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The presentation of novel, remarkable, and unpredictable tastes increases dopamine (DA)
transmission in different DA terminal areas such as the nucleus accumbens (NAc) shell
and core and the medial prefrontal cortex (mPFC), as estimated by in vivo microdialysis
studies in rats. This effect undergoes adaptive regulation, as there is a decrease in DA
responsiveness after a single pre-exposure to the same taste. This phenomenon termed
habituation has been described as peculiar to NAc shell but not to NAc core and mPFC
DA transmission. On this basis, it has been proposed that mPFC DA codes for generic
motivational stimulus value and, together with the NAc core DA, is more consistent with
a role in the expression of motivation. Conversely, NAc shell DA is specifically activated
by unfamiliar or novel taste stimuli and rewards, and might serve to associate the sensory
properties of the rewarding stimulus with its biological effect (Bassareo et al., 2002;
Di Chiara et al., 2004). Notably, habituation of the DA response to intraoral sweet or bitter
tastes is not associated with a reduction in hedonic or aversive taste reactions, thus
indicating that habituation is unrelated to satiety-induced hedonic devaluation and that
it is not influenced by DA alteration or depletion. This mini-review describes specific
circumstances of disruption of the habituation of NAc shell DA responsiveness (De Luca
et al., 2011; Bimpisidis et al., 2013). In particular, we observed an abolishment of NAc
shell DA habituation to chocolate (sweet taste) by morphine sensitization and mPFC 6-
hydroxy-dopamine hydrochloride (6-OHDA) lesion. Moreover, morphine sensitization was
associated with the appearance of the habituation in the mPFC, and with an increased and
delayed response of NAc core DA to taste in naive rats, but not in pre-exposed animals.
The results here described shed light on the mechanism of the habituation phenomenon of
mesolimbic and mesocortical DA transmission, and its putative role as a marker of cortical
dysfunction in specific conditions such as addiction.
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INTRODUCTION
Primary motivational states, both positive and negative, are often
ruled by the activity of dopamine (DA) neurons in the ven-
tral tegmental area (VTA) and their terminal targets, such as
the nucleus accumbens (NAc) and the medial prefrontal cortex
(mPFC). In these terminal regions, DA responds to appetitive or
aversive stimuli differently depending on specific factors such as
stimulus valence, stimulus sensory modality, specific DA neu-
ron subpopulations, different terminal areas studied, and the
techniques used for the detection of DA (e.g., microdialysis vs
voltammetry; Fibiger and Phillips, 1988; Di Chiara, 1995; West-
erink, 1995; Berridge and Robinson, 1998; Schultz, 1998; Redgrave
et al., 1999; Di Chiara et al., 2004; Aragona et al., 2009; Lammel
et al., 2012; McCutcheon et al., 2012).

The direct correlation between motivational stimulus valence
and its effect on the responsiveness of DA transmission has been

Abbreviation: C, chocolate; DA, dopamine; i.o., intraorally; mPFC, medial
prefrontal cortex; NAc, nucleus accumbens; 6-OHDA, 6-hydroxy-dopamine
hydrochloride; s.c., subcutaneously; VTA, ventral tegmental area.

extensively appreciated by in vivo brain microdialysis studies in
three different DA terminal areas: NAc shell, NAc core, and mPFC
(Bassareo and Di Chiara, 1999; Bassareo et al., 2002). Particularly,
it has been observed that the exposure to natural rewards (e.g.,
highly palatable food) and to salient food taste stimuli (sweet and
bitter) increases DA transmission in NAc shell and core and in
mPFC of non-food-deprived rats. In NAc shell, but not in NAc
core or in mPFC, this response undergoes adaptive regulation
after a single pre-exposure to the same taste/food. This response
reduces following a recurrent stimulus, and is termed habituation
(Thompson and Spencer, 1966; Cohen et al., 1997; Rankin et al.,
2009). In NAc shell, habituation to natural rewards is taste specific,
and it is reversed by food deprivation of the animals and modified
by the presentation of cues associated with the stimulus (Bassareo
and Di Chiara, 1999). These observations demonstrate that NAc
shell DA is activated by unfamiliar appetitive taste stimuli while DA
in the mPFC codes for generic motivational value independently
of stimulus valence. Additionally, this underlines the role of NAc
shell DA and its habituation in associative learning (Bassareo et al.,
2002; Di Chiara et al., 2004).
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In contrast, habituation of DA response is not present after
repeated exposure to drugs of abuse (e.g., nicotine, opiates,
psychostimulants, cannabinoids), which preferentially stimu-
late DA transmission in NAc shell as compared to NAc core
(Pontieri et al., 1995, 1996; Tanda et al., 1997). However, the
use of in vivo voltammetry by other labs showed oppo-
site and specific sub-regional changes in DA concentration
in response to both cued and unconditioned appetitive stim-
uli or after cocaine (Aragona et al., 2009; Brown et al., 2011;
Badrinarayan et al., 2012).

