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The premise that the central nervous system is immune-privileged arose from the fact that
direct contact between immune and nervous cells is hindered by the blood–brain barrier.
However, the blood–brain barrier also comprises the interface between the immune and
nervous systems by secreting chemo-attractant molecules and by modulating immune
cell entry into the brain. The majority of published studies on the blood–brain barrier
focus on endothelial cells (ECs), which are a critical component, but not the only one;
other cellular components include astroglia, microglia, and pericytes. Pericytes are poorly
studied in comparison with astrocytes or ECs; they are mesenchymal cells that can modify
their ultrastructure and gene expression in response to changes in the central nervous
system microenvironment. Pericytes have a unique synergistic relationship with brain ECs
in the regulation of capillary permeability through secretion of cytokines, chemokines,
nitric oxide, matrix metalloproteinases, and by means of capillary contraction. Those
pericyte manifestations are related to changes in blood–brain barrier permeability by an
increase in endocytosis-mediated transport and by tight junction disruption. In addition,
recent reports demonstrate that pericytes control the migration of leukocytes in response
to inflammatory mediators by up-regulating the expression of adhesion molecules and
releasing chemo-attractants; however, under physiological conditions they appear to be
immune-suppressors. Better understanding of the immune properties of pericytes and
their participation in the effects of brain infections, neurodegenerative diseases, and sleep
loss will be achieved by analyzing pericyte ultrastructure, capillary coverage, and protein
expression. That knowledge may provide a mechanism by which pericytes participate in
the maintenance of the proper function of the brain-immune interface.
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INTRODUCTION
The brain must respond to blood-borne signals but has no direct
access to them (Persidsky et al., 2006; Saper, 2010). Likewise,
the immune system does not contact directly the brain milieu;
they interact through the brain-immune interface, the blood–
brain barrier. The interface is comprised by endothelial cells
(ECs), astrocytes, microglia, pericytes, and extracellular matrix
components (basal lamina and glycocalyx; Risau, 1991; Ballabh
et al., 2004; Ueno, 2007; Gómez-González et al., 2012). ECs limit
blood-borne macromolecules or cells from crossing into the brain
through junction complexes that fasten together adjacent cell
membranes. In addition, transcellular trafficking of molecules
is limited by the minimal expression of endocytosis and the
presence of specialized carrier systems (Zlokovic, 2008; Abbott
et al., 2010). Although ECs provide the physical and chemical
barrier function per se, all elements are crucial for the devel-
opment and maintenance of the blood–brain barrier, allowing
it to be the interface between peripheral systems and the brain
(Zlokovic, 2008).

Pericytes have been increasingly implicated in the regulation
of local blood-flow in brain regions with increased synaptic activ-
ity, a phenomenon known as neurovascular coupling (reviewed in
Hamilton et al., 2010); furthermore, they have also been involved
in the regulation of the blood–brain barrier permeability to

circulating molecules (Armulik et al., 2010). Better understand-
ing of the immune properties of pericytes and their participation
in the changes observed during brain infections and neurode-
generative diseases will provide a mechanism by which pericytes
participate in the maintenance of the proper function of the
brain-immune interface, the blood–brain barrier. Here we present
recent evidence depicting the new roles of pericytes in regulating
blood–brain barrier function under normal and pathological con-
ditions and hypothesize its potential role in the regulation of the
blood–brain barrier after chronic sleep loss.

