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Serotonin (5-HT) is a neuromodulator that has been attributed to cost assessment and
harm aversion. In this review, we look at the role 5-HT plays in making decisions when
subjects are faced with potential harmful or costly outcomes. We review approaches for
examining the serotonergic system in decision-making. We introduce our group’s paradigm
used to investigate how 5-HT affects decision-making. In particular, our paradigm combines
techniques from computational neuroscience, socioeconomic game theory, human–robot
interaction, and Bayesian statistics. We will highlight key findings from our previous
studies utilizing this paradigm, which helped expand our understanding of 5-HT’s effect on
decision-making in relation to cost assessment. Lastly, we propose a cyclic multidisciplinary
approach that may aid in addressing the complexity of exploring 5-HT and decision-making
by iteratively updating our assumptions and models of the serotonergic system through
exhaustive experimentation.
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INTRODUCTION
Recent theoretical work has implicated serotonergic (5-HT)
function in critical dimensions of reward versus punishment
and invigoration versus inhibition (Boureau and Dayan, 2010).
Both of these dimensions have influence on a broad range of
decision-making elements, including reward processing, impul-
sivity, reward discounting, predicting punishment, harm aversion,
opponency with other neuromodulators, and anxious states
(Doya, 2008; Dayan and Huys, 2009; Cools et al., 2010). In this
review, we first provide evidence from the literature indicating
several of the proposed functions attributed to the serotonergic
system. Next, we discuss approaches that utilized game theory and
other behavioral measures along with some metric of serotonergic
function. Finally, we introduce a multidisciplinary experimental
paradigm to model the role 5-HT plays in decision-making, and
present some of our work that has utilized this paradigm.

Our paradigm begins with base assumptions regarding the role
of serotonin or other neuromodulators to construct a simulated
agent that can adapt to environmental challenges. That adaptive
agent, which is either embodied in a robotic platform for human–
robot interaction studies or embedded in a computer interface,
is incorporated into a game theoretic environment. The data
collected from these experiments are then analyzed to support
or reject hypotheses about the roles of neuromodulators in spe-
cific cognitive functions such as decision-making, which may lead
to the use of more sophisticated adaptive agents in subsequent
studies.

FUNCTIONAL ROLES OF SEROTONIN
It has been suggested that serotonin influences a broad range
of decision-based functions such as reward assessment, cost
assessment, impulsivity, harm aversion, and anxious states. This
section discusses recent evidence demonstrating the role serotonin
has on these decision-based functions.

Though reward processing is a function that has primarily
been attributed to the dopaminergic (DA) system, 5-HT has also
been associated with reward-related behavior (Tanaka et al., 2007,
2009; Nakamura et al., 2008; Schweighofer et al., 2008; Bromberg-
Martin et al., 2010; Okada et al., 2011; Seymour et al., 2012).
Recent single-unit recordings of serotonergic neurons in the mon-
key dorsal raphe nucleus (DRN), which is a major source of
serotonergic innervation in the central nervous system, demon-
strated that many of these neurons represent reward information
(Nakamura et al., 2008; Bromberg-Martin et al., 2010; Okada
et al., 2011). Nakamura et al. (2008) showed that during a sac-
cade task, after target onset but before reward delivery, the activity
of many DRN neurons was modulated by the expected reward
size. Bromberg-Martin et al. (2010) showed that a group of DRN
neurons tracked progress toward future delayed reward after the
initiation of a saccade and after the value of the trial was revealed.
These studies suggest that DRN neurons, which include 5-HT neu-
rons, may influence behavior based on the amount of delay before
reward delivery and the value of the reward in future motiva-
tional outcomes (Nakamura et al., 2008; Bromberg-Martin et al.,
2010).
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Other anatomical evidence has shown that projections from
DRN to reward-related DA regions support 5-HT’s role in both
reward and punishment (Tops et al., 2009). A theoretical review by
Boureau and Dayan (2010) suggested that the 5-HT and dopamine
systems primarily activate in opposition and at times in collabo-
ration for goal directed actions. A review by Doya (2008) also
highlighted possible computational factors of decision-making
in brain regions innervated by serotonin and dopamine (for a
schematic of the potential interplay between 5-HT and other
brain structures, see Doya, 2008, Figure 3). 5-HT projections
to dopamine areas have been shown to regulate threat avoidance
(Rudebeck et al., 2006; Tops et al., 2009), and an impairment in
these projections can lead to impulsivity and addiction (Deakin,
2003). Altogether, the interaction between these systems allows
5-HT to play various functional roles in decision-making where
reward and punishment, as well as invigoration and inhibition, are
in opposition.

In addition to reward processing, several studies have inves-
tigated serotonin’s involvement in reward and impulsivity by
manipulating levels of central 5-HT in humans using the acute
tryptophan depletion (ATD) procedure. ATD is a dietary reduc-
tion of tryptophan, an amino acid precursor of 5-HT, which causes
a rapid decrease in the synthesis and release of the human brain’s
central 5-HT, thus affecting behavioral control (Nishizawa et al.,
1997). Altering 5-HT levels via ATD influences a subject’s ability
to resist a small immediate reward over a larger delayed reward
(delay reward discounting; Tanaka et al., 2007, 2009; Schweighofer
et al., 2008). As such, subjects that underwent ATD had both an
attenuated assessment of delayed reward and a bias toward small
reward, which were indicative of impulsive behavior.

Besides reward, 5-HT has also been linked to predicting pun-
ishment or harm aversion (Cools et al., 2008; Crockett et al., 2009,
2012; Tanaka et al., 2009; Seymour et al., 2012). Cools et al. (2008)
paired the ATD procedure with a reversal-learning task, demon-
strating that subjects under ATD made more prediction errors for
punishment-associated stimuli than for reward-associated stim-
uli. In a related study, Crockett et al. (2009) utilized the ATD
procedure with a Go/No-Go task to show that lowering 5-HT
levels resulted in a decrease in punishment-induced inhibition.
In a follow up study, they investigated the mechanisms through
which 5-HT regulated punishment-induced inhibition by using
the ATD procedure paired with their Reinforced Categorization
task, a variation on the Go/No-Go task (Crockett et al., 2012).
Subjects with lowered 5-HT were faster in responding to stim-
uli predictive of punishments (Crockett et al., 2012), indicating a
manipulation of some punishment-predicting mechanism associ-
ated with standard serotonergic function. Together, these results
suggest that 5-HT influences the ability to inhibit actions that
predict punishment and to avoid harmful circumstances.

Beyond punishment, 5-HT has been implicated in stress and
anxiety (Millan, 2003; Jasinska et al., 2012). A recent review by
Jasinska et al. (2012) proposed a mechanistic model between envi-
ronmental impact factors and genetic variation of the serotonin
transporter (5-HTTLPR), linking to the risk of depression in
humans. They argued that genetic variation may be linked to
a balance in the brain’s circuitry underlying stressor reactivity
and emotion regulation triggered by a stressful event, ultimately

leading to depression (Jasinska et al., 2012). A review by Millan
(2003) described studies showing that 5-HT function has been
tied to an organism’s anxious states triggered by conditioned or
unconditioned fear. Together, this work suggests a functional role
for 5-HT in the control of anxious states.

In summary, these studies reveal serotonergic modulation of
a wide range of decision-based functions including but not lim-
ited to reward processing, motivational encoding, punishment
prediction, discounting, impulsivity, harm aversion, and anx-
ious states. Building on this body of work, many researchers in
the field have utilized their own approaches in studies to better
understand the function of serotonin in behavior. In the present
paper, we introduce a novel, multi-disciplinary approach to study
serotonin’s influence in decision-making that may highlight many
of the functions described above. Our paradigm combines tech-
niques from computational neuroscience, socioeconomic game
theory, human–robot interaction, and Bayesian statistics.

INVESTIGATION OF DECISION-MAKING USING GAME THEORY AND
SEROTONERGIC MANIPULATIONS
Game theory is a toolbox that is utilized in a multitude of disci-
plines for its ability to quantitatively measure and predict behavior
in situations of cooperation and competition (Maynard Smith,
1982; Nowak et al., 2000; Skyrms, 2001). It operates on the princi-
ple that organisms will balance reward with effort while acting in
self-interest to obtain the optimal result in a given situation. Game
theory is especially valuable as a venue for studying human behav-
ior because it provides a replicable, predictable, and controlled
environment with clearly defined boundaries. These elements are
essential when introducing computer agents as opponents.

