for pyramidal cells or interneurons solely express-
ing 5-HT1A receptors to that those expressing 5-HT1A and
5-HT2A receptors is approximately 50:50%. Moreover, pyrami-
dal cells expressing D2 receptors are often found in apposition
with GABAergic cells not expressing D2 receptors, leading to the
synaptic currents from inhibitory neurons expressing D2 recep-
tors smaller than those from inhibitory neurons expressing D1
receptors (de Almeida and Mengod, 2007). So we specify the
fraction from D2 expressing interneurons to D2 expressing pyra-
midal cells as a fifth of that from D1 expressing interneurons.
Table 4 lists the above-mentioned fractions, where the fraction
from the j-th to i-th subgroup is the value at the i-th row and
j-th column. When simulating the two-population model, we
ignore other subgroups by setting the irrelevant connections
to zero.
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2.4. MODULATION OF SYNAPTIC TRANSMISSION
The synaptic current coefficients or strengths, GX, ji, can be
modulated by DA and 5-HT through the activation of D1,
D2, 5-HT1A, and 5-HT2A receptors. Studies have demonstrated
that D1-like receptors can enhance AMPA, NMDA, and GABA
mediated synaptic currents or receptor expression, while D2-like
receptors decrease them (Seamans et al., 2001b; Gorelova et al.,
2002; Thurley et al., 2008). Similar to the modulation of DA
on synaptic currents, 5-HT also bidirectionally modulates the
synaptic currents through the activation of different receptors:
5-HT1A receptors reduce AMPA and NMDA mediated currents
(Cai et al., 2002; Zhong et al., 2008), while 5-HT2A receptors
increase them. Activation of 5-HT2A receptors on pyramidal
cells can reduce GABA mediated currents (Feng et al., 2001)
while 5-HT1A receptors may suppress the presynaptic GABAergic
release in interneurons (Yan, 2002).

We adopt a scalar, sigmoid function factor for the modula-
tion of synaptic current coefficients (Fellous and Linster, 1988;
Scheler, 2004). In principle, as all 4 considered receptors can mod-
ulate the three (AMPA, NMDA and GABA mediated) synaptic
currents, we have 12 possible modulation factors (Table 5). The
parameters λij and κij depict the modulatory effects of the i-th
receptor on the j-th synaptic type. We set the amplitude λij = 0.2
and the curvature κij = 1/nM for i = 1, 2 and κij = 4/nM for
i = 3, 4.

Usually, the synaptic modulation factors are determined by the
specific types of receptors expressing on the postsynaptic neuron.
For example, GABA mediated currents from D1+5-HT2A
expressing (presynaptic) interneuron to D1+5-HT2A expressing
(postsynaptic) pyramidal cells should be modulated by the

factor
(

1 + λ23

1 + e−κ23([DA]−[DA]1)

)
×
(

1 − λ43

1 + e−κ43([5-HT]−[5-HT]2)

)
.

Figure 2A shows that it is more effective to have [DA] and
[5-HT] to increase/decrease in the same direction. One exception
is the modulation of 5-HT1A on GABA-mediated synaptic
currents. As mentioned above, 5-HT1A receptors can modulate
the GABA-mediated currents via a presynaptic mechanism by
reducing the GABAergic release (Yan, 2002), which effectively
reduces the GABA-mediated currents. Thus, we assume that only
presynaptic expressing 5-HT1A receptors can modulate GABA-
mediated currents by the factor 1 − λ33

1 + exp[−κ33([5-HT]−[5-HT]1)] .

For example, if the postsynaptic pyramidal neuron expresses
D2, 5-HT1A and 5-HT2A receptors, while the presynaptic

inhibitory neuron expresses D1 and 5-HT1A receptors, then only
the postsynaptic D2 and 5-HT2A receptors and the presynaptic
5-HT1A receptors can modulate this specific synaptic current.
The combined modulation factor on the synaptic current is then(

1− λ33
1 + exp[−κ33([5-HT]−[5-HT]1)]

)
×
(

1+ λ13
1 − exp[−κ13([DA]−[DA]2)]

)
(

1 + λ43
1 + exp[−κ43([5-HT]−[5-HT]2)]

)
. Figure 2B shows that having

DA and 5-HT to increase/decrease in opposite directions provides
a more effective modulation effect on this particular synapse.

FIGURE 2 | Examples of synaptic current modulations. (A) Modulation
factor of GABA mediated current from an inhibitory interneuron to a
pyramidal cell, both expressing D1 and 5-HT2A receptors. (B) Modulation
factor of an NMDA- or AMPA-mediated synaptic current by a presynaptic
inhibitory neuron expressing D1 and 5-HT1A receptors and a postsynaptic
pyramidal cell expressing D1 and 5-HT2A receptors.

Table 5 | Modulation factors of DA and 5-HT on synaptic currents.