PERICYTES AS BLOOD–BRAIN BARRIER COMPONENTS
Pericytes are smooth muscle-derived cells that play a crucial
role in keeping brain homeostasis given their presence at the
blood–brain barrier and particularly their active role in what
is known as the neurovascular unit (Zlokovic, 2008; Gómez-
González et al., 2012). Rouget (1874), for the first time, described
a population of branched cells with contractile properties that
surrounded ECs. Fifty years later, these mesenchymal cells were
renamed “pericytes” by Zimmerman in concordance with their
anatomical location: abluminal to ECs and luminal to parenchy-
mal cells (Kim et al., 2006; Sá-Pereira et al., 2012). Anatomically,
pericytes have projections that wrap around capillaries and are
embedded within the basal lamina. The diversity in pericyte
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marker expression may be related to vessel size or embryonic
origin; the main markers are α-smooth muscle actin (αSMA),
desmin, the regulator of G-protein signaling 5 (RGS-5), neuron-
glial antigen 2 (NG2), platelet-derived growth factor receptor
(PDGFRα and PDGFRβ), and amino-peptidase-N (CD13; Ozer-
dem et al., 2002; Bergers and Song, 2005). These proteins show
different expression patterns under physiological and pathologi-
cal states (see Table 1). Furthermore, pericytes express numerous
macrophage markers, namely CD4, CD11b, CD146, and proteins
related to immune function such as the fragment crystalliz-
able receptor (FcR) and the major histocompatibility complex
(MHC) classes I and II (Bergers and Song, 2005; Kamouchi
et al., 2011). Differences in the expression of those markers are
based on the local environmental influences on pericytes. For
example, it has been reported that CD146 is expressed during
embryonic development but not in all freshly isolated pericytes
in adulthood. Also, RGS-5 protein expresses during embryonic
development, but decreases after birth and is absent in pericytes
of the normal adult central nervous system (Dore-Duffy, 2008;
Sá-Pereira et al., 2012).

Although pericyte identification is rather difficult owing to the
lack of one specific marker (Özen et al., 2012), its ultrastructure
was described (Nag, 2003; Sá-Pereira et al., 2012). Two classes of
pericytes exist in the brain: granular and agranular; this clas-
sification arises from the presence or absence of lysosome-like
granules in the cytoplasm (Farrell et al., 1987). In humans, less
than 5% of the pericyte population is agranular (Farrell et al.,
1987; Nag, 2003). Both, granular and agranular pericytes exhibit
an oval cell body and a prominent round nucleus that is dif-
ferent from the elongated nucleus of ECs. Each pericyte may
cover 100 μm of capillary length with up to 90 ramifications
300–800 nm wide (Nag, 2003; Sá-Pereira et al., 2012). Pericyte
distribution is intermittent along the walls of arterioles, venules
and, particularly, in capillaries (Dore-Duffy, 2003). They are cru-
cial for the development and maintenance of the main nervous
system barriers, namely, blood–spinal cord barrier, blood–retinal
barrier, blood–nerve barrier and blood–brain barrier. In fact,
pericyte coverage of brain ECs in vitro is approximately 80%,
in the capillaries of the retina it is 90%, and in the microves-
sels of the spinal cord it is less than 60%. Pericyte coverage and

Table 1 | Pericyte markers in health and disease.

Pericyte marker/

location

Main function Main physiological role Health Disease Reference

PDGFRβ/cell surface

protein

Tyrosine-protein kinase;

Kinase receptor

Embryonic development,

proliferation, chemotaxis,

host-virus interaction

+ +/−
Fibrosis

Tumor

Blood–brain barrier disruption

Song et al. (2005),

Armulik et al. (2010),

Dore-Duffy and Cleary (2011)

αSMA/Filament

protein

Contractility Regulation of blood flow

and motility

− ++
Fibrosis

Tumor

Blood–brain barrier disruption

Song et al. (2005),

Dore-Duffy and Cleary (2011)

NG2/cell surface

protein

Cell adhesion protein Vasculo-genesis + +
Fibrosis

Tumor

Blood–brain barrier disruption

Ozerdem et al. (2002),

Dore-Duffy and Cleary (2011)

RGS-5/intracellular

protein

GTPase-activating

protein

Cell motility + ++
Fibrosis

Tumor

Blood–brain barrier disruption

Song et al. (2005),

Dore-Duffy and Cleary (2011)

Desmin/filament

protein

Contractility Regulation of blood flow

and motility

+ +
Fibrosis

Tumor

Blood–brain barrier disruption

Dore-Duffy and Cleary (2011),

Kamouchi et al. (2011)