Game theory has been combined with manipulations of
serotonin to help understand its role in socioeconomic decision-
making. For example, in the Prisoner’s Dilemma, where subjects
either cooperate or defect in a risky situation, it has been shown
that ATD increases the prevalence of defecting, which might be
considered an impulsive, risk-taking choice (Wood et al., 2006).
Similarly, the Ultimatum game is a test of cooperation in which a
proposer offers a share of a resource to a receiver, and the receiver
can either accept or reject this offer (Nowak et al., 2000; Sanfey,
2003). In studies conducted by Crockett et al. (2008) incorpo-
rating the Ultimatum game with serotonergic manipulations, it
was found that subjects under ATD rejected a significantly higher
proportion of unfair offers and that decreased serotonin lev-
els correlated with increased dorsal striatal activity induced by
costly punishment (Crockett et al., 2013). In contrast, subjects that
ingested citalopram, an SSRI, were less likely to punish unfairness
in the Ultimatum game (Crockett et al., 2010). Together, these
studies implicate the involvement of the serotonergic system with
cost in decision-making, an important result in understanding the
cost and reward mechanisms in the brain.

Another notable game that focuses on the investigation of coop-
eration and social contracts is the Stag Hunt. In the Stag Hunt,
two players must independently choose to hunt a high payoff
stag cooperatively or a low payoff hare individually. The risk in
decision-making lies in the case when only one player chooses
stag, resulting in no payoff for that player (Skyrms, 2004). The
body of work involving Stag Hunt largely involves simulations

Frontiers in Integrative Neuroscience www.frontiersin.org November 2013 | Volume 7 | Article 78 | 2

http://www.frontiersin.org/Integrative_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Integrative_Neuroscience/archive


“fnint-07-00078” — 2013/11/19 — 20:26 — page 3 — #3

Asher et al. Dynamic paradigm to investigate serotonin

with set-strategy agents or human players as opponents (Skyrms,
2004; Szolnoki and Perc, 2008; Scholz and Whiteman, 2010). More
recently, the use of adaptive agents, computer players that learn
in real-time, have been gaining popularity in the field of social
decision-making (Yoshida et al., 2008, 2010). Yoshida et al. (2010)
conducted a study in which adaptive agents played a spatiotem-
poral version of the Stag Hunt game against human subjects in an
fMRI scanner, implicating both rostral medial prefrontal cortex
and dorsolateral prefrontal cortex in processing uncertainty and
sophistication of agent strategy, respectively. Utilizing adaptive
agents allows for a dynamic yet controlled behavioral manipu-
lation in subjects, which is useful within game environments,
particularly if applied to studying the cost and reward mechanisms
of the brain.

Pairing a decision-making task with ATD in the absence of
game theory has further illuminated serotonin’s involvement in
behavior. This combination has revealed serotonin’s involve-
ment in the reflexive avoidance of relatively immediate small
costs in favor of larger future costs with an Information Sam-
pling Task (Crockett et al., 2011). The pairing of ATD with a
“four-armed bandit” task showed that depleted subjects tended
to be both more perseverative and less receptive to reward (Sey-
mour et al., 2012). These results show that the combination of a
decision-making task with serotonergic manipulation (e.g., ATD)
can provide important information about the role serotonin has
in the decision-making process. In general, the combination of
ATD with a decision-making task provides a useful venue for the
exploration of social behavior and the neural correlates of cost and
reward in decision-making.

In addition to altering decision-making, reduced 5-HT lev-
els via ATD have been correlated with individual differences in
subject behavior (Krämer et al., 2011; Demoto et al., 2012). Sub-
jects with high neuroticism and low self-directedness personality
traits have been shown to be particularly susceptible to central
5-HT depletion, resulting in decreased selection of delayed larger
reward over smaller immediate reward when performing a delayed
reward choice task (Demoto et al., 2012). Similarly, subjects with
low baseline aggression have displayed reduced reactive aggression
when performing a competitive reaction time task with depleted
5-HT levels (Krämer et al., 2011). The results from these studies
provide evidence for individual behavioral differences correlated
with central 5-HT manipulation, which may serve as a direction
for future study.

In summary, due to the complex nature of the serotonergic
system, researchers have utilized several complementary methods
to investigate the varied aspects of its behavioral influence. This
review introduces a multidisciplinary experimental paradigm to
model the role 5-HT plays in decision-making.

A MULTIDISCIPLINARY PARADIGM TO INVESTIGATE THE
SEROTONERGIC SYSTEM
Our paradigm combines socioeconomic game theory with embod-
ied models of learning and adaptive behavior (Figure 1A). In
particular, we constructed our computational models to reflect
5-HT’s potential interplay with the expected cost of a decision
(Daw et al., 2002; Cools et al., 2007), under the assumption that
5-HT, released by the DRN, can act as an opponent to dopamine.

In this case, activation of the 5-HT system may cause an organ-
ism to be withdrawn or risk-averse, and the DA system causes the
organism to be uninhibited or risk taking (Boureau and Dayan,
2010). Within the context of this paper, cost is defined as either
the perceived loss of an expected payoff or harm from a poten-
tial threat, depending on the scope of the study it is used in. We
will compare our present results using this paradigm with other
studies, and discuss future steps that may lead to more accurate
modeling of serotonin’s proposed role in assessing the tradeoff
between cooperation and competition (Figure 1B).

PARADIGM OVERVIEW
When considering the complex and highly varied behavior in
decision-making during socioeconomic games (Lee, 2008a), adap-
tive agents (i.e., computer algorithms that can adjust their game
playing behavior in response to the human player or to changes in
the environment) provide a formidable means to engage human
subjects that exceeds the abilities of set-strategy agents (i.e., algo-
rithms that do not adjust their strategy over the course of a game)
(Valluri, 2006). As a result of the dynamic nature of adaptive
agents, there is a bidirectional influence between agent and player
that is otherwise limited, as is the case for set-strategy agents.
Additionally, adaptive agents are capable of changing their strate-
gies over time, both between and during games. This allows for
more organic player behavior that resembles interactions with a
human subject. The advantage of using an adaptive agent over
human subjects is that experimenters have greater control over
how the agent performs, addressing a weakness commonly found
in the highly variable and complex decision-making strategies of
humans (Craig et al., 2013). Furthermore, adaptive agents them-
selves are a source of information, as it is possible to examine their
internal processes and strategies that develop in response to the
game environment. Adaptive agents work well in a simulation set-
ting, running thousands of trials very quickly; however, it is often
necessary to match simulations with comparable studies in human
subjects to get a more complete picture of an agent’s behavior. In
human studies, it is not only possible for human subjects to inter-
act with a computer screen; these agents can also be embodied in
robots for further investigation of human–robot interactions.

Embodied models have been shown to elicit strong reactions in
humans (Breazeal and Scassellati, 2002; Kidd and Breazeal, 2004)
and exhibit more natural and complex behavior than pure simu-
lations (Krichmar and Edelman, 2002, 2005). For these reasons,
embodied models provide a good platform for studying a wide
range of cognitive functions. One previous study tested subjects’
engagement with robots, as compared to animated characters, in
an experiment where subjects had to cooperate with, persuade,
and assist the robot in the completion of various tasks (Kidd and
Breazeal, 2004). Subjects found robots to be more credible, infor-
mative, and enjoyable to interact with compared to an animated
character on a computer screen. Similar results were found by
Wainer et al. (2007), further reinforcing the theory that robotic
platforms are seen as more cognizant, helpful, and pleasant to work
with as reported by subjects. This, in turn, has led other researchers
to adopt robots as brain-based devices, because they provide a
framework for understanding the interaction of simulated brain
activity within a real environment. Furthermore, the embodied
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FIGURE 1 | Multidisciplinary paradigms. (A) Multidisciplinary paradigm for
investigating the role of serotonin in decision-making and behavior. The
model begins with base assumptions regarding neuromodulation, which
are then used to develop an adaptive neural network model of cost and
reward assessment. This network is embedded in an agent acting as a
player in a game theoretic environment, alongside control conditions with
set-strategy agents. These agents are both embodied in robotic players and
simulated in computer-based games. The agents are used in both human
and simulation experiments to assess the adaptive network’s ability to
behave naturally, as well as the human subjects’ reactions to the adaptive
agent compared to set-strategy agents. Human subject experiments under
this paradigm can include acute tryptophan depletion (ATD) manipulations.
The results from human and simulation experiments are then processed
to determine the validity of any hypotheses developed at the outset,
in addition to the appearance of interesting emergent behavior.

