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The vestibular system is vital for maintaining an accurate representation of self-motion.
As one moves (or is moved) toward a new place in the environment, signals from
the vestibular sensors are relayed to higherorder centers. It is generally assumed the
vestibular system provides a veridical representation of head motion to these centers
for the perception of self-motion and spatial memory. In support of this idea, evidence
from lesion studies suggests that vestibular inputs are required for the directional
tuning of head direction cells in the limbic system as well as neurons in areas of
multimodal association cortex. However, recent investigations in monkeys and mice
challenge the notion that early vestibular pathways encode an absolute representation
of head motion. Instead, processing at the first central stage is inherently multimodal.
This minireview highlights recent progress that has been made towards understanding
how the brain processes and interprets self-motion signals encoded by the vestibular
otoliths and semicircular canals during everyday life. The following interrelated questions
are considered. What information is available to the higherorder centers that contribute
to self-motion perception? How do we distinguish between our own self-generated
movements and those of the external world? And lastly, what are the implications of
differences in the processing of these active vs. passive movements for spatial memory?
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FUNCTIONALLY ANALOGOUS CELLS TYPES IN THE
VESTIBULAR PATHWAYS OF MONKEY AND MOUSE

The vestibular system provides the brain with information about
the motion of the head relative to space and is comprised
of two types of sensors: the three semicircular canals, which
sense angular rotation in three dimensions and the two otolith
organs (the saccule and utricle), which sense linear motion
(i.e., gravity and three dimensional translational movement). In
turn, the receptor cells of the semicircular canals and otoliths
send signals through the vestibular nerve fibers to the vestibular
nuclei (VN).

To date, the coding of vestibular information at the level
of single vestibular nerve afferents and their target neurons in
the VN has been well characterized in alert behaving monkeys.
Notably, neurons predominantly encode rotational head velocity
and linear head acceleration. Vestibular afferents can be further
characterized on the basis of their baseline discharge regularity as
regular or irregular (reviewed in Goldberg, 2000; Cullen, 2011).
In addition, their target neurons in the VN can be divided into
three primary groups on the basis of their sensitivities to applied
head motion and eye movements (Cullen and McCrea, 1993;
Cullen et al., 1993, and reviewed in Cullen, 2012). Two classes of
neurons—each with a specific combination of eye movement and

vestibular related responses—are thought to provide the substrate
for the generation and adaptation of the vestibulo-ocular reflex. In
particular, eye movement related inputs from oculomotor areas of
the brainstem (e.g., the nucleus prepositus and reticular forma-
tion), the accessory optic system, and the vestibular cerebellum
(flocculus and ventral paraflocculus) provide saccade, pursuit
and optokinetic-related inputs to both neuron classes. These
extravestibular inputs contribute to the control and modulation
of both visually-driven eye movements and the vestibulo-ocular
reflex. In contrast, a third subgroup of neurons that responds
to vestibular stimulation but not eye movements projects both
to: (i) the spinal cord and (ii) upstream centers including the
thalamus and vestibular cerebellum (reviewed in Cullen, 2012),
to ensure the maintenance of posture and accurate perception of
self-motion.

More recently, a corresponding series of studies in mice exam-
ined the coding of vestibular information at the level of single
vestibular nerve afferents and VN neurons. Comparison with
findings in monkey reveals that mouse vestibular afferents can
likewise be classified on the basis of their discharge regularity,
but they are on average 3—4 times less sensitive to head velocity
(Figure 1A; Yang and Hullar, 2007; Lasker et al., 2008). Similarly,
mouse VN neurons (Beraneck and Cullen, 2007) display relatively
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FIGURE 1 | (A) Mouse vestibular afferents can be classified on the basis rotational sensitivities and mutual information density of mouse and
of their discharge regularity, and are on average 3-4 times less sensitive to monkey VN neurons. (Monkey data are adapted from Massot et al., 2011,
head velocity when compared to monkey afferents. (B) Comparison of 2012).

low sensitivities to vestibular stimulation as compared to neurons
in monkeys (Massot et al., 2011, 2012). Furthermore, simulta-
neous recordings of eye and head motion responses revealed
subgroups comprising both eye motion sensitive and insensitive
neurons in the mouse VN similar to those reported in monkey
(Beraneck and Cullen, 2007).

Why is early vestibular processing in mice characterized
by lower pathway modulation than in monkeys? The general
decrease in modulation could potentially indicate sensory pro-
cessing has adapted to account for differences in the stim-
uli experienced by each species in its natural environment.
Alternatively, it is also possible that neuronal sensitivities are
matched to the specific constraints of the reflexes that the
mouse sensory-motor pathways evolved to control. If mice have
a more limited need for perceptual and behavioral accuracy,
then the relatively lower discharges of their early vestibular
pathways could correspond to reduced information transmission
(Vinje and Gallant, 2000; Borst and Haag, 2001). This proposal
is consistent with our preliminary results that in mice eye-
movement insensitive neurons encode substantially less infor-
mation than do monkey VN neurons (Figure 1B; Jamali et al.,
2010; Massot et al., 2011). Taken together, current evidence
suggests that evolutionary pressure adjusts characteristics of

sensory transmission in early vestibular processing to meet certain
functional requirements, which differ across species (see also,
Niven et al., 2007).