CD13/cell surface

protein

Ectopeptidase Pericyte differentiation + ++
Fibrosis

Tumor

Blood–brain barrier disruption

Armulik et al. (2010),

Kamouchi et al. (2011)

Symbols are as follow: (+) Indicates that the marker is present; (−) indicates that the marker is absent; (+/−) indicates a decrease in marker expression and; (++)
indicates that the marker is over expressed.
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number is related to the permeability of the biological-barriers,
higher coverage correlates with lower permeability (Winkler et al.,
2012). Specifically, it has been shown that pericytes contribute
to regulate capillary structure and diameter (Peppiatt et al., 2006;
Armulik et al., 2010; Bell et al., 2010; Daneman et al., 2010). Per-
icytes express junctional complexes that include gap junctions,
tight junctions (Tjs), and focal adhesions with ECs (Zlokovic,
2008). These associations lead to the maintenance of low perme-
ability of the cerebral endothelium (Lai and Kuo, 2005; Nakagawa
et al., 2007). Brain pericytes promote a reduction in vesicular
transport, (Daneman et al., 2010), and promote endothelial Tj
protein expression (Zonula occludens, ZO-1, claudin-5, occludin;
Figure 1; Armulik et al., 2005, 2010; Daneman et al., 2010).
In addition, the morphological pattern of pericyte projections
around brain capillaries is linked to their function and inti-
mately correlates with brain health state (normal, angiogenic, or
injured; Dore-Duffy and Cleary, 2011). The classic wrapping pat-
tern consists of broad processes with a large continuous surface
in the external wall of brain microvessels (Dore-Duffy, 2003; Nag,
2003; Dore-Duffy and Cleary, 2011). Under normal conditions,
the wrapping pattern predominates, but in pathological condi-
tions detachment and migrating patterns can be observed with
the formation of finger-like projections followed by retraction
of projections (Figure 1; Dore-Duffy and Cleary, 2011). Dif-
ferent morphological patterns in pericyte processes may appear
in response to changes in the microenvironment. For example,
the migrating pattern is associated to up-regulation of cell sur-
face proteases in aversive conditions, and also with early stages of
angiogenesis, in contrast with the wrapping pattern that predom-
inates in normal capillaries (Dore-Duffy, 2003; Sá-Pereira et al.,
2012).

Morphological changes in pericytes vary as a function of
exposure to soluble molecules released by blood–brain barrier
components such as ECs, neurons, microglia or astrocytes; per-
icytes can differentiate into fibroblasts, smooth muscle cells or
macrophages, depending on the stimulus received (Figure 1). The
molecules released to the basal lamina that can promote peri-
cyte morphological changes include neurotransmitters, neuro-
hormones and inflammatory mediators (Özen et al., 2012). To
illustrate this, it has been shown that adenosine and adeno-
sine triphosphate (ATP) released by neurons and glial cells may
modify pericyte status by activating purinergic receptors; in
addition, rat brain pericytes express ecto-nucleotidase 1 and 2
(Ceruti et al., 2011; Lecca et al., 2012). After immune challenges
such as lipopolysaccharide (LPS) administration, hippocampal
brain pericytes present increased ecto-nucleotidase expression and
function and also morphological changes (Kittel et al., 2007). Acti-
vation of purinergic receptor P2X7 initiates an inflammatory
response by inducing interleukin (IL) 1β secretion from ECs, astro-
cytes, microglia, and also pericytes (Derks and Beaman, 2004;
Lecca et al., 2012).

Pericyte versatility is, for the most part, unexplored, but sev-
eral studies suggest that pericytes may play potential roles in
brain repair through contractile, migratory, pro-angiogenic and
phagocytic functions but they can also promote brain impair-
ment by uncontrolled immune response (Dore-Duffy et al., 2000;
Dore-Duffy et al., 2006; Özen et al., 2012; Sá-Pereira et al., 2012).