(B) Cyclic, multidisciplinary paradigm. This model is a modified version of
(A) with an added iterative component, as well as the inclusion of both fMRI
(Tanaka et al., 2007; Yoshida et al., 2010; Crockett et al., 2012; Seymour et al.,
2012) and genetics (Bevilacqua and Goldman, 2011; Hyde et al., 2011; Loth
et al., 2011) components of human experimentation. The addition of an
iterative component allows the results of previous studies conducted under
the paradigm to be analyzed for possible areas of improvement in the model,
which are then committed as alterations. The new node represents the
following three modifications: (1) make new interpretations as to the role of
serotonin in human subject behavior; (2) develop a new cognitive model
based on human subject behavior; and (3) modify the adaptive neural network
to create agents that reflect observed individual differences in human subject
behavior. This paradigm allows for a constantly improving neural network
model that is increasingly more able to fit the demands of studying
decision-making and behavior.

approach might serve as the foundation for the development of
intelligent machines that adhere to neurobiological constraints
(Krichmar and Edelman, 2002, 2005).

In order to further elucidate the role of serotonin and
dopamine in decision-making, we have developed a multidis-
ciplinary paradigm that incorporates embodied adaptive agents
into interactive game environments (Figure 1A). Our general
paradigm includes several key aspects, which we describe in detail
below. In brief, we begin with base assumptions founded on pre-
vious studies that are used to construct an adaptive agent. That
model, alongside set-strategy agents used in control conditions,
are either embodied in a robotic platform (Agents: Embodied) or
embedded in a computer interface (Agents: Simulated). Those
agents are incorporated into a game theoretic environment in
both human subject and simulation experiments. Human subject
experiments include manipulation with ATD (Human Experi-
ments: ATD). The data collected from these experiments are

analyzed to either support or reject specific hypotheses about the
role of serotonin in decision-making, or to create new models that
explore the theories that emerge from the data.

BASE ASSUMPTIONS
To start, we assume that serotonergic activity in the raphe nucleus
is related to the expected cost of a decision. In this case, cost assess-
ment can be related to harm or loss aversion (Doya, 2002; Millan,
2003; Cools et al., 2008; Crockett et al., 2009, 2012; Murphy et al.,
2009; Tanaka et al., 2009; Takahashi et al., 2012), as well as risk in
discounting reward (Schweighofer et al., 2008; Tanaka et al., 2009).
These suppositions imply that decreased serotonergic activity
would result in reduced harm aversion and reduced risk aversion in
the decision-making process, along with some alteration of learn-
ing parameters influenced by cost. That is, the magnitude of cost
in making decisions is perceived as less when serotonin levels are
low. On the other hand, we assumed that DA activity was related
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to the expected reward of a decision (Schultz, 1997; Berridge and
Robinson,1998; McClure et al., 2003; Redgrave and Gurney,2006).
Under this assumption, reduced dopamine would result in reduced
reward seeking behavior and manipulation of the learning param-
eters influenced by reward. In other words, the magnitude of
reward in making decisions is perceived as less when dopamine
levels are low. In this case, high serotonin levels have a strong
influence over decisions resulting in less risk taking behavior.

Although controversial compared to other neuromodulators,
evidence suggests that serotonergic neuromodulation features
both tonic and phasic modes of activity (Briand et al., 2007;
Schweimer and Ungless, 2010; Nakamura, 2013). The phasic mode
is associated with transient bursts of neural activity from aver-
sive stimuli (Schweimer and Ungless, 2010), whereas the tonic
mode is represented by baseline activity (Briand et al., 2007)
linked to reward magnitude assessment (Nakamura et al., 2008),
outcome-based motivation (Bromberg-Martin et al., 2010), and
behavioral regulation (Okada et al., 2011). Although not specific
to serotonin, it has been suggested that phasic neuromodula-
tion amplifies inhibitory connections and extrinsic inputs from
the thalamus, whereas during tonic neuromodulation, intrinsic
cortico-cortico connections are relatively higher (Kobayashi et al.,
2000; Gu, 2002; Hasselmo and McGaughy, 2004; Lapish et al.,
2006). Theoretical work has shown that this change in synaptic
currents associated with phasic neuromodulation can produce a
winner-take-all (WTA) network response (Krichmar, 2008). This
WTA response is indicative of decisive, exploitive behavior. In
addition, evidence has indicated that neuromodulatory activity is
linked to increased plasticity (Gu, 2002; Fletcher and Chen, 2010;
Shumake et al., 2010; Moran et al., 2013; Nakamura, 2013). Thus,
phasic neuromodulation might increase future responses to salient
stimuli.

The association between tonic/phasic neuromodulation and
explore/exploit behavior was originally put forth by Aston-Jones
and Cohen (2005) based on their observations of the noradren-
ergic system during studies with awake-behaving monkeys. Based
on this and other empirical evidence, we have extended the explo-
ration/exploitation idea to other neuromodulatory systems (Asher
et al., 2010, 2012a; Zaldivar et al., 2010; Krichmar, 2013). Specif-
ically, tonic levels of neuromodulation have been associated with
distractible behavior and poor task performance, whereas phasic
neuromodulation has been associated with attentiveness and good
task performance (Aston-Jones and Cohen, 2005). Although tonic
levels are associated with distractibility, this is a necessary compo-
nent of the drive for exploration, or seeking out new sources of
rewarding stimuli in an environment. The attentiveness associated
with phasic neuromodulation is necessary for the ability to exploit
a resource that has proven to be rewarding, and also to attend to
salient stimuli in an environment.

These base assumptions have led us to develop models balanc-
ing cost and reward in decision-making through simulation of
the neuromodulatory systems, which reflects neural activity in the
brain and its resulting explorative and exploitive behaviors.

ADAPTIVE AGENT MODELS
Given our base assumptions, we developed adaptive neural models
capable of shaping action selection involved in decision-making

FIGURE 2 | Adaptive agent architectures. (A) General neural network
architecture for Hawk-Dove and Chicken studies. The thick arrows represent
all-to-all connections. The dotted arrows with the shaded oval represent
modulatory plastic connections. Within the Action Neurons region, neurons
with excitatory reciprocal connections are represented as arrow-ended
lines, and neurons with reciprocal inhibitory connections are represented
as dot-ended lines overlaid by a shaded oval, which denotes plasticity. (B)

Actor-Critic schematic. The behavior of the adaptive agent used in the Stag
Hunt experiment (Craig et al., 2013) was controlled by an Actor-Critic model.
The model was comprised of three state tables – Actor, Cost Critic, and
Reward Critic – which were updated with relevant information from the
most recent turn in the current game and then used to determine whether
the agent should hunt stag or hare on the next turn. The payoff information
from the last turn was combined with the cost/reward value associated
with the current state (determined by the locations of tokens on the board)
from each respective critic using a delta-learning rule. These modified
values were then used to update the corresponding state in the Actor
table, which was used in a SoftMax function to generate probabilities for
hunting stag and hare. Those probabilities were then used to determine the
agent’s action on the upcoming turn.

(Figure 2). In general, these models made decisions based on their
assessment of the expected cost and reward of actions, where cost
was related to harm or loss aversion (Asher et al., 2010, 2012a;
Zaldivar et al., 2010; Craig et al., 2013).

Neural network model
Our neural network model, which was used in Hawk-Dove and
Chicken human robot interaction studies, simulated neuromod-
ulation and plasticity based on environmental conditions, as
well as previous experiences with cost and reward (Asher et al.,
2010, 2012a; Zaldivar et al., 2010). The model was divided into
three distinct neural areas: (1) Game-Dependent Input Neu-
rons, (2) Action Neurons, and (3) Neuromodulatory Neurons
(Figure 2A). The Game-Dependent Input Neurons, akin to sen-
sory neurons, represented the possible environmental states the
model could observe. The Action Neurons reflected the different
choices the model could make in its environment. The Neuro-
modulatory Neurons featured Cost neurons, which represented
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serotonergic neuromodulation, and Reward neurons, which rep-
resented DA neuromodulation. The connections between the
Game-Dependent Input Neurons and both the Neuromodula-
tory and Action Neurons were subject to neuromodulated synaptic
plasticity. To model phasic neuromodulation’s effect on decision-
making, neuromodulatory activity amplified the extrinsic exci-
tatory connections from the Game-Dependent Input Neurons
and the inhibitory connections from the opposing Action Neuron
(Figure 2A).

The equation for activity of each of the Game-Dependent Input
Neurons (ni) were computed as follows:

ni =
⎧⎨
⎩

b + noise; i = salient stimulus

noise; Otherwise
(1)

where b was a constant value dependent on the game played
(b = 0.75 for the Hawk-Dove and b = 0.45 for the Chicken games
described below), and noise represented neural noise, which was
a random number between 0 and 0.25 drawn from a uniform
distribution.