AMPA NMDA GABA

1 + λ11

1 + e−κ11([DA]− [DA]1)
1 + λ12

1 + e−κ12([DA]− [DA]1)
1 + λ13

1 + e−κ13([DA]− [DA]1)

1 − λ21

1 + e−κ21([DA]− [DA]2)
1 − λ22

1 + e−κ22([DA]− [DA]2)
1 − λ23

1 + e−κ23([DA]− [DA]2)

1 − λ31

1 + e−κ31([5-HT]− [5-HT]1)
1 − λ32

1 + e−κ32([5-HT]− [5-HT]1)
1 − λ33

1 + e−κ33([5-HT]− [5-HT]1)
*

1 + λ41

1 + e−κ41([5-HT]− [5-HT]2)
1 − λ42

1 + e−κ42([5-HT]− [5-HT]2)
1 − λ43

1 + e−κ43([5-HT]− [5-HT]2)

Top to bottom rows: modulation factors due to D1, D2, 5-HT1A, and 5-HT2A receptors, respectively.
*As activation of 5-HT1A receptors on an interneuron can reduce GABA release, an assumption is made in which GABA-mediated currents are modulated only by

presynaptic 5-HT1A receptors on an interneuron and not postsynaptic 5-HT1A receptors.
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3. RESULTS
In the following, we shall first investigate the effects of DA
and 5-HT modulation on individual PFC neurons, and then
followed by various coupled excitatory-inhibitory PFC circuits.
After that, we investigate how a more realistic heterogeneous
multi-population network model is modulated by DA and 5-HT
concentration levels and selective receptor agonists/antagonists.

3.1. NON-MONOTONIC MODULATION OF 5-HT ON PYRAMIDAL CELL
COEXPRESSING 5-HT1A AND 5-HT2A RECEPTORS

As previously mentioned, our model assumes that D1 and
D2 receptors are expressed on distinct neuronal popula-
tions. Thus, it is expected that the modulation of DA on
single neuronal activity should monotonically depend on
the extracellular DA concentration. Similarly, for neurons
solely expressing 5-HT1A or 5-HT2A receptors, the neuronal
activity will also monotonically depend on extracellular 5-
HT concentration. However, for pyramidal cells coexpressing
5-HT1A and 5-HT2A receptors, the modulation of 5-HT is
not monotonic. The steady firing rate for such a pyramidal

cell is r = I
1 − e−gI +I/rmax

with I =
(

1 + δ2

1 + e−α2 ([5-HT]−[5-HT]2)

)
×
(
1+ λ41

1 + e−κ41([5-HT]−[5-HT]2)

)
CPIsyn−

(
1 + δ̄1

1+e−ᾱ1([5-HT]−[5-HT]1)

)
IL.

For any constant Isyn, the combined modulation effect is found
to be non-monotonic (Figure 3). Lower 5-HT concentration
initially decreases the neuronal firing rate because of the acti-
vation of the high affinity of 5-HT1A receptors. But higher
concentration of 5-HT subsequently increases the neuronal firing
rate due to activating the lower affinity 5-HT2A receptors.

3.2. MODULATION ON TWO-POPULATION EXCITATORY-INHIBITORY
NEURONAL NETWORKS

The simplest “canonical” cortical column and its oscillatory
behavior can be modeled by an excitatory neuronal population
mutually coupled to an inhibitory neuronal population (Wilson
and Cowan, 1972). In our model, for every pair of coupled

FIGURE 3 | Non-monotonic modulation of serotonin on the firing rate

of a 5-HT1A and 5-HT2A coexpressing pyramidal cell given a fixed

synaptic input, Isyn. Colors denote different constant Isyn values: 0.5, 0.55,
0.6 and 0.65 nA.

excitatory and inhibitory neuronal populations considered, we
set the parameters (i.e., the fractions in Table 4) describing the
other (six) populations to be zero. Based on the expression of the
various receptors (Tables 2 or 3), there are 4 × 4 = 16 combina-
tions of excitatory and inhibitory neurons in the two-population
network model. In general, we find that if the network consists
of pyramidal cells which express D2 receptors (Pyr2 or Pyr4),
the network cannot attain oscillatory behavior over the ranges
of [DA] and [5-HT] explored. However, if the network includes
D1-expressing pyramidal cells (Pyr1 or Pyr3), a rich repertoire
of dynamical behavior can be produced with varying [DA] and
[5-HT], as described below.

Figure 4 shows the results for the Pyr1-type (D1+5-HT1A)
pyramidal cells coupled to Int1-type (D1+5HT1A) interneurons.
Figure 4A shows an example of the firing rate time course of
Pyr1 neurons for [DA] = 7 nM. Higher [5-HT] level results in
lower oscillation amplitude but faster frequency. The firing rate
time courses for the inhibitory Int1 populations look similar (not
shown). At intermediate [DA], the oscillation frequency decreases
with increasing [DA] while remaining within the high beta range
(Figure 4B).