FIGURE 1 | Brain pericyte phenotype in normal and pathological

conditions. Under normal physiological conditions (A) brain pericytes
exhibit tight junctions (Tjs) with endothelial cells (ECs), and are embedded
in the basal lamina. Under pathological conditions, such as injury, infection
or neurodegeneration (B), pericytes present a migrating phenotype with
up-regulation of ICAM expression, pro-inflammatory cytokine release with
ensuing recruitment of peripheral mononuclear cells. Additionally, under
pathological conditions, the continuity of basal lamina is lost and the
existence of fibrin scars contributes to blood–brain barrier impairment.

IMMUNE PROPERTIES OF BRAIN PERICYTES
Mesodermal or neural crest origins of pericytes are generally
accepted. Pericytes are considered as “brain macrophages”. In
fact, for some authors, they represent the first line of defense
in the central nervous system due to their antigen presenta-
tion properties and because they are directly associated with
the microvasculature, in contrast to microglia (Figure 1; Bala-
banov et al., 1999; Guillemin and Brew, 2004). Thomas (1999)
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reported pericytes leaving the basal lamina and migrating to the
perivascular space where they are indistinguishable from perivas-
cular macrophages and reactive microglia (Guillemin and Brew,
2004). Pericyte de-differentiation into cells presenting antigens
may initiate a local pro-inflammatory response. Immune response
in the brain induces monocyte and lymphocyte recruitment;
this process is mediated by the increased expression of adhesion
molecules (e.g., intracellular adhesion molecule 1, ICAM-1) in
the luminal region of ECs that correlates with decreases in the
number of Tjs (Figure 1; Guillemin and Brew, 2004). In addi-
tion, pericytes are able to produce chemo-attractants and promote
transmigration to the brain of circulating immune cells, starting
an inflammatory process. Pericytes may also release inflam-
matory mediators, such as IL-1β, IL-6, tumor necrosis factor
(TNF) α, reactive oxygen species, nitric oxide (NO), and matrix
metalloproteinases (MMP-2 and MMP-9), all of which con-
tribute to pericyte detachment and blood–brain barrier disruption
(Kovac et al., 2011).

These immunoactive properties of pericytes suggest mecha-
nisms by which they can act as an integral part of the blood–brain
barrier during brain inflammatory processes. A pro-inflammatory
component is the hallmark of several brain diseases. Vascular
damage associated to pericyte deficiency may precede neurode-
generation in brain infections, Alzheimer’s or Parkinson’s disease,
diabetes (Özen et al., 2012), and perhaps in less-explored phenom-
ena that exhibit considerable cognitive impairments, such as sleep
loss.

PERICYTES AND BRAIN INFECTIONS
The blood–brain barrier provides a shield against foreign agents
that initiate inflammatory responses (Al-Ghananeem et al., 2013).
The structural variability and the nature of biotic/abiotic inflam-
matory agents that may promote neuropathology are reflected
in the mechanisms used to access the brain. These mecha-
nisms include receptor-mediated endocytosis, unspecific trans-
port by pinocytotic vesicles, paracellular diffusion, transmigration
through infected leukocytes, and crossing after blood–brain bar-
rier breakdown (Alcendor et al., 2012; Nakagawa et al., 2012;
Pulzova et al., 2012).

The inflammatory response to a foreign agent may cause
irreversible brain damage by continuous exposure to pathogen-
derived toxic molecules and immune mediators (Kumar et al.,
2009; Hirooka and Kaji, 2012). Factors that promote a pro-
inflammatory state in the brain include abiotic agents such as
heavy metal ions or viruses, and biotic factors such as bacteria,
fungi, and parasites (Gasque et al., 1998; Liou and Hsu, 1998;
Alvarez and Teale, 2007; Hirooka and Kaji, 2012; Nakagawa et al.,
2012). There is scant knowledge of pericyte function and structure
under inflammatory response induced by foreign agents.