The neural activities for the action and neuromodulatory neu-
rons were simulated by a mean firing rate neuron model, where the
firing rate of each neuron ranged from 0 (quiescent) to 1 (maximal
firing) on a continuous scale. The activity of both Action Neurons
was based on their previous firing rates, plastic extrinsic excita-
tory input from the Game-Dependent Input Neurons, non-plastic
intrinsic excitatory input from the opposing action neuron, and
non-plastic intrinsic inhibitory input from the opposing action
neuron (Figure 2A). In contrast, the activity of both Neuromodu-
latory Neurons was based on plastic extrinsic excitatory input from
the Game-Dependent Input Neurons and previous cost/reward
information reflected in the respective firing rates at the previous
time step. The equation for the mean firing rate neuron model
was:

si(t) = ρisi(t − 1) + (1 − ρi)

(
1

1 + exp(−5Ii(t))

)
(2)

where t was the current time step, si was the activation level of neu-
ron i, ρi was a constant set to 0.1 denoting the persistence of the

neuron, and Ii was the synaptic input. The synaptic input of the
neuron was based on pre-synaptic neural activity, the connec-
tion strength of the synapse, and the amount of neuromodulatory
activity:

Ii(t) = noise +
∑

j

nm(t − 1)wij(t − 1)sj(t − 1) (3)

where wij was the synaptic weight from neuron j to neuron i, and
nm was the level of neuromodulation, which was the combined

average activity of the Cost and Reward neurons. The noise term
represented neural input noise and was a random number between
−0.5 and 0, drawn from a uniform distribution.

Phasic neuromodulation can have a strong effect on action
selection and learning (Krichmar, 2008). During phasic neuro-
modulation, extrinsic excitatory synaptic projections from sensory
systems and intrinsic inhibitory inputs are amplified relative
to recurrent or excitatory intrinsic connections. In the model,
the input (Game-Dependent Input Neurons) to Action neurons
represented sensory connections and the inhibitory Action-to-
Action neurons represented the intrinsic inhibitory connections.
To simulate the effect of phasic neuromodulation, intrinsic
inhibitory and sensory connections were amplified by setting
nm in Equation 3 to ten times the combined average activity
of the simulated Cost and Reward neurons. Otherwise, nm in
Equation 3 was set to 1 for all other connections. In previous
simulation studies and robotic experiments, this mechanism was
shown to be effective in making the network exploitive when
neuromodulation levels were high and exploratory when neuro-
modulation levels were low (Krichmar, 2008; Cox and Krichmar,
2009).

After the neural activities for the Action and Neuromodulatory
Neurons were computed, a learning rule was applied to the plastic
connections (projections from Game-Dependent Input Neurons)
of the neural model. The learning rule depended on the current
activity of the pre-synaptic neuron, the post-synaptic neuron, the
overall activity of the modulatory neurons, and the cost/reward
outcome from the game played:

�wij = α∗nm(t − 1)sj(t − 1) (si(t − 1))∗ R (4)

where sj was the pre-synaptic neuron activity level, si was the
post-synaptic neuron activity level, nm was the average activ-
ity of the Neuromodulatory Neurons, and R was the level
of reinforcement based on payoff and cost (Equation 5). The
pre-synaptic neuron (sj) in Equation 4 was the most active
Game-Dependent Input Neuron (Equation 1). The post-synaptic
neuron (si) could be the most active Action neuron, the Cost
neuron, or the Reward neuron. The level of reinforcement was
given by:

R =

⎧⎪⎨
⎪⎩

(Reward Received − Reward Neuron Activity) − (Actual Cost − Cost Neuron Activity); Game-Dependent Input Neurons → Active Neurons

(Reward Received − Reward Neuron Activity); Game-Dependent Input Neurons → Reward Neuron

(Cost Received − Cost Neuron Activity); Game-Dependent Input Neurons → Cost Neuron

(5)

where the Reward Received and Cost Received were values deter-
mined by the positive and negative payoffs, respectively. The values
were determined by a payoff matrix specific to the game being
played (Asher et al., 2012a). Application of Equation 5 was based
on the assumption that the Reward neuron activity predicted the
reward of an upcoming action and the Cost neuron activity pre-
dicted the cost of that action. If the predictions were accurate, there
would be little change in synaptic plasticity, whereas if the predic-
tions were inaccurate, synaptic plasticity would occur (Equations
4–5).
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Actor-critic model
In addition to the neural network described above, we have imple-
mented more abstract adaptive agents based on our assumptions
(Figure 2B). For example, a variation of the Actor-Critic model
was used to simulate reward and cost assessment in a Stag-Hunt
game (Craig et al., 2013). In general, the Actor-Critic model should
abide by the tenets of game theory, learning to behave in such a way
that maximizes gains and minimizes potential losses. Our model
contained three state tables – one for the Reward Critic, Cost Critic,
and Actor - that were comprised of a column for scalar weight val-
ues, similar to the plastic weights in the neural model described in
the previous section, and several columns representing the state of
the environment, akin to the sensory neurons in our neural model
(see Figure 2A, Game-Dependent Input Neurons). The weights
for the Cost and Reward Critics indicated the expected cost and
expected reward values learned over time. For instance, state val-
ues in the Stag-Hunt game were related to the distances of the
agent and the other players to potential rewarding stimuli. The
weights in the Cost and Reward Critic state tables were governed
by a delta rule for error prediction:

δ(t) = r(t) + V (s, t) − V (s, t − 1) (6)

where r(t) was either the reward or cost at time t, V (s, t) was the
Critic’s weight at state s, at time t, and V (s, t–1) was the Critic’s
weight for the previous timestep. More specifically, the reward r(t)
value corresponds to the agent’s expected value of their selected
choice of rewarding stimuli at that timestep, and the cost r(t) is
the negative of that value in the case that the expected reward was
not fulfilled (i.e., perceived loss). However, other interpretations
of cost are possible depending on the game being played. The delta
value of Equation 6 was used to update the weights in the Reward
and Cost critic tables at every timestep according to the following
function:

V (s, t + 1) = V (s, t) + δ(t) (7)

The Actor weights were the likelihood to execute a particular action
at a state and were updated by using the reward and cost informa-
tion for that state. In the case that the model decided on choice
1 of two choices, the Actor weights were updated based on the
following equation:

V (c1, s, t + 1) = V (c1, s, t) + 1 − p[c1] ∗ δ(t)

V (c2, s, t + 1) = V (c2, s, t) + 1 − p[c2] ∗ δ(t)
(8)

V (c1, s, t) was the Actor’s state table value for deciding on choice
1 (of two possible actions) in state s at time t. Likewise, V (c2, s, t)
was the Actor’s state table value for choice 2 in state s at time t. δ(t)
was the delta value from both the Reward and Cost Critics. Thus,
the Actor was updated based on the assessment of both the Cost
and Reward Critics.The probabilities for selecting either choice 1
or choice 2 were decided using a SoftMax function:

p[c1] = eV (c1, s, t)

eV (c1, s, t)+eV (c2, s, t)

p[c2] = 1 − p[c1]
(9)

This implementation of the Actor Critic provided a cost-reward
tradeoff mechanism for decision-making in game environments,
analogous to the interplay between the DA and serotonergic
neuromodulatory systems.

GAME ENVIRONMENTS
In our experiments, we utilized both an adaptive neural net-
work (Figure 2A) and an instantiation of the Actor-Critic
model (Figure 2B) to investigate cost and reward in games of
decision-making.

The adaptive neural network of Figure 2A, coupled with
set-strategy models as controls, were both experimentally embod-
ied as robotic agents and embedded in computer simulation
within a game theoretic environment to investigate reciprocal
social interactions depending on reward and cost assessment. For
these experiments, we selected the game of Hawk-Dove, which
is similar to the widely studied Prisoner’s Dilemma (Kiesler et al.,
1996) but arguably more informative when studying a model of
the serotonergic system’s role in cost assessment in competitive
situations.