Figure 5A1 (green lines) summarizes the oscillation ampli-
tudes over a range of [DA] levels. The top green lines denote the
maximum (top) and minimum (bottom) firing rates during oscil-
lation. The red lines represent collections of unstable steady states
(or specifically, unstable fixed points), while the black lines repre-
sent that for the asynchronous stable steady states (or stable fixed

FIGURE 4 | Modulation of DA and 5-HT on a network consisting of

Pyr1-type (D1+5-HT1A) and Int1 (D1+5-HT1A) neurons. (A) Firing rate
time course of pyramidal cells with [DA] = 7 nM and [5-HT] = 0.3 nM
(dotted) or 2 nM (solid). (B) Oscillation frequency decreases with increasing
[DA]. [5-HT] = 0.3 nM (dotted) and 2 nM (solid).
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FIGURE 5 | Modulation of [DA] and [5-HT] on excitatory-inhibitory

neuronal networks. Pyr1 (D1+5-HT1A) neurons paired with: (A) Int1
(D1+5-1HT1A), (B) Int2 (D1+5-HT2A), (C) Int3 (D2+5-HT1A), (D) Int4
(D2+5-HT2A) neurons. Left: Stability or bifurcation diagrams with respect to
[DA] given [5-HT] = 0.3 nM (dotted) or 2, 1, 2,and 2.95 nM 1(solid) for (A–D),

respectively. Black (red) lines: stable (unstable) steady states; top/bottom
green: maximum/minimum firing rates during oscillation. Right: Phase
diagrams with respect to [DA] and [5-HT]. OSC: oscillatory behavior; SFP:
only one stable asynchronous steady state (or fixed point). Inset: oscillation
frequency vs [DA] with fixed [5-HT] values (in left).

points). We can also observe that with sufficiently low [DA], oscil-
lations can disappear through a phase transition or bifurcation
(specifically, a Hopf bifurcation) (Strogatz, 2001), such that the
neurons in the network are tonically and asynchronously firing at
stable rates. Clearly, we can see that higher [5-HT] level can later-
ally shifts the onset of oscillation (bifurcation point) rightward

(compare dotted and bold), which means a higher [DA] level
is required to maintain the oscillations. Moreover, the range of
oscillation amplitudes are also significantly more constrained.
Globally, we can also map out the network behavior with respect
to the [DA] and [5-HT], i.e., a phase diagram. The phase diagram
in Figure 5A2 clearly shows that oscillation behavior can occur
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when [DA] is sufficiently high (∼7 nM) regardless of the [5-HT]
level. The inset in Figure 5A2 is a replicate of Figure 4B.

Figures 5B–D show the modulation of [DA] and [5-HT] on
the network composing Pry1-type pyramidal cells and rest of
the interneuronal types: Int2-type (D1+5-HT2A) inhibitory neu-
rons (B), Int3-type (D2+5-HT1A) inhibitory neurons (C), and
Int4-type (D2+5-HT2A) inhibitory neurons (D). For the net-
work consisting of Pyr1 and Int2 neurons, Figure 5B1 shows two
examples of the bifurcation diagram for pyramidal cells’ firing
rate with respect to [DA] given fixed [5-HT] = 0.3 nM (dotted)
and [5-HT] = 2.0 nM (solid). The phase diagram (Figure 5B2)
shows that the neurons are tonically firing asynchronously given
higher [5-HT] and lower [DA], and synchronously firing given
smaller [5-HT] and moderately higher [DA]. The oscillation
emerges along with increasing [DA] through a Hopf bifurca-
tion. The oscillation amplitude increases and approaches sat-
uration (Figure 5B1), while the oscillation frequency decreases
from 30 Hz to approximately 20 Hz with increasing [DA] (inset
of Figure 5B2). For the network with D2+5-HT1A inhibitory
neurons, only a finite range of [DA] supports oscillation behav-
ior (Figure 5C2). The oscillation emerges and then disappears
through Hopf bifurcations with increasing [DA], regardless
of the [5-HT] levels. There is also an increase follows by a
decrease in oscillation amplitude as [DA] is increased for a given
fixed [5-HT] = 0.3 nM (dotted) and [5-HT] = 2.0 nM (solid)
(Figure 5C1). Thus a non-monotonic dependence of oscilla-
tion frequency on [DA] (Figure 5C2 inset). For the network
with Pyr1- and Int4-type (D2 and 5-HT2A) inhibitory neurons,
oscillation behavior can be obtained only in a finite range of
[DA] if [5-HT] is low ([5-HT] = 0.3 nM) (Figures 5D1,D2),
similar to Figure 5C. A similar minimal (maximal) oscil-
lation frequency (amplitude) can be observed (Figure 5D2
inset, dotted). However, for high [5-HT] ([5-HT] > 2 nM)
and [DA] (>7 nM), oscillation behavior becomes more easily
attainable (bold).