Heavy metal ions, such as methyl-mercury, cadmium and inor-
ganic mercury induce a potent inflammatory response in the brain.
These metal ions have high affinity to sulfhydryl groups favoring
the formation of a methionine-like complex that easily crosses
the blood–brain barrier. The methionine-like complex enters the
brain by the large neutral amino acid transporter (LAT-1); once
inside, the heavy metal ions induce cytokine and growth factor
release by blood–brain barrier components. Heavy metal ions

associate with the fibroblast growth factor type 2 (FGF-2); this
union may cause cell damage because FGF-2 is unable to repair
endothelial damage; therefore, heavy metal ions promote less auto-
regulatory signaling inhibition of EC proliferation (Hirooka and
Kaji, 2012).

In the case of viral and bacterial infections, such as con-
genital human cytomegalovirus (HCMV), human immunode-
ficiency virus type 1 (HIV-1), Japanese encephalitis (JE) virus
and bacterial meningitis, the main transport routes through
the blood–brain barrier include endocytosis of blood-circulating
vesicles, microvessel wall degradation, and indirect crossing via
previous blood–brain barrier disruption. When infectious agents
are detected, pericytes begin an inflammatory response through
increased expression of pro-inflammatory cytokines, such as IL-
1β, IL-6, and TNF-α (Liou and Hsu, 1998; Alcendor et al., 2012;
Nakagawa et al., 2012). In HIV-1 infection, pericytes express
the chemokine receptors CXCR4 and CCR5 that are used by
infected cells to contribute to the formation of viral reservoirs
in the brain (Nakagawa et al., 2012). It is known that 80% of
cultured pericytes infected by HCMV generate an inflamma-
tory response; in fact, only 72 h after infection, a huge rise in
IL-1β, a medium increase in IL-6, and a minimal increase in
TNF-α concentration are observed. However, later on those pro-
inflammatory cytokine profiles are reversed by the compensatory
effect of anti-inflammatory cytokines (Alcendor et al., 2012). In
contrast, bacterial meningitis infection increases expression of
receptors C5a and C3a in brain pericytes. These complement
molecules are powerful chemo-attractants to recruit polimor-
fonuclear cells and macrophages to the inflammation site causing
cell activation (Gasque et al., 1998). On the other hand, it has
been reported that Taenia solium infiltrates cause brain inflam-
mation by pericyte release of pro-inflammatory cytokines and
MMP-2 and MMP-9, which are associated to blood–brain bar-
rier disruption. Blood–brain barrier breakdown allows infiltra-
tion of antigen-presenting cells and specialized immune cells
(B cells and T cells), exacerbating the inflammatory condition
(Alvarez and Teale, 2007).

These studies illustrate that although each pathogen exhibits a
characteristic pathway, the same inflammatory mediators partici-
pate in the orchestration of the brain immune response (Figure 2).
It is known that rises in pro-inflammatory cytokines, particu-
larly IL-1 β, IL-6, and TNF-α, disrupt Tjs by down-regulating
occludin and ZO-1 expression (Liou and Hsu, 1998; Alcendor
et al., 2012; Nakagawa et al., 2012). Pro-inflammatory cytokines
alter Tj integrity by promoting an increase in prostaglandin-E
(PGE) receptors in pericytes, which leads to MMP overproduc-
tion and release, causing pericyte uncoupling with ECs (Alvarez
and Teale, 2007). In fact, ECs are the unique brain cell type
that expresses PGE-2 synthase (Yamagata et al., 2001); PGE-2 is
produced in response to immune challenges (e.g., IL-1 or LPS
administration; Cao et al., 1997; Laflamme et al., 1999) suggesting
a relevant role of perivascular cells (astrocytes, interneurons and
particularly pericytes) in the response to low doses of immune
stimulators (Schiltz and Sawchenko, 2002). Interestingly, perivas-
cular cell response is different for each type of molecule; e.g.,
pericytes elicit cyclooxygenases in brain ECs in response to low
doses of IL-1, but with low doses of LPS perivascular cells
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FIGURE 2 | Pathogen entry to the brain. The cartoon depicts different routes for pathogen entry to the brain: caveolae (A), receptor-mediated transport (B),
paracellular diffusion (C), and transmigration through infected leukocytes (D). In all cases a pericyte-mediated immune response followed by blood–brain barrier
breakdown is observed.