Our version of Hawk-Dove (Figure 3) was played with an adap-
tive neural network model contesting over a resource with another
player in an area referred to as the territory of interest (TOI) (Asher
et al., 2010, 2012a; Zaldivar et al., 2010). The game started with
each player and the TOI randomly placed inside an environment.
In the Hawk-Dove game, each player needed to reach the TOI and
choose between two actions: escalate (an aggressive, confronta-
tional tactic) or display (a nonviolent, cooperative tactic). If both
players chose to escalate, they fought, resulting in an injury or
penalty, which could either be serious or mild. If only one player
chose to escalate, then the escalating player received the total value
of the TOI, and the other player received nothing. If both players

FIGURE 3 | Hawk-Dove game diagram. The game board included a 5 × 5
grid of squares, upon which a territory was marked and the human and
neural agent players were placed. The color of the territory reflected the
state of the players’ actions. In the Hawk-Dove, two players must compete
for a territory, deciding either to be submissive (display) or aggressive
(escalate), avoiding or risking injury in hopes of a larger payoff, respectively.
© 2012 IEEE. Reprinted, with permission, from Asher et al. (2012a).
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chose to display, then there was a tie, and both players split the
value of the TOI. Our variant of Hawk-Dove also modified the
harshness of the environment in certain experimental conditions
by increasing the likelihood of receiving a serious injury when
escalating. Thus, players should strive to cooperate and minimize
penalty from escalating by either alternating their actions or shar-
ing the resource, which, at times, may result in conflict, as each
player is attempting to secure the highest payoff.

Alongside Hawk-Dove, Chicken (Rapaport and Chammah,
1966) was used to investigate competitive situations in terms of
expected costs and reward. Unlike Hawk-Dove in which players
could decide to choose their action first or wait to see the other
player’s decision, Chicken forced players to decide on an action
quickly without knowledge of the opponent’s choice, as players
do not know the decision their opponent has made until the out-
come. In our version of Chicken (Figure 4), the human subject
and the adaptive neural network model each controlled racecars,
both heading toward each other on a single lane track (Asher et al.,
2012a). If a player chose to swerve, that player relinquished the sin-
gle lane track to the other player and received no reward, while the
player who did not swerve received the maximum payoff. If both
players swerved, they each received the minimum payoff. If neither
player swerved, then the result was a severe head-on collision, the
worst outcome for both players. Thus, the best outcome for a given
player was to stay straight while the other player swerved. This cre-
ated a situation in which each player, in an attempt to secure the
best outcome, risked the worst scenario in terms of payoff.

While games such as the Prisoner’s Dilemma, Hawk-Dove and
Chicken are used to explore cost and reward assessment in compet-
itive situations, the socioeconomic game known as the Stag Hunt
is better suited to investigate cooperative situations and the forma-
tion of social contracts. Evidence suggests that neural responses
are different when the social interaction is perceived to be cooper-
ative versus competitive (Fleissbach et al., 2007). In Stag Hunt, two
players must decide whether to cooperate with each other in order
to hunt the high-payoff stag, or hunt a low-payoff hare individ-
ually (Skyrms, 2004). The risk involved with stag hunting is that
both players must commit to hunting stag. If one player hunts
stag while the other player hunts hare, the stag hunter is unable to
catch the stag and receives no payoff. While the standard version
of Stag Hunt is typically played as a simple stag or hare choice, we
used a variant of the game, much like the one used by Yoshida et al.

FIGURE 4 | Chicken game diagram. Two toy cars, one driven by the
human and one by the neural agent, were placed at opposite ends of a
track. The cars started moving toward each other at the same speed
and at the same time, at which point players must decide whether to
conservatively swerve out of the way, but take a smaller payoff, or take the
risk of a collision and continue straight ahead in hopes of a larger payoff.
© 2012 IEEE. Reprinted, with permission, from Asher et al. (2012a).

(2010), that incorporated a spatiotemporal component (Figure 5).
The game was played on a computer-simulated 5 × 5 board, with
tokens depicting the locations of the two players, the stag target,
and the hare targets. Players moved toward the targets at the start
of each game, with enforced token adjacency as a condition to
catch them. Cooperation is crucial in Stag Hunt, as in order to
obtain the highest payoff (stag capture) players must form social
contracts to work together.

TESTING THE ADAPTIVE MODELS IN GAME ENVIRONMENTS
Depending on the goal of the experiment in question, sim-
ulations can provide significant information about behavior
development in an adaptive model. These experiments often
consist of exhaustive model testing with various opponents,
environmental conditions, and intrinsic model parameters result-
ing in various behaviors and strategies that the model may
exhibit. With our model of cost and reward modulation (see
Neural Network Model), we conducted simulation experi-
ments that revealed that the model was capable of predicting
upcoming costs and rewards (Asher et al., 2010; Zaldivar et al.,
2010). This resulted in the evolution of mixed strategies that
allowed the model to compete for resources, independent of
the opponents’ actions. With our instantiation of an adap-
tive Actor-Critic model (see Actor-Critic Model) embedded in
the Stag Hunt game, we found that this model developed
suitable state tables to guide the agent in cost and reward pre-
diction while playing against set-strategy agents (Craig et al.,
2013). In both cases, the simulations showed that the adap-
tive model was sensitive to the other player’s strategy and the
game environment. For example, when making decisions in
the Stag Hunt, the model not only took into consideration
its distance to the game tokens, but also the other player’s
distance to tokens. These simulation experiments provide evi-
dence that the base assumptions were a sufficient foundation
for the model governing behavior. However, simulation exper-
iments are only a small subset of the methods that can be
utilized when studying an adaptive model’s behavior. It is also
important to observe real human interaction with the model
in an effort to assess the model’s ability to replicate natural
behavior.

Following simulation, human subject experiments were per-
formed to test the adaptive model’s performance against human
players, as well as the subjects’ reactions to playing against both
set-strategy and adaptive agents, and the influence of embodied
agents on game play. Our first set of human subjects experiments
involved ATD, the dietary manipulation described above that tem-
porarily lowers serotonin levels in the central nervous system,
resulting in decreased cooperation and lowered harm-aversion
(Wood et al., 2006; Crockett et al., 2008). In these ATD exper-
iments, two sessions (tryptophan-depleted and control) were
performed on two separate days. For each session, healthy, adult
subjects played the Hawk-Dove (Figure 3) and Chicken (Figure 4)
games against adaptive agents both in simulation and embodied
in physical robots. We measured changes in behavior associ-
ated with lowered levels of 5-HT throughout the interactions
between human subjects and the robotic agent in the game
environments.
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FIGURE 5 | Stag Hunt game environment. The game board included a
5 × 5 grid of spaces upon which the player (stick figure image), agent
(robot image), stag (stag image), and hare (hare image) tokens resided.
The screen included a button to start the experiment, the subject’s score
for the round, the subject’s overall score for the experiment, the game

number, a countdown to the start of the game, and a counter
monitoring the game’s timeout. In the game of Stag Hunt, two players
attempt to hunt a low-payoff hare alone, or attempt to cooperate with
the other player to hunt a large payoff stag. © 2013 by Adaptive
Behavior. Reprinted by Permission of SAGE from Craig et al. (2013).

In our next set of human subject experiments, the participants
played the Stag Hunt game with various set-strategy and adap-
tive simulated agents. Subjects played games against each of five
computer strategies, including an adaptive model. In each game,
players navigated the game board on a computer (Figure 5), end-
ing the game when either one of the players successfully captured
a hare, or both players worked together to capture a stag. The
adaptive agent was an instantiation of the Actor-Critic model
that weighed cost and reward to make decisions in the environ-
ment in a manner much like the serotonergic and DA systems
are thought to act in humans (Cools et al., 2010). Using these
paradigms, we were able to study the ability for humans to coop-
erate with adaptive agents, as well as the extent of learning that
takes place in the model when placed in an environment fostering
cooperation.

Altogether, our multidisciplinary paradigm is one of many that
are currently utilized in this field to explore the theorized role of
the serotonergic system on behavior as related to cost assessment.
The results from using this paradigm provide a balanced and
informative procedure that incorporates both neuromodulation
and behavior with current methods and technology, as described
below.

RESULTS OF OUR STUDIES CONDUCTED USING THIS
MULTIDISCIPLINARY APPROACH
ADAPTIVE NEURAL NETWORK PLAYING THE HAWK-DOVE GAME
We explored the research question of how the interplay between
cost and reward would lead to appropriate decision-making under
varying conditions in a game theoretic environment. To test this
question, we modeled several predictions as to how the activity of
a cost function leads to appropriate action selection in compet-
itive and cooperative environments (Asher et al., 2010; Zaldivar
et al., 2010). One such prediction was that the interaction between
the simulated serotonergic neuromodulatory system, associated
with the expected cost of a decision, and the simulated DA system,
associated with the expected reward of a decision, would allow for
appropriate decision-making in Hawk-Dove (see Figure 2A and
Adaptive Agent Models). Our results verified this prediction, as the
adaptive neural agent was more likely to escalate over the resource
when activity of the reward system exceeded the activity of the
cost system. Conversely, when the reward activity did not exceed
the activity of cost, the adaptive neural agent displayed. One fur-
ther prediction verified by our results was that the impairment of
the serotonergic system would lead to perseverant, uncooperative
behavior. A simulated lesion of the serotonergic system resulted
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in the adaptive neural agent almost always engaging in risk tak-
ing (aggressive) behavior, which was similar to the uncooperative
behavior seen in human studies where serotonin levels were low-
ered via ATD while subjects played games such as Prisoner’s
Dilemma and the Ultimatum game (Wood et al., 2006; Crockett
et al., 2008). Altogether, our results are in agreement with the the-
oretical work proposed by Boureau and Dayan (2010), in which
the influence of serotonergic and DA systems in generating an
appropriate decision are sometimes in opposition.