WHAT INFORMATION IS AVAILABLE TO HIGHER-ORDER
CENTERS THAT CONTRIBUTE TO THE PERCEPTION OF
SELF-MOTION?

As noted above, vestibular afferents exclusively encode head
motion information and project to a class of neurons in the VN
that in turn project to both the spinal cord and upstream centers
to ensure the maintenance of posture and perception of self-
motion. In mice the majority of these VN neurons are sensitive
to the dynamic stimulation of neck proprioceptors (Medrea and
Cullen, 2013). This finding is consistent with reports that both
vestibular and proprioceptive sensory inputs can modulate the
response of VN neurons in alert squirrel monkeys (Gdowski and
McCrea, 2000) and cynomolgus monkeys (i.e., Macaca fascicu-
laris; Sadeghi et al., 2009). In contrast, in alert rhesus monkeys
(Macaca mulatta), we found that VN neurons do not normally
respond to passive stimulation of neck proprioceptors (Roy and
Cullen, 2001, 2002, 2003). Instead, such integration is observed
only at the next stage in the cerebellum (Brooks and Cullen, 2009,
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2013). Interestingly, however, after peripheral vestibular loss, VN
neurons in the rhesus monkeys respond to passive proprioceptive
stimulation indicating that sensory substitution occurs at the
earliest stages of vestibular processing to mediate compensation
(Sadeghi et al., 2010, 2011, 2012).

In mice, proprioceptive-related responses can be either “addi-
tive” or “subtractive” to vestibular sensitivities. Put another way,
they can function to either enhance or reduce vestibular-related
modulation when the head is moved relative the animal’s body.
This is a condition in which both self-motion sensory cues are
present—the vestibular sensors are stimulated by the movement
of the head relative to space, while neck proprioceptors are
simultaneously activated by the resultant stretch applied the neck.
Notably, in mice a given neuron’s response to such combined
stimulation can be well predicted by the simple linear sum of
its response to each stimulus when applied alone, consistent
with previous studies in alert squirrel and cynomolgus monkeys
(Gdowski et al., 2001; Sadeghi et al., 2009).

Neck sensitive VN neurons also encode a static neck position
signal in alert mice (Medrea and Cullen, 2013) as well as in rats
(e.g., Barresi et al., 2013) but not in primates. As detailed below,
this static signal of proprioceptive origin is observed during both
active and passive self-motion. Thus, this input is of particular
interest since it can potentially provide an important heading
signal to upstream structures for the computation of spatial
orientation.

The lack of a static head position signal in primates as com-
pared to rodents may reflect differences in the active control of
gaze as well as habitat. Monkeys, are frontal-eyed animals with
a retina specialized for high-acuity vision (fovea). In particular,
monkeys often use voluntary coordinated eye-head and eye-
head-body gaze shifts (McCluskey and Cullen, 2007) to precisely
align gaze when exploring their environment, whereas mice are
afoveates for which head and body motion are typically more
closely linked during exploration (see Stahl et al., 2006). It is
thus likely that the static neck sensitivity coded by mouse VN
neurons plays a vital role in stabilization of the head relative to
the body during exploration via the vestibulo-collic reflex (e.g.,
Baker, 2005; Takemura and King, 2005). In contrast, such default
stabilization would be potentially detrimental in monkeys, since
it would be counterproductive to the voluntary head movements
that are frequently made by this species.

HOW DO WE DISTINGUISH BETWEEN OUR OWN
SELF-GENERATED MOVEMENTS AND THOSE OF THE
EXTERNAL WORLD?

Voluntary neck movements generate egocentric motor-related as
well as proprioceptive signals. In the murine vestibular nucleus,
these signals are combined with allocentric vestibular signals
(head motion in space) at the neuronal level. Specifically, the
simple linear summation of a neuron’s sensitivities to passive
vestibular and neck proprioceptive stimulation applied alone no
longer predicts VN neurons responses (Medrea and Cullen, 2013).
Instead, neuronal responses are suppressed for self-generated
head motion in a manner similar to what has been observed
in monkey (Gdowski and McCrea, 2000; Roy and Cullen, 2001;

Sadeghi et al., 2009). Evidence from experiments in monkeys
suggest that a neural copy of the motor command that initi-
ates the active motion, is used to cancel self-generated sensory
input during active head movements (e.g., Roy and Cullen, 2004;
Sadeghi et al., 2009). A comparable mechanism may underlie
the analogous suppression of self-produced vestibular stimulation
observed in the VN of mice.