A similar analysis is done on Pyr3-type(D1+5-HT1A+5-
HT2A) pyramidal cells, instead of Pyr1-type. Figure 6
summarizes the analysis of 2-population network of Pyr3
paired individually with the same four (Int1–4) types of
inhibitory neurons. The phase diagrams (Figure 6, right) indi-
cate that oscillations cannot be attained if [DA] and [5-HT] levels
are sufficiently low. Figures 6A1,A2 (Pyr3 and Int1) look qualita-
tively similar to Figures 5A1,A2 (Pyr 1 and Int1) except that now
there is a finite regime of [5-HT] that does not allow oscillation
to occur. Figures 6B1,B2 (Pyr3 and Int2) look qualitatively
similar to that of Figures 5B1,B2 (Pyr1 and Int2) throughout
the range of [DA] and [5-HT] explored. Figures 6C1,C2 (Pyr3
and Int3) seem to be a hybrid of Figure 6A (Pyr3 and Int1) and
Figure 5C (Pyr1 and Int3), with one of the asynchronous regions
(Figure 6C2). This implies that when [5-HT] is sufficiently high,
oscillation can occur even with very low level of [DA] (<3.5 nM).
The network with Pyr3 and Int4 (Figure 6D) looks similar to
that of Pyr1 and Int4 (Figure 5D), but the oscillation regime can
now occur over a much larger range of [DA] and [5-HT].

We have seen how [DA] and [5-HT] can modulate the net-
work consisting of different combinations of pyramidal cells and
inhibitory neurons in Figures 4–6. Taken together, we can make

several observations. Firstly, we can observe that pyramidal cells
with (excitatory) 5-HT2A receptors can oscillate even with low
[DA] (Figures 6A,C,D) as compared to pyramidal cells with no
5-HT2A receptors (Figures 5A,C,D). Secondly, inhibitory neu-
rons with 5-HT2A receptors can enhance inhibition in the cir-
cuit, which can cause oscillation to cease (compare Figure 6D2
with Figure 5D2). Thirdly, higher [DA] will inhibit interneu-
rons expressing D2 receptors due to the latter’s inhibitory nature
upon activation, and as a result, network oscillation will cease
(Figures 5C2, D2, 6C2, D2).

3.3. HETEROGENEOUS NETWORK MODEL
After investigating the DA and 5-HT modulation on vari-
ous possible two-population excitatory-inhibitory networks, we
shall now study the neuromodulation and drug effects on the
dynamics of a 8-population network fully connected with neu-
rons expressing all the considered receptor types and their
combinations.

3.3.1. 5-HT and DA modulation
We first vary [DA] to investigate the modulation of DA, fix-
ing [DA]1 = 4 nM, [DA]2 =8 nM, [5-HT]1 = 1 nM, [5-HT]2 =
2 nM, and [5-HT] = 0.3 nM. Oscillation emerges at [DA] =
3.21 nM through a Hopf bifurcation. Due to the higher affin-
ity of the excitatory D1-like receptors than that of inhibitory
D2-like receptors, the amplitudes of the neuronal firing rates
first increase before reducing or saturating as [DA] increases
(Figures 7A–C). This is especially pronounced for pyramidal cells
which express D2 receptors (Pyr2, Pyr4, Int3, and Int4), exhibit-
ing an inverted U-shaped modulation (Pyr2 in Figure 7B; Pyr4,
Int3 and Int4 not shown due to the modulation on these neu-
ron by DA is similar to that of Pyr2). The oscillation frequency
decreases from low gamma to beta band with increasing [DA],
before it slightly increases again with further increase in [DA]
(Figure 7D). The value of [DA] producing the minimal oscil-
lation frequency (∼6 nM) coincides with that of the maximal
neuronal firing rates.

Next, we vary [5-HT] while keeping [DA] fixed at 5 nM,
and having [DA]1 = 4 nM, [DA]2 = 8 nM, [5-HT]1 = 1 nM,
[5-HT]2 = 2 nM, and [DA] = 5 nM. Figure 8 shows that 5-HT
modulates the network activity in an interesting manner. The
network oscillates either at a low or high [5-HT] level, while inter-
mediate [5-HT] level (within the 1.08–2.22 nM range) leads to
asynchronous tonic stable activity (Figures 8A–C). The under-
lying reason for such a phenomenon is due to the different
affinities of 5-HT1A and 5-HT2A receptors. This intermedi-
ate tonic stable state may not arise if [5-HT]1 > [5-HT]2.
In fact, we have observed such multiple oscillation regimes in
the simpler two-population excitatory-inhibitory network model
(Figures 5B2,C2, 6C2,D2). For pyramidal cells without 5-HT2A
receptors (Pyr1 and Pyr2), its activity is almost fully suppressed
by 5-HT1A receptor inhibition (Figure 8A; Pyr2 not shown). The
slight increase in activity with oscillation is indirectly activated
by other neuronal subgroups (e.g., excitation from oscillating
Pyr3-type neurons; Figure 8B). The frequency of the oscilla-
tion increases with increasing [5-HT] before the latter reaches
a Hopf bifurcation point (1.08 nM), after which the oscillation
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FIGURE 6 | Modulation of [DA] and [5-HT] on excitatory-inhibitory

neuronal networks. Pyr3 (D1+5-HT1A+5-HT2A) neurons paired with: (A)