apparently have an inhibitory effect on cyclooxygenase produc-
tion (Schiltz and Sawchenko, 2002). Some neuro-infections are
associated with neurodegenerative diseases, for example, the bac-
teria Borrelia burgdorferi in Alzheimer’s disease (Miklossy et al.,
2004). So, is the pathogenic action on pericytes a promoter of
neurodegenerative disease? Undoubtedly, pericyte function has an
important role in the progression of brain pathologies. Although
several studies provide relevant information on the immune role of
pericytes in the protection of the brain against an infectious threat,
the molecular and cellular mechanisms involved in blood–brain
barrier disruption are poorly understood.

ROLE OF PERICYTES IN NEURODEGENERATIVE DISORDERS
Similar to infectious processes, during neurodegenerative and
cerebrovascular diseases inflammatory phenomena occur, which
are characterized by increased release of pro-inflammatory
cytokines (IL-1β, IL-6, and TNF-α), subsequent hyperthermia,
and mononuclear cell infiltration (Bleys and Cowen, 2001). In
both, neurodegenerative and cerebrovascular diseases, pericyte
detachment of ECs and differentiation into fibroblasts or phago-
cytes correlates with an increase in vesicle number in ECs, Tj
disruption and immune cell recruitment (Özen et al., 2012). Addi-
tionally, fibrosis-like pathophysiological changes are described
(Figure 3); pericyte-derived fibrin and collagen form scars,
which are involved in cell death by neurotoxicity (Armulik et al.,
2010; Fernández et al., 2013). Deposits of extracellular matrix

components and organ failure are common after prolonged expo-
sure to pro-inflammatory cytokines, suggesting that the first step
leading to cell death relates to the immune response (Lin et al.,
2008; Armulik et al., 2010). Furthermore, cytokine production is
accompanied by oxidative stress; both, inflammatory mediators
and oxidative stress are directly involved in increased blood–brain
barrier permeability through the same signaling pathways.

Recent studies revealed the role of NO released by microglia and
pericytes in neurodegenerative diseases and neuro-immune inter-
actions; it was shown that amyloid β deposits in Alzheimer’s dis-
ease promote pericyte constriction despite NO over-production.
The role of NO in blood–brain barrier disruption is also related
to its high ability to form free radicals such as peroxynitrite
(ONOO-•), which may induce cell death (Hamilton et al., 2010;
Kovac et al., 2011). In addition, it has been reported that amyloid
β deposits promote over-production of reactive oxygen species
in pericytes, endothelial, and glial cells (Veszelka et al., 2013).
Blood–brain barrier disruption promotes lymphocyte recruit-
ment in neurodegenerative diseases and stroke; hence, after
cerebral ischemia, polymorphonuclear leukocytes impede reper-
fusion leading to generation of free radicals, and promoting
pericyte constriction. Indeed, pericyte detachment from the
vessel wall occurs following ischemia and reperfusion (Taka-
hashi et al., 1997). Recently, Tigges et al. (2013) reported an
increase in fibronectin and collagen I deposits in animal models
of Alzheimer’s disease, these deposits are related to pericyte

Frontiers in Integrative Neuroscience www.frontiersin.org January 2014 | Volume 7 | Article 80 | 5

http://www.frontiersin.org/Integrative_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Integrative_Neuroscience/archive


“fnint-07-00080” — 2014/1/9 — 20:30 — page 6 — #6

Hurtado-Alvarado et al. Pericyte neuroimmunomodulation

FIGURE 3 | Molecular inflammatory changes in brain pericytes in pathophysiological conditions. The cartoon depicts molecules released by pericytes
under altered physiological conditions (e.g., neurodegeneration, infections or brain injury). Excitotoxicity may occur secondary to blood–brain barrier disruption.