ATD AND EMBODIMENT IN HAWK-DOVE AND CHICKEN GAMES
To test the influence of embodiment and serotonin on decisions
where there is a tradeoff between cooperation and competition,
we conducted a study that included both embodied and sim-
ulated versions of adaptive agents along with manipulation of
serotonin in human subjects. We used ATD to reveal the ways
humans interacted with these agents in competitive situations
via the Hawk-Dove and Chicken games (Asher et al., 2012a).
Although we did not look at the ratio of plasma tryptophan to
other large neutral amino acids, the differences between total
blood plasma tryptophan levels with (5–8 μmol/L) and with-
out (51–182 μmol/L) ATD were highly significant (p < 0.0005,
Wilcoxon rank-sum test). Contrary to our expectations, we found
that our subjects’ ability to assess cost when tryptophan-depleted
was unchanged and that they were not more likely to cooper-
ate with an adaptive embodied agent at the population level of
analysis. Subjects responded equally strong to both the embodied
and simulated adaptive agents, and tryptophan-depleted subjects
did not show a significantly increased proportion of aggressive
decisions (escalate) resulting from a decrease in cost assessment.
Instead, we found that subjects significantly altered their strat-
egy from Win-Stay-Lose-Shift (WSLS) against control adaptive
agents, to Tit-For-Tat (T4T) against an aggressive version of the
model, which is in agreement with previous studies (Wood et al.,
2006; Crockett et al., 2008). We interpreted this result as subjects
tending toward retaliatory behavior when confronted with agents
that partook in risky behavior. This result was in agreement with
those found by Crockett et al. (2008), which indicated that sub-
jects under ATD tended to reject significantly more unfair offers in
the Ultimatum game. The rejection of unfair offers in the Ultima-
tum game is similar to the retaliatory behavior observed in both
the Hawk-Dove and Chicken games. Additionally, a type of moti-
vational opponency was found in the dorsal and ventral regions
of the striatum when subjects received costly punishment in the
Ultimatum game (Crockett et al., 2013). Given that serotonin has
been shown to have an inhibitory effect on the striatum (Di Cara
et al., 2001), decreased 5-HT levels led to greater striatal activity.
Similarly, subjects demonstrating retaliatory behavior under the
effects of ATD would likely have shown increased dorsal striatal
activity, a result that has been observed in previous work (de Quer-
vain, 2004; Krämer et al., 2007; Strobel et al., 2011). Although we
did not collect any brain imaging data, we would expect to see
differences in striatal activity across our subjects correlating with
their individual baseline levels of retaliatory behavior.

Although the small subject size (n = 8) may have contributed
to the lack of significant differences in our measurements of both
tryptophan-depletion vs. control conditions and embodied agent

vs. simulation conditions, there is the possibility that differences
between the conditions were masked by subgroups of subjects
responding differently across conditions.

COGNITIVE MODELING
To better understand our results at the individual subject level, we
implemented a cognitive model to investigate potential behavioral
differences in the subjects’ decision-making by examining their
propensity to choose the aggressive action (escalate) in the Hawk-
Dove game under the various conditions. Because these cognitive
models use Bayesian inference to predict subject behavior based on
many individual decisions, their predictions were not weakened by
a small sample size.

To investigate how ATD and embodiment affected subjects’
decision-making in our previous work (see ATD and Embodiment
in Hawk-Dove and Chicken Games), we implemented a cognitive
model using hierarchical Bayesian inference. Hierarchical Bayesian
inference has been shown to be a highly customizable and reli-
able way of exploring models of cognitive processes (Rouder et al.,
2005; Lee, 2008b; Wetzels et al., 2010). In addition, Bayesian graph-
ical models have been used to make inferences about the use of
strategies such as WSLS or T4T from data consisting of sequences
of choices from human subjects studies in N-armed bandit tasks,
as well as other sequential decision-making tasks (Lee et al., 2011;
Newell and Lee, 2011).

We used a hierarchical latent mixture model with Bayesian
inference to analyze the individual differences in decision-making
arising from alterations in serotonin levels and of agent embod-
iment (Asher et al., 2012b). The hierarchical attribute of these
models allows for modifications to the parameters controlling
cognitive processes across different individuals. We decided to
use latent mixture models, as they allow for modeling com-
pletely different strategies across individuals. Formally, we recast
the cognitive models as probabilistic graphical models and used
Markov Chain Monte Carlo (MCMC) methods for computational
Bayesian inference. By utilizing hierarchical latent mixture mod-
els, we addressed the question of how ATD and embodiment in the
Hawk/Dove game could affect subjects’ decision to compete (i.e.,
choose the aggressive escalate action) or cooperate (i.e., choose the
passive display action). We modeled the probability of escalating
through a logistic model. The logit (Cramer, 2003) of the proba-
bility of escalating for each subject in each condition was assumed
to follow a Gaussian distribution defined by its mean and variance
(hyperparameters in the hierarchical model), with the mean mod-
eled as the sum of the baseline level of escalating for the subject,
and an additive effect associated with ATD or embodiment (Asher
et al., 2012b).

We showed that subjects separated into two distinct subgroups
for the probability to choose the aggressive action (escalate) across
the conditions (Figure 6). Our justification for this conclusion was
based on the assumption that the effect of ATD/embodiment could
vary across individuals as is reinforced by recent evidence suggest-
ing that the effects of ATD give rise to individual differences across
subjects (Krämer et al., 2011; Demoto et al., 2012; Seymour et al.,
2012). The individual differences observed could either result in
an increase or decrease in the likelihood of selecting an aggressive
action. Alternatively, between the two subgroups, there existed a
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potential middle ground that was relatively unbiased on the scale
of increased or decreased selection of aggressive actions, which is
analogous to random behavior or the lack of influence from the
experimental conditions (null hypothesis). No subjects fell within
this middle ground for the conditions shown in Figure 6, further
reinforcing a strong possibility for the existence of at least two sub-
groups within the subject population (n = 8). The results from this
analysis yielded a differential influence on subjects stemming from
lowered serotonin levels and of agent embodiment on individ-
ual decision-making in a competitive game (Asher et al., 2012b),
which potentially implicates neural correlates in these individual
differences.

To give a full account of the data, the hierarchical model
was designed to address individual differences at two levels: the
baseline level, which depends on the subjects inherent tendencies,
and the additive level, which depends on the interaction between
subjects natural tendencies and experimental conditions. In con-
trast to the results from our population analysis (see ATD and
Embodiment in Hawk-Dove and Chicken Games), we found that
clustering subjects into two opposing subgroups better represented
the data. That is, one group of subjects, in concordance with
expectation, had a higher probability to escalate under tryptophan
depletion, but another had a lower probability to escalate in the
tryptophan-depleted condition (Figure 6). Similarly, we found
that two subgroups better predicted the rate of escalation when
comparing responses to a robot versus responses to a computer
simulation (Figure 6). The formation of these subgroups is not
accounted for by the variance of the data in the population analy-
sis (Asher et al., 2012a). We hypothesized that these subgroups may
be typical of any given population of human subjects under these

FIGURE 6 | Estimated group identities based on cognitive modeling

results. Both plots show each subject’s likelihood to choose the aggressive
action (escalate) for the two different conditions. Red and green dots
correspond to subjects that showed a respective increased or decreased
probability to escalate from their baselines. Error bars show the 95%
Bayesian confidence interval of the posterior mean. The x -axes indicate
subject numbers, which correspond to the same subjects in the two plots.
The y -axes show the Bayesian model’s mean output indicating group
affiliation with respect to the subject’s likelihood to escalate, relative to
their independently determined baselines. The y -axis value of 1 indicates a
strong likelihood of decreasing choices to escalate relative to their baseline
level for the conditions, whereas the value of 2 indicates a strong likelihood
of increasing choices to escalate relative to their baseline level for the
conditions. The group identities were estimated based on: (A) the influence
tryptophan depletion had on subjects’ choices for aggressive actions
(Escalation, Tryptophan), and (B) the influence an embodied agent had on
subjects’ choices for aggressive actions (Escalation, Robot). Cognitive
Science Conference and published in the Proceedings (COGSCI 2012,
Sapporo, JP) from Asher et al. (2012b).

conditions and that future studies should take individual variation
into consideration. This framework for evaluating cognition offers
a comprehensive approach for modeling individual differences in
cognitive strategies (Lee, 2008b; Lee et al., 2011).