Int1 (D1+5-1HT1A), (B) Int2 (D1+5-HT2A), (C) Int3 (D2+5-HT1A), (D) Int4

(D2+5-HT2A) neurons. Left: Stability or bifurcation diagrams with respect to
[DA] given [5-HT] = 0.3 nM (dotted) or 2 nM (solid). Right: phase diagrams.
Label as in Figure 5.

ceases. When [5-HT] exceeds a larger critical value (2.22 nM),
the frequency decreases toward a stable value of about 24 Hz
(Figure 8D). It should be noted that the activations of neurons
at high levels of [5-HT] are observed only for Pyr3-type (D1+5-
HT1A+5-HT2A) pyramidal cells and Int2-type (D1+5-HT2A)
inhibitory neurons, while the other types of neurons are inhibited
(not shown).

Finally, we vary [DA] and [5-HT] simultaneously, and find
that if [DA] is above a certain value (10.946 nM), the network

always oscillates for any [5-HT] level (Figure 9A). Specifically,
there exist a Λ-shaped green curve in Figure 9 below which
the network cannot support oscillatory activity (black region),
while above it oscillation occurs. Although the oscillation fre-
quencies generally decreases with increasing [DA] levels, they stay
around the same range (Figure 9). Moreover, the frequency of
the oscillation non-monotonically depends on [5-HT]; increas-
ing before [5-HT] exceeds the left branch of the Λ shape in the
phase diagram, and then decreasing after [5-HT] exceeds the right
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FIGURE 7 | Dependence of the heterogeneous network behavior on

[DA]. Oscillation of the network emerges from a Hopf bifurcation at
[DA] = 3.21 nM. (A–C) The amplitude of the oscillation increases with
increasing [DA] before the activation of D2 receptors reduce (A,C) or

suppress it (B). (D) The frequency of the oscillation decreases with
increasing [DA] due to the D1 receptors before it increases slightly again
upon activation of D2 receptors. [DA]1 = 4 nM, [DA]2 = 8 nM, [5-HT]1 =
1 nM, [5-HT]2 = 2 nM, and [5-HT] = 0.3 nM.

FIGURE 8 | Dependence of the heterogeneous network behavior on

[5-HT]. The network oscillates only for low [5-HT] (<1.08 nM) or high
[5-HT] (>2.22 nM). (A) Activity of pyramidal cells expressing 5-HT1A is
almost totally suppressed by the activation of 5-HT1A when [5-HT]
exceeds [5-HT]1 (note: log scale). (B) Activity of pyramidal cells

expressing D1, 5-HT1A, and 5-HT2A receptors. (C) Activity of
interneurons expressing D1 and 5-HT2A receptors. (D) Dependence of
the oscillation frequency on [5-HT]. Insets: firing rates of Pyr 3 and Int
2 given [5-HT] = 0.5 nM and 2.5 nM. [DA]1 = 4 nM, [DA]2 = 8 nM,
[5-HT]1 = 1 nM, [5-HT]2 = 2 nM, and [DA]= 5 nM.
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FIGURE 9 | Heterogeneous network behavior with respect to [DA] and

[5-HT]. Black region: Only asynchronous tonic stable firing states. Above
the regions, oscillations can occur. Color bar denotes the oscillation
frequencies (from 15 to 36 Hz) which depend on the combination of [5-HT]
and [DA] levels. For [DA] > 10.946nM, there exists an optimal [5-HT] value
where the network can attain the maximum frequency oscillation.

branch of the Λ shape (Figure 9). When [DA] > 10.946 nM, there
exists an optimal [5-HT] value where the network can attain the
maximum frequency oscillation. The peak of the frequency lies
in the gamma range, which is often observed during attentional
processing (Benchenane et al., 2011). Interestingly, when [DA] is
smaller than 4.1 nM, there is only a narrow finite range of [5-HT]
values that supports oscillatory behavior.

3.3.2. 5-HT and DA receptor selective agonist/antagonist
Having observed how the PFC network model can be modulated
by [DA] and [5-HT], we shall now investigate the influence of
DA and 5-HT receptors selective agonist or antagonist. A selective
agonist (antagonist) is a drug that can activate (block) a spe-
cific receptor without affecting other receptors. Our model can
mimic the effect of receptor selective agonist or antagonist by
decreasing or increasing the half maximal effective concentration
of the receptors, namely, [DA]1 for D1, [DA]2 for D2, [5-HT]1

for 5-HT1A, or [5-HT]2 for 5-HT2A receptors (Lambert, 2004;
Golan et al., 2007).