differentiation and migration. Tigges et al. (2013) showed that
under normal conditions, brain pericytes express high levels of
α5 integrin and lower levels of α1, α2, and α6 integrins. This
expression pattern has a crucial role in the attachment of per-
icytes to the vessel wall; in fact, an in vivo study shows that
TNF-α promotes pericyte proliferation and detachment as well
as a switch in integrin expression pattern, with predominance
of α2 integrin (Tigges et al., 2013). Interestingly, Tigges et al.
(2013) also found that α2 integrin expression strongly corre-
lated with brain vessel remodeling in experimental autoimmune
encephalomyelitis. Similarly, in Alzheimer’s disease it is reported
that fibrin deposition and increased extravascular immunoglobu-
lin G (IgG) correlate with a reduction in pericyte coverage of ECs
(Sengillo et al., 2013).

Fibrin deposits are a signal of fibroblast activity and prob-
ably represent an index of de-differentiation from pericytes to
fibroblasts. Transforming growth factor-β (TGF-β) is the most
potent known growth inhibitor for ECs, fibroblasts, neurons, and
lymphoid cells. TGF-β inhibits proliferation of T-lymphocytes
by down-regulating pro-inflammatory cytokines, e.g., IL-2-
mediated proliferative signals (Dohgu et al., 2005). Under diabetic
conditions, pericytes release TGF-β, which increases fibronectin

levels (Shimizu et al., 2013). Shimizu et al. (2013) suggest that
advanced glycation end-products (AGEs) induce blood–brain bar-
rier disruption in diabetic conditions by stimulation of autocrine
TGF-β signaling in pericytes, and up-regulation of vascular
endothelial growth factor (VEGF) and MMP-2. Both, VEGF
and MMP-2 modify trans-endothelial electric resistance (TEER)
leading to Tj disruption and increased vesicular transport (Thana-
balasundaram et al., 2011). Pericyte deficiency reported in diabetes
is attributed to raises in glucose concentration, and production
of reactive oxygen species through the NFκB pathway (Hamilton
et al., 2010). Interestingly, in diabetic animal models, pericytes are
highly immunosuppressive; under early hyperglycemic conditions
retinal-derived pericytes inhibit T cell proliferation and protect
ECs from inflammation-induced apoptosis (Tu et al., 2011). In
addition, it is known that pericytes are especially susceptible to
oxidative stress; for example, high glucose levels cause oxida-
tive stress and apoptosis (Shah et al., 2013). In addition to the
reactive oxygen species effect, the production of large amounts
of NO by inducible-nitric oxide synthase (iNOS) can lead to
changes in cerebral blood-flow, nitrosative stress, and subse-
quent cell death of pericytes, ECs and neurons through toxicity
caused by excitatory amino acids and massive entry of toxic
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molecules to the brain (Kischer, 1992; Li et al., 1997; Tu et al.,
2011; Baloyannis and Baloyannis, 2012). A decrease in peri-
cyte capillary coverage and cell number has been reported in
hyperglycemia, early diabetes retinopathy, brain tumors, and
Alzheimer’s disease. Therefore, brain microvascular alterations
seem to reciprocally interact with underlying neurodegenera-
tion in inducing cognitive impairments (Pimentel-Coelho and
Rivest, 2012). The role of pericytes in the genesis of neurode-
generative diseases and in brain regeneration is poorly stud-
ied; however, pericytes undoubtedly, cause alterations in brain
physiology.