HUMANS PLAYING STAG HUNT WITH SIMULATED ADAPTIVE
AGENTS
In our recent study using the Stag Hunt game, we investigated the
variance in behavior of human subjects while playing Stag Hunt
against adaptive (cost/reward learning) and set-strategy agents,
with the intent of finding a stronger response evoked by adaptive
over set-strategy. We found that adaptive agents, controlled by
an Actor-Critic model (see Figure 2B and Adaptive Agent Mod-
els), caused subjects to invest more time and effort into game
play than set-strategy agents (Craig et al., 2013). The strategy of
the adaptive agent was formed by taking into consideration the
reward and costs of its decisions, much like the theorized roles
of the DA and serotonergic systems, while the four set-strategy
agents conformed to the following tactics: (1) always hunt hare,
(2) always hunt stag, (3) act randomly, and (4) WSLS. During
games with an adaptive agent, human subjects took significantly
longer to make a move than when playing against the other agents.
Specifically in games in which the subject did not receive a pay-
off (i.e., the subject lost the game), subjects took a significantly
longer path across the board to their endgame position than in
all other tested set-strategy conditions. These findings indicate
that playing against adaptive agents correlated with more effort
spent on the subject’s part while making decisions. Moreover, it
appears that subjects might have been trying to guide the adap-
tive agents toward stags; such a strategy would suggest that, purely
through experience, subjects became aware of the fact that the
adaptive agent, unlike the set-strategy agents, could be influenced.
The increased time and effort exerted by the subjects in the adap-
tive condition from our Stag Hunt experiment, may be related to
increased neural activity seen in other Stag Hunt studies (Yoshida
et al., 2010). Using fMRI while subjects played the Stag Hunt,
Yoshida et al. (2010) observed increased activity in rostral medial
and dorsolateral prefrontal cortices when subjects played a more
sophisticated (adapting) agent, areas that indicate planning and
mentalization.

Similar to our findings with the Hawk-Dove game, the Stag
Hunt study also highlighted subject variation when playing games
of decision-making. When assessing the ratio of stag-to-hare cap-
tures, playing against an adaptive agent appeared to evoke different
equilibriums of hunt decisions in individual subjects. It appears
that, much like the Hawk-Dove results (Asher et al., 2012b), over
half of analyzed subjects became either strongly cooperative or
strongly competitive when playing the adaptive agent. Overall,
these results showed that adaptive agents are able to evoke complex
behavioral responses in human subjects that may vary depending
on individual subject differences. This is useful when studying
decision-making and also offers control over agent behavior that
would not have been possible in human-human studies. While
ATD was not performed in the Stag Hunt experiment, it is
possible that the grouping of these subjects also resulted from
individual differences, such as genetic polymorphisms related to
the serotonergic system (Bevilacqua and Goldman, 2011; Hyde
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et al., 2011; Loth et al., 2011) leading to changes in cost/reward
assessment.

FUTURE DIRECTIONS USING A CYCLIC, MULTIDISCIPLINARY
PARADIGM
In an attempt to more accurately model serotonin’s theorized
influence on decision-making, we suggest that future experi-
ments improve upon the approach illustrated in Figure 1A with
the addition of an iterative component (Figure 1B). Such a
cyclic paradigm would have the following components: (1) the
development of an embodied neural model to support socioe-
conomic game studies; (2) an experimental protocol in which
subject behavior and neural correlates of decision-making can be
probed and categorized; (3) the design of an improved neural
model that captures the neuromodulatory influences and indi-
vidual variation of decision-making in socioeconomic games, to
be used in subsequent experiments; and (4) the deployment of
a population of models with varying phenotypes to be used in
subsequent socioeconomic game studies. Components (3) and
(4) allow the paradigm to run cyclically, thereby improving the
paradigm through analysis and incorporation of past results. In
this cyclic, multidisciplinary paradigm, we amend our previous
multidisciplinary paradigm with a feedback loop that: (1) makes
new interpretations for the role of serotonin in subject behavior;
(2) develops a new cognitive model based on subject behavior;
and (3) modifies the adaptive neural network to construct agents
that capture individual behavioral differences demonstrated by
subjects. These modifications are performed with the intention
of refining the adaptive neural network’s performance, making its
behavior more natural and human-like. After each cycle, the exper-
imental paradigm improves to better suit the purposes of the task
(e.g., stronger decision-making/modeling of neuromodulation),
while holding constant the general framework of testing (e.g.,
game theoretic environment, simulation/human experimentation,
etc.).

While the proposed paradigm is intended to improve the
field of modeling decision neuroscience, our current models are
rather abstract and would benefit from the incorporation of addi-
tional empirical data collected from the mammalian brain in
neuroimaging and neurophysiological studies. Functional data
from neuroimaging studies can help our models become more
biologically realistic by revealing the specific brain areas active
during select behaviors. Single unit recording studies in animals
dictate the more granular neural behavior within each modeled
brain region. Together, empirical data provides the base assump-
tions that guide our models computational neural behavior and
architecture, making them more biologically realistic. Improved
biological plausibility can, in turn, increase the efficacy of theoret-
ical predictions made by our models, resulting in better theories
to be tested through future neurophysiological and neuroimaging
experiments.

Single unit recording studies in animals provide a critical
component to computational modeling, as physical data is essen-
tial for developing base assumptions and confirming predictions
made by models. For instance, phasic and tonic serotonergic
activity in monkeys and rats has been associated with com-
ponents of cost and reward processing (Nakamura et al., 2008;

Bromberg-Martin et al., 2010; Schweimer and Ungless, 2010;
Okada et al., 2011; see Base Assumptions). In future work, our base
assumptions could more accurately incorporate the dynamics of
both phasic and tonic serotonergic activity to improve the biologi-
cal plausibility of our models. This could lead to better predictions
about the dynamics between phasic and tonic serotonergic neuro-
modulation and their impact on cost and reward processing. Thus,
where computational models inevitably rely on empirical data to
make predictions about neuromodulatory influence over biologi-
cal behavior, their predictions can provide theoretical evidence for
future experiments.

Empirical data from neuroimaging studies provide a relation-
ship between brain activity and behavior that can be used as the
foundation for biological plausibility in a computational model.
For example, fMRI has been used to determine the relationship
between brain regions innervated by serotonin and behaviors
involved with reward prediction (Tanaka et al., 2007), the per-
ceived value of reward (Seymour et al., 2012), and the association
of serotonin with reactive aggression under certain circumstances
(Krämer et al., 2011), amongst other behaviors. The tasks and
behavioral results are comparable to studies conducted using the
initial paradigm outlined in this paper (see Figure 1A), but they
include the relationship between serotonergic brain regions and
the different behaviors. For example, in future models, we plan
to implement the serotonergic influence over the striatum to
obtain theoretical evidence for reward prediction based on differ-
ent levels of serotonin, and its resulting effect on decision-making
(Tanaka et al., 2007; Seymour et al., 2012). This empirical data
could be included into future computational models leading to
more diverse and organic model behavior, which could also aid
in the development of a better theoretical understanding of the
underlying relationship between serotonergic brain regions and
their associated behaviors. While fMRI is incorporated into our
cyclic, multidisciplinary paradigm (Figure 1B), results from neu-
roimaging studies outside of our paradigm remain an integral part
of the foundation for biological plausibility in our models, and in
turn, increases the efficacy of our paradigm.

In addition to these sources of empirical evidence, theoretical
data from other biologically realistic models and neurally inspired
robotic agents can contribute to the biological plausibility of our
models and serve as a basis for further empirical investigation.
For example, incorporating more biophysically detailed mod-
els of DA and serotonergic neuromodulation, such as (Chorley
and Seth, 2011; Wong-Lin et al., 2012; Avery et al., 2013; Cano-
Colino et al., 2013), may be informative. The temporal dynamics
of these models, as well as the neuroanatomical pathways that
they include, would be of interest when coupled with subject
interactions.