To investigate the effect of D1 selective agonist or antagonist,
we fix [DA]2 = 8 nM, [5-HT] = 0.3 nM, [DA] = 3 nM, and vary
[DA]1 in the range 0–10 nM. We find that smaller [DA]1 values
(simulating D1 receptor agonist) favors larger firing rate ampli-
tudes and slower oscillations (Figure 10). At intermediate [DA]1

values, there is a transition to a smaller oscillation amplitude.
Higher [DA]1 values eventually shuts off the oscillation behavior
via a Hopf bifurcation (at [DA]1 = 4.79 nM) with the percentage
of active D1 receptors approximately at 1/(1 + exp(1.78667)) =
14.35%. With regard to the neuronal activity, decreasing [DA]1

general leads to higher neuronal firing rates. As [DA]1 increases,
the oscillation amplitude of D1-expressing neurons decreases
slower (Figures 10A,C) than that of D2 expressing neurons
(Figure 10B), before they all reaches a stable asynchronous
tonic state .

Next, we vary [DA]2 while fixing [DA]1 = 4 nM, [5-HT] =
0.3 nM, [DA] = 4 nM, to mimic the influence of D2 selec-
tive agonist/antagonist on the oscillation. The results are shown
in Figure 11. Unlike D1 modulation, no bifurcation happens
when we vary [DA]2, and the behavior of the network does not
change dramatically. The variation of [DA]2 only slightly increase
the oscillation frequency (Figure 11), but affects the oscillation
amplitudes of only D2-expressing neurons (Figures 11B,D).

To study the effects of selective 5-HT 1A agonist/antagonist, we
vary [5-HT]1 while fixing [DA]1 = 4 nM, [DA]2 = 8 nM, [DA] =
4 nM, [5-HT]2 = 2 nM, [5-HT] = 0.3 nM. We find that the sys-
tem becomes oscillatory once [5-HT]1 exceeds a critical value
(Hopf bifurcation point at [5-HT]1 = 0.516 nM). The frequency
(amplitude) of the oscillation decreases (increases) with increas-
ing [5-HT]1, eventually reaching a robust oscillatory behavior
after the 5-HT1A receptors are blocked (Figure 12).

Finally, we investigate the modulation of 5-HT2A selective
agonist/antagonist by fixing [DA]1 = 4 nM, [DA]2 = 8 nM, [DA]
= 4 nM, [5-HT]1 = 1 nM, and varying [5-HT]2. Increasing [5-
HT]2 from 0 to 5 nM, 5-HT2A receptors transit from the acti-
vated state to the blocked state. As a result, the amplitude
of the oscillation decreases, but the frequency of the oscilla-
tion increases (Figure 13). It is to be noted that the different
neuronal types are affected differently. For example, the fir-
ing rate of pyramidal cells expressing D1 and 5-HT1A recep-
tors decreases to approximately 10 Hz (Figure 13A), but that of
pyramidal cells expressing D2 and 5-HT1A (or 5-HT1A and
5-HT2A) receptors decreases to less than 1 Hz (Figure 13B).
The firing rate of interneurons expressing D1 and 5-HT1A (or
5-HT2A) decreases to approximately 20 Hz (Figure 13C), and
that of interneurons expressing D2 and 5-HT1A (or 5-HT2A)
receptors decreases to less than 5 Hz (Figure 13D). As atypical
antipsychotic drugs typically block 5-HT2A and D2 receptors
(Maher et al., 2002, 2011), we also investigated such drug effects
by increasing the values of [5-HT]2 and [DA]2, but we do not
find much difference from that of individually varying [5-HT]2

and [DA]2.

4. DISCUSSION
4.1. SUMMARY OF RESULTS
In this work, we have shown, from single neuron to neuronal
circuits, how DA and 5-HT, with their multiple receptors and
combinations, can tonically modulate the PFC neural activity,
resulting in a variety of complex behaviors.

Due to the different affinities and opposing effects of the
5-HT1A and 2A receptors, the neuronal firing activity of a PFC
excitatory neuron coexpressing these two receptors can be inhib-
ited before being enhanced as 5-HT concentration increases.
When we extend our analysis to the two-population excitatory-
inhibitory neuronal networks, we find that generally, pyramidal
cells expressing D1 receptors can provide various interesting net-
work behaviors. In particular, 5-HT and DA can modulate the
amplitude and frequency of the network oscillations. Depending
on the receptor types expressed by the neurons in the network,
5-HT and DA modulation can cause the oscillations to emerge or
cease. Hence, this can result in a finite oscillatory regime, which
can create optimal oscillation frequency and amplitude with
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FIGURE 10 | D1 selective agonist/antagonist on the heterogeneous

network. Increasing [DA]1 will decrease the amplitude of oscillation but
increase the frequency of oscillation. (A) Dependence of firing rate of
pyramidal cell (D1+5-HT1A) on [DA]1. The amplitude of the oscillation, the
difference between the green lines, decreases with increasing [DA]1. (B)

Dependence of firing rate of pyramidal cell (D2+5-HT1A) on [DA]1. (C) The
firing rate of interneurons (D1+5-HT1A) depends on [DA]1. (D) Frequency of
oscillation increases with the increase of [DA]1 before the agonist/antagonist
shuts off the oscillation. Insets: firing rates of two types of pyramidal cells
over time with [DA]1 = 1 nM (left), and [DA]1=3 nM (right).