It is notable, that a series of lesion and inactivation stud-
ies has provided evidence that vestibular inputs are essential
to ensure the tuning of the head-direction cell network. Head
direction cells are thought to integrate signals of vestibular origin
to maintain a signal of cumulative rotation (reviewed in Taube,
2007) and are found in many brain areas, including the post-
subiculum, retrosplenial cortex, thalamus, lateral mammillary
nucleus, dorsal tegmental nucleus, striatum and entorhinal cor-
tex. A characteristic of head direction cells is that they selectively
fire when animal’s head points in a specific direction. Based
on anatomical studies, it has been further suggested that three
nuclei could relay vestibular signals to the head-direction pathway
including: the nucleus prepositus, the supragenual nucleus, and
the paragigantocellular nucleus (reviewed in Shinder and Taube,
2011). However, at least in monkeys, the nucleus prepositus
predominantly encodes eye-movement information during both
externally applied and passively generated motion (Dale and
Cullen, 2013). On the other hand, lesions to the supragenual
nucleus can destabilize head-direction cell tuning in rats (Clark
and Taube, 2012). Future neurophysiological experiments in mice
and rats quantifying both vestibular and extravestibular related
responses during self-motion will be needed to fully understand
the nature of the signals that these nuclei relay to upstream
structures.

WHAT ARE THE IMPLICATIONS REGARDING THE NEURAL
ENCODING OF SELF-GENERATED VS. EXTERNALLY APPLIED
MOTION FOR SPATIAL MEMORY?
What is the functional significance of the differential encoding of
active and passive motion by early vestibular pathways in mice?
Three important implications are outlined below (Figure 2).

First, the descending projections of this specific class of VN
neurons mediate spinal postural reflexes such as the vestibulo-
collic reflex (Wilson et al., 1990; Boyle et al., 1996). Thus, the
fact that sensory inputs produced by volitional movement are
suppressed suggests that these stabilizing reflex pathways are
themselves suppressed. This is helpful, since an intact reflex com-
mand would be counterproductive to the intended movements
when the behavioral goal is to generate active self-motion.

Second, the multimodal information encoded by the ascend-
ing thalamocortical projections of this specific class of VN
neurons make a major contribution to higher-level functions
including the computation for spatial orientation and memory.
Two facts discussed above play together. On the one hand multi-
modal integration in the VN is more comprehensive in mice than
in monkeys. On the other hand, we found that monkeys might
implement some functionality found in the murine VN in the
cerebellar cortex instead (Brooks and Cullen, 2009, 2013).

Third and finally, recent neurophysiological findings have spe-
cific implications for the head direction cell network. While this
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FIGURE 2 | Vestibular pathways for spatial memory. Vestibular signals
from the labyrinth of the inner ear are transferred to the VN via the
vestibular afferents of the VIII nerve. In turn, the VN projects to other brain
areas to: (i) control posture and balance, (ii) produce estimates of spatial
orientation, and (iii) encode heading direction.

network is commonly thought to integrate signals of vestibular
origin to maintain a signal of cumulative rotation (reviewed in
Taube, 2007), the neurophysiological studies reviewed above have
established that the coding of vestibular information at the first
central stage of processing is determined by on-going behavior in
both primates and rodents. In particular, vestibular information is
combined with egocentric information including proprioceptive
and motor-related signals at this initial stage of sensory pro-
cessing. One possibility is that egocentric cues provided by the
proprioceptive and motor-related signals in early vestibular pro-
cessing also make important contributions to the head direction
cell network activity (Wiener et al., 2002; Taube and Basset, 2003).
Notably, the observed motor-related responses could potentially
provide a directional heading signal with anticipatory features.
Furthermore, it is likely that different species employ characteris-
tic integration strategies, based on specific weighting of egocentric
as well as allocentric cues, to compute the head direction signal.
For instance, Yoder and Taube (2009) reported that rat head
direction cells are more influenced by external (i.e., visual) cues
than those of mice. Future work is needed to fully understand
the contribution of the egocentric signals encoded by vestibular
pathways to head direction cell signal generation and whether
there are important differences in this computation across species
(e.g., mouse vs. rat vs. monkey). This knowledge will be essential
in furthering our understanding of how input pathways such
as the early vestibular system that encode both allocentric and
egocentric information, contribute to the neural representation
of direction encoded by higher level structures.

CONCLUSION

It is generally assumed the vestibular system provides a veridi-
cal representation of head motion to higher order centers for
the perception of self-motion and spatial orientation. However,
as reviewed above, the findings of recent electrophysiological
studies in monkeys and mice have challenged this assumption.
Instead, under natural conditions, behavioral context governs
how vestibular information is encoded at the first central stage

of vestibular processing. Not only is processing inherently multi-
modal, but the manner in which multiple inputs are combined is
adjusted to meet the needs of the current behavioral goal. Notably,
in natural conditions, neurons in the VN can distinguish between
active and passive motion—responding far more robustly to
passive movements. These results have important implications
for understanding the computations that underlie the spatial
orientation signals encoded by neurons in the head direction cell
network and areas of multimodal association cortex that underlie
self-motion perception and spatial memory.
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