PERICYTES AND SLEEP LOSS: AN IMMUNOLOGICAL PERSPECTIVE
Sleep loss is a common problem in modern society (Mills et al.,
2007; Yehuda et al., 2009) and a risk factor for the development
of obesity, metabolic syndrome, diabetes, and neurodegenerative
diseases (Tasali et al., 2009; van Leeuwen et al., 2009; Reynolds
et al., 2012). Similar to infections and neurodegenerative dis-
eases, sleep loss has an important pro-inflammatory component
(Mills et al., 2007; Zager et al., 2007). Specific sleep function is
yet unclear; but it has been proposed that sleep is associated
with changes in parameters of host defense (Benca and Quin-
tas, 1997). Sleep is divided into two distinct stages namely; slow
wave sleep and rapid eye movement (REM) sleep (Siegel, 2010).
Particularly, REM sleep has an important role in biological pro-
cesses; REM sleep loss decreases neurogenesis in the hippocampus
(Guzman-Marin et al., 2008; Mueller et al., 2008), alters the brain
neurochemical content (Mohammed et al., 2011), and impairs
learning and memory in both rodents and humans (Meerlo et al.,

2008). Prolonged wakefulness promotes an increase of inflam-
matory mediators such as adenosine and NO (Kalinchuk et al.,
2011; Cespuglio et al., 2012; Raymond et al., 2012), and increases
plasma levels of IL-1β, IL-6, IL-17A, TNF-α (Yehuda et al., 2009),
and endothelin-1 (ET-1; Mills et al., 2007). These changes may act
directly on the blood–brain barrier components; for example, IL-
1, IL-17, and ET-1 disrupt the blood–brain barrier (Banks et al.,
1995; Blamire et al., 2000; Didier et al., 2003; Huppert et al., 2010).
REM sleep deprivation also increases body temperature (Jaiswal
and Mallick, 2009), which also disrupts the blood–brain barrier
(Kiyatkin and Sharma, 2009).

Our research group recently found that chronic REM sleep
restriction induces a generalized blood–brain barrier breakdown,
and subsequent sleep opportunity is capable of restoring blood–
brain barrier integrity. In addition, we studied EC ultrastructure
and observed alterations in vesicle trafficking (Gómez-González
et al., 2013). It is highly likely that pericyte dysfunction may con-
tribute to increases in blood–brain barrier permeability secondary
to sleep loss because ultrastructural changes in ECs are simi-
lar to those reported in pericyte-deficient mice, e.g., increased
caveolae density, and endothelial derangement (Armulik et al.,
2010). Chronic exposure to pro-inflammatory cytokines, NO and
other inflammatory mediators released during sleep restriction
may directly induce pericyte detachment from the vessel wall and
subsequent differentiation into migratory and phagocytic pheno-
types, mediating blood–brain barrier disruption. It is likely that
the synthesis of antioxidants and anti-inflammatory molecules
during sleep recovery may restore normal blood–brain barrier
permeability through neutralization of free radicals (Figure 4).

FIGURE 4 | Hypothetical roles of pericytes in REM sleep loss-induced

blood–brain barrier disruption. Increased cytokine and chemokine
concentrations during sleep loss may disrupt the blood–brain barrier. Brief

periods of sleep opportunity may reestablish the blood–brain barrier integrity
through synthesis of antioxidants and anti-inflammatory cytokines (e.g.,
TGF-β).
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CONCLUSION
Classically, pericytes have been considered a cell population
involved mainly in microvessel contractility. New research on per-
icyte contribution to optimal blood–brain barrier function and
neural pathogenesis shows that they have a substantial influence
on the neuro-immune response. The immunoactive properties
of pericytes suggest mechanisms by which they could act as an
integral component of the blood–brain barrier during inflamma-
tory processes, such as during brain infections, neurodegenerative
diseases or sleep loss. Future studies are needed to elucidate
pericyte role under inflammatory conditions. Knowledge on per-
icyte contribution to disease pathogenesis will allow more specific
treatment of brain pathologies and perhaps the development of
better diagnostic markers. The field study of pericytes is gener-
ating frontier knowledge and may be exploited as an example of
neuro-integration. Certainly, pericytes are crucial cells in optimal
brain function, but their deficit results from molecular interactions
between all brain cells.
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