FIGURE 11 | D2 selective agonist/antagonist affects the oscillation

amplitudes of D2-expressing neurons. [DA]2 increases from 4
to 9 nM slightly decrease the frequency of oscillation. (A) Firing
rate of pyramidal cell expressing D1 and 5-HT1A receptors. (B)

Firing rate of pyramidal cells expressing D2 and 5-HT1A
receptors. (C) Firing rate of interneuron expressing D1 and
5-HT2A receptors. (D) Firing rate of interneurons expressing D2
and 5-HT1A receptors.
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FIGURE 12 | 5-HT1A selective agonist/antagonist effects on the

network behavior. The oscillation merges through Hopf bifurcation
at [5-HT]1 = 0.516 nM. The amplitude increases with increasing
[5-HT]1 and reaches a plateau after almost all of 5-HT1A receptor
are blocked. Firing rate of pyramidal cell (D1+5-HT1A) (A),

pyramidal cell (D2+5-HT1A) (B), and interneuron (D1+5-HT1A) (C).
(D) Oscillation frequency decreases with increasing [5-HT]1 and
approaches a stable value. Insets: firing rate timecourse of
pyramidal cell (D1+5-HT1A) and interneuron (D2+5-HT2A) with
[5-HT]1 = 0.6 nM (left) and [5-HT]1 = 1.1 nM (right).

respect to certain [DA] or [5-HT] level. Moreover, we find that
certain combinations of receptors are conducive for the robust-
ness of the oscillatory regime, and for the existence of multiple
oscillatory regimes.

The analysis of the two-population model provides us a lever-
age to understanding the more complex and realistic heteroge-
nous network model. In the heterogeneous network model, the
pyramidal cells and interneurons with all the considered combi-
nations of D1, D2, 5-HT1A and 5-HT2A receptors are synapti-
cally coupled. The model reveals that for the network to oscillate,
it requires a sufficiently high level of [DA]. At intermediate lev-
els of [DA], an interesting bimodal feature with respect to 5-HT
concentration level appears - network oscillation can occur in
two separate ranges of 5-HT concentration level. This bimodal
feature is largely contributed by the different affinities and oppos-
ing effects of 5-HT1A and 5-HT2A receptors, as observed in
the two-population model. Very low DA concentration level can
suppress the oscillation regardless of the 5-HT level. Finally, we
show that selective D1 receptor antagonists (agonists) tend to sup-
press (enhance) network oscillations, and shift from beta toward
gamma band, while selective 5-HT1A antagonists (agonists) act
in opposite ways. Selective D2 or 5-HT2A receptor antagonists
can lead to decrease in oscillation amplitudes, but only 5-HT2A
antagonists can increase the oscillation frequency.

Based on the analysis of the two-population and full network
models, a general trend can be observed: the oscillation frequency

will decrease if the change causes an overall increase in exci-
tation within the network ([DA]1 ↓, [DA]2 ↑, [5-HT]1 ↑, and
[5-HT]2 ↓), and vice versa.

4.2. RELATIONS TO NEUROPHARMACOLOGICAL DRUG EFFECTS
As mentioned earlier, abnormal beta and gamma band oscil-
lations have been observed in various neurological and neu-
ropsychiatric disorders (Spencer et al., 2003; Cho et al., 2006;
Uhlhaas and Singer, 2006, 2010; Basar and Guntekin, 2008;
Gonzalez-Burgos and Lewis, 2008; Gonzalez-Burgos et al.,
2010). Schizophrenic patients (late responder to antipsychotic
drugs) have been shown to have enhanced power in the beta2
(16.5–20 Hz) frequency band in the frontal cortex as com-
pared to controls (Merlo et al., 1998; Venables et al., 2009).
Using fluphenazine, an antagonist of both pre- and post-
synaptic D2 receptors, beta2 in schizophrenic patients can be
reduced (Kleinlogel et al., 1997). In our model, if we only
simulate the effect of D2 postsynaptic receptor antagonist,
the results is actually an enhancement of beta2 oscillation
amplitude (Figure 11). However, antagonist of D2 pre-synaptic
receptors can effectively decrease the overall DA concentra-
tion level, which can result in a shift in the oscillation fre-
quency out of the beta2 range (Figure 7). Hence the model
suggests that the antagonist effects on the D2 presynaptic
receptors may be more dominant than the D2 postsynaptic
receptors.
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FIGURE 13 | 5-HT2A selective agonist/antagonist on the network

behavior. Increasing [5-HT]2 from 0.5 to 2.0 nM, the amplitude of the firing
rate oscillation decreases, but the frequency of the oscillation slightly

increases. Firing rate of pyramidal cell (D1+5-HT1A) (A), pyramidal cell
(D2+5-HT1A) (B), interneuron (D1+5-HT2A) (C), and interneuron
(D2+5-HT1A) (D).