Embodiment is a key element to the paradigm we are pro-
moting, and these human robot interaction experiments may not
only evoke strong responses in subjects, but they may also inform
the development of future neurorobots. Embodied models using
robotic platforms have provided clues as to how neuromodulation
can give rise to adaptive behavior in biological systems (Krich-
mar, 2013; Luciw et al., 2013). In one such experiment, using an
actor-critic model featuring a reinforcement learning algorithm
allowed a biped NAO robot to develop locomotion and adjust its
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gait to different conditions (Li et al., 2013). These studies provide
theoretical evidence for how adaptive behavior could develop in a
biological system and suggest how this could be applied to a robotic
system. Similarly, a recent biologically plausible model in simula-
tion was able to develop motivated behavior by implementing an
interplay between aversive and appetitive stimuli, which induced
activity in their simulated serotonergic and DA brain regions,
respectively (Weng et al., 2013). By closing the loop between brain,
body, and environment, these embodied systems demonstrate how
neuromodulators, such as dopamine and serotonin, can influence
action selection and decision-making.

It is important to emphasize that the models used in our
paradigm serve as a venue for investigating the influence of sero-
tonin in motivational systems for robots and other autonomous
systems. Future iterations of research through our paradigm could
modify our model to increase the accuracy and scope of its bio-
logical representation. In contrast to other similar models that
associate serotonin with decision-making (Daw et al., 2002; Doya,
2002; Weng et al., 2013), we modeled how phasic serotonergic neu-
romodulation could influence an autonomous agent’s behavior in
a game theoretic environment (Asher et al., 2010, 2012a; Zaldivar
et al., 2010). However, this abstraction is limited in extrapolating
the role serotonin plays in decision-making in other environ-
ments because while game theory is a good tool for investigating
decision-making, it explicitly places numerical value on the cost
and reward elements of decision-making. In contrast, other bio-
logically plausible models of neuromodulation and behavior have
linked the value of a decision to novelty (Bolado-Gomez and
Gurney, 2013; Krichmar, 2013), curiosity (Luciw et al., 2013),
and uncertainty (Krichmar, 2013) in environments void of game
theory. Krichmar (2013), built upon our work with a biologi-
cally plausible model of neuromodulation and behavior consisting
of acetylcholine/norepinephrine (novelty), serotonin (withdrawal
and harm aversion), and dopamine (invigoration and risk-taking)
systems, in an autonomous robot that demonstrated anxious and
curious states associated with rodent behavior. This work was able
to use this expanded model to show that high levels of serotonin
caused withdrawn behavior, while low levels of serotonin, in com-
bination with high levels of dopamine, brought about excessive
exploratory behavior. Additionally, top-down signals from the
frontal cortex to the raphe nucleus were found to be critical for
coping with stressful events. In the pursuit of more biologically
accurate models of behavior and decision-making, biological neu-
ronal modeling allows for studying hypotheses about serotonin’s
involvement in behavior and learning that would otherwise be
empirically difficult to test. Furthermore, predictions from such
embodiment studies could motivate the design and scope of new
animal studies.

Utilizing a cyclic paradigm lends itself especially well to studies
that incorporate embodiment, as the internal mechanisms gov-
erning embodied models are constantly being updated to improve
their behavior during interactions with human subjects. The
evidence that human subjects are more likely to treat robotic
platforms similarly to other humans rather than computer sim-
ulations (Breazeal and Scassellati, 2002; Kidd and Breazeal, 2004;
Asher et al., 2012b) suggests that there are larger social expecta-
tions placed on embodied agents. Additionally, human subjects

have been shown to report embodied agents as more helpful
and aware when compared to simulated agents (Wainer et al.,
2007), further justifying their use in studying human behavior and
decision-making. Since the iteratively improved adaptive agents
in our paradigm are modified to better simulate neuromodula-
tory influence and behave increasingly more like human subjects,
their embodiment could lead to more robust decision-making and
social interactions, which in turn leads to more compelling and
informative human-robot interaction studies and better predic-
tions about serotonergic and DA influence over behavior. Results
of these studies ultimately lead to improved adaptive models situ-
ated in robots, which have value in a wide variety of applications
(e.g., medical, commercial, industrial, etc.).

While implementing adaptive agents into robotic platforms
is a promising venture for future study, past experiments have
revealed individual differences between subjects that warrant the
investigation of genetic sources. Because the results from our
Hawk-Dove and Stag-Hunt experiments showed individual varia-
tion in game play, genetic screening for polymorphisms in human
subjects could provide a venue for studying serotonin’s role in
this variation. Several groups have suggested that individual dif-
ferences in behavior are influenced by genetic polymorphisms
related to serotonin signaling (Bevilacqua and Goldman, 2011;
Hyde et al., 2011; Loth et al., 2011). Within this cyclic paradigm,
one such proposed study could incorporate our current adap-
tive agents used to play cooperative (Stag Hunt) and competitive
(Hawk-Dove and Chicken) games with a random sampling of
human subjects, who would be screened for polymorphisms
related to serotonergic function (e.g., 5-HTTLPR) (Homberg
and Lesch, 2011). From the data analysis of these genetic poly-
morphism experiments, genetic-dependent diversity could be
integrated over the neuromodulatory function of our adaptive
agents, and any additional experiments necessitated by the pre-
dictions that emerged from the previous iteration through the
paradigm would be conducted (Figure 1B). These experiments
could allow for the generation of new hypotheses leading to
predictions about the genetic variation in serotonergic neuromod-
ulation and its ties to motivated human behavior. Ultimately, the
predictions might help shape the next generation of empirical
studies.

Though it is important to utilize new techniques such as genetic
screening to better understand the role of serotonin in decision-
making, a primary benefit to our paradigm is its incorporation
of theoretical predictions from past work into future studies. Pre-
viously, we found that the concept of two opposing subgroups
(Figure 6) best described the subjects’ behavior in the Hawk-Dove
game. This theoretical data could be applied to the next genera-
tion of adaptive model (via the iterative component of Figure 1B)
through additional assumptions or constraints of serotonergic
neuromodulation. These new assumptions lead to better predic-
tions about the diversity in behavior resulting from serotonergic
manipulation. As another example, from the Stag Hunt human
subject experiment, we discovered the tendency for adaptive agents
to move counterintuitively when subject behavior was erratic. In
a second iteration of experiments, we could improve upon this
model by utilizing a top-down mechanism founded in neuro-
modulation to converge behavior in the face of seemingly random
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influence. By using cognitive models, we can create behavioral
phenotypes in future models to match the potential individual
differences that arise in any given population. These are a couple
of examples of how this cyclic paradigm would help our adaptive
models and ultimately our understanding of neuromodulatory
influence over behavior in decision-making.

In terms of potential clinical application, the proposed
paradigm may help illuminate components of brain disorders
associated with abnormal serotonergic function. Serotonin has
been implicated in a variety of neuropsychiatric conditions includ-
ing bipolar disorder (Robinson et al., 2009), antisocial personality
disorder (Deakin, 2003), anxiety disorder (Heisler et al., 1998;
Lowry et al., 2008), and affective disorder (Lowry et al., 2008).
Because serotonin is strongly involved in these neuropsychi-
atric diseases, many frequently prescribed antidepressant and
anti-anxiety medications target serotonin receptors. However, due
to the complex physiological action of serotonin, it is difficult
not only to gage the effectiveness of these psychiatric drugs, but
also to isolate the neural pathways relevant to the serotonergic
regulation of these disorders. Our work modeled the theorized
influence serotonin has on decision-making in the context of cost
assessment, which was accomplished by simulated lesions of the
cost assessment region of the model (Asher et al., 2010, 2012a;
Zaldivar et al., 2010). This resulted in an increase in impulsivity
that could possibly be extrapolated to deficits in learning associ-
ated with these neuropsychiatric disorders. The Stag-Hunt, which
focused on cooperation, may be applicable in the study of social
disorders such as autism. Manipulations of computational models
could also mimic such disorders, which would lead to predictions
regarding the neural correlates of the disorder and could possibly
warrant drug or therapy experimentation that tests the model’s
predictions.

Thus, the cyclic, multidisciplinary paradigm provides a strong
approach toward making predictions about the neurobiology that
ties serotonin to motivated behavior. As we continue to explore
serotonin and its role in decision-making, future studies should
consider applying this paradigm in order to accommodate the
complex behavior that accompanies the activity of the serotoner-
gic system. Adaptive neural models situated in a game theoretic
environment utilized in both human and simulation experiments,
accompanied with analysis that leads to an upgraded model for
future use, is a strategy that lends itself to the production of
valuable research in the fields of neuromodulation, behavior,
technology, and neuropsychiatry.
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