In a rat model of Parkinson’s disease, beta band oscillation
in the frontal cortex is abnormally high compared to controls
(Sharott et al., 2005). In that work, the authors showed that
administration of apomorphine, a non-selective dopamine ago-
nist which activates both D1- and D2-like receptors (but with
higher preference for D2-like receptors), reduces the high beta
band power and shifts the oscillation slightly toward higher fre-
quency (from 28 Hz to about 35 Hz). In our model, D2 agonist
generally reduces the oscillation amplitude of the beta band
(Figure 11), while D1 agonist slightly decreases the oscillation fre-
quency. The former is consistent with the experiment but not the
latter. This discrepancy deserves to be further investigated.

Hallucinogens (psychedelics) are agonists of 5-HT2 recep-
tors, enhancing PFC activity and metabolism in humans, and
for treatment of psychiatric disorders (Nichols, 2004). It is
shown that application of the 5-HT2 agonist (2,5-Dimethoxy-
4-iodoamphetamine or DOI) as compared to 5-HT2 antag-
onist (ketanserin) can lower the power of the beta band in
the EEG signal from the frontal cortex of anesthesized rats
(Budzinska, 2009). Our model with high [5-HT]2 value (mimick-
ing 5-HT2A antagonists) also reduces the oscillation amplitude
in the beta band (Figure 13), and thus is consistent with the
experiments.

4.3. MODEL LIMITATIONS AND FUTURE WORK
Our modeling approach involves incorporating various experi-
mental data to constrain the model parameters. This includes
electrophysiological and pharmacological properties of PFC neu-
rons and synapses, and how these are distinctly modulated by

the different DA and 5-HT receptors. Thus, our approach lies
more toward biologically constrained firing-rate models (Wong
and Wang, 2006; Eckhoff et al., 2011) than abstract connection-
ist models (Fellous and Linster, 1988). This is a first step toward
a systemic understanding of DA and 5-HT comodulation in the
PFC. Admittedly, the model has its limitations.

As expected from large-scale biologically based modeling,
many model parameters are involved here. We have tried to
base as many parameters as possible from experimental data.
Some of these parameters are directly obtained or inferred from
experimental measurements, while others are based on indirect
evidences or assumptions. The extensive investigations on the
localization of DA and 5-HT receptors in PFC provided biologi-
cal plausible proportions of subpopulations of neurons in the PFC
network. However, we did not simulate all possible details in the
model. For example, we did not include pyramidal cells which
coexpress both D1 and D2 receptors. We also did not include
PFC neurons which do not express D1, D2, 5-HT1A and 5-HT2A
receptors. It remains unknown how these neurons will indirectly
affect PFC network behavior upon 5-HT and DA co-modulation.
Moreover, DA and 5-HT receptors generally have low and high
affinity states, but the present model assume only receptors with
high affinity states. In terms of selecting the parameters for the
model, we have only chosen a single value for each parameter or
variable (e.g., tonic basal [5-HT] in the PFC) within a range of
available values identified over various separate experiments. This
problem is often encountered when integrating data from multi-
ple sources during model development. Furthermore, oscillations
in the cerebral cortex can differ among cortical layers, but the
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current model does not deal with this issue. The present model
also considers only tonic release state, which is more of a resting
state and independent of any specific cognitive task.

Despite these limitations and assumptions, it is sometimes
advantageous to understand neuromodulation phenomena from
simpler to more complex models, teasing apart the contributions
of individual components of a system - a key advantage of com-
putational modeling. As we can easily observe, even with such
simplified models, the behaviors produced due to the DA-5-HT
comodulation are already rather complex. Moreover, the spe-
cific [DA]1 and [DA]2, [5-HT]1 and [5-HT]2 values only reflect
their comparative affinities with DA or 5-HT. Variation of these
values while keeping their relative affinities will not dramati-
cally change the network’s qualitative behavior under DA and
5-HT co-modulation. That is, their absolute values are not as
important as their relative values. A possible extension of our

present work would be to explicitly specify the cortical layers,
where the latter are known to be distinctively modulated by DA
and 5-HT (Wang, 2010). Furthermore, for the model to gener-
ate slower oscillations such as theta and other lower frequency
bands, and hence directly compare with other experimental data
(Benchenane et al., 2010; Puig et al., 2010), the model may
require additional slower dynamical features such as GABAB-
mediated synaptic currents. These concerns will be addressed in
future work.
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