This review describes experimental evidence for the disruption
of habituation of NAc shell DA responsiveness to motivational
stimuli in vivo, and on the specific circumstances that could
contribute to these significant changes. The data here discussed
highlight the role of DA in both learning and hedonic processes.

SENSITIZATION TO MORPHINE AFFECTS HABITUATION OF
MESOLIMBIC AND MESOCORTICAL DOPAMINE
RESPONSIVENESS TO TASTE STIMULI
Morphine administration increases DA transmission in the
mesolimbic system, as estimated by in vivo brain microdialysis (Di
Chiara and Imperato, 1988; Pontieri et al., 1996). Specific exper-
imental protocols of repeated exposure to morphine produced
sensitization.

The effect of morphine sensitization on the habituation of the
responsiveness of DA transmission to a single pre-exposure to
novel, remarkable and unpredictable taste stimuli has been eval-
uated (De Luca et al., 2011). In order to induce behavioral and
biochemical sensitization, a protocol conceived by Cadoni and Di
Chiara (1999) has been used. Thus, rats were administered twice a
day for three consecutive days with increasing doses of morphine
(10, 20, 40 mg/kg s.c.) or saline. After 15 days of withdrawal, rats
were administered a precise amount of appetitive sweet chocolate
solution through an intraoral cannula (1 ml/5 min, i.o.) during
the microdialysis session for NAc shell, core and mPFC dialysate
DA analysis.

Our main finding was that opiate sensitization and choco-
late pre-exposure exert a differential influence on the response
of DA transmission as regards to the specific subdivision of the
mesocorticolimbic DA system. Figure 1 shows the effect of mor-
phine sensitization on the response of NAc shell and core and
mPFC DA levels to intraoral sweet chocolate in naive and choco-
late pre-exposed rats. We reported that pre-exposure to chocolate
produced opposite changes in DA transmission in the mPFC and
in the NAc shell (De Luca et al., 2011). In fact, unexpected appear-
ance of habituation in mPFC DA responsiveness to taste stimuli
was accompanied by a loss of habituation in NAc shell. More-
over, morphine sensitization was associated with an increased and
delayed (50–110 min after chocolate) response of NAc core DA to
taste in naive rats while an immediate increase of DA was observed
in pre-exposed animals. Similar results were obtained with an
aversive stimulus (De Luca et al., 2011). Moreover, although sen-
sitization to morphine is associated with long-term changes in
mesolimbic and mesocortical DA responsiveness to taste stimuli,
changes in behavioral taste reactivity are lacking. The latter evi-
dence supports the hypothesis that taste-hedonia does not depend
on DA (Berridge and Robinson, 1998), thus the increase of DA

FIGURE 1 | Effect of 24-h pre-exposure to chocolate (C, 1 ml/5 min, i.o.)

on NAc shell and core and mPFC dialysate DA in morphine sensitized

or control rats. Results are indicated as mean ± SEM of change in DA
extracellular levels expressed as the percentage of basal values. Solid
symbol, p < 0.05 vs basal value; *, p < 0.05 vs Control; x, p < 0.05 vs shell
naive Sensitized; §, p < 0.05 vs shell pre-exposed Sensitized. (Adapted
from Figures 2 and 3; De Luca et al., 2011).

transmission in these brain regions could arise from the motiva-
tional and not from the sensory or hedonic properties of the taste
(Bassareo and Di Chiara, 1999; Bassareo et al., 2002).

All of the DA terminal regions studied displayed changes in
the habituation (i.e., abolishment vs appearance), which might
result in an increased incentive arousal and learning. Notably, the
habituation of mPFC DA responsiveness to chocolate releases NAc
shell DA from inhibition, thereby abolishing the single-trial habit-
uation of DA. Under this condition, repeated approaches toward
a motivational stimulus might be facilitated.

THE ABLATION OF THE mPFC DOPAMINE TERMINALS
AFFECTS HABITUATION OF MESOLIMBIC DOPAMINE
RESPONSIVENESS TO TASTE STIMULI
In intact brain, mPFC DA prominently regulates the activ-
ity of subcortical DA areas involved in reward and motivation
through a complex interaction of many different sub-regions
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inside the PFC (Murase et al., 1993; Taber and Fibiger, 1995;
Kennerley and Walton, 2011). Such control is modulated by
DA receptors in the mPFC (Louilot et al., 1989; Jaskiw et al.,
1991; Vezina et al., 1991; Lacroix et al., 2000). mPFC DA
functions are engaged in cognitive processes (Seamans and
Yang, 2004), regulation of emotions (Sullivan, 2004), work-
ing memory (Khan and Muly, 2011), and executive functions
such as motor planning, inhibitory response control and sus-
tained attention (Fibiger and Phillips, 1988; Granon et al., 2000;
Robbins, 2002).

We recently studied the effect of mPFC 6-OHDA lesion on
NAc shell and core DA responsiveness to chocolate in naive
and chocolate pre-exposed rats. 6-OHDA bilateral infusions in
the mPFC modify the responsiveness of NAc DA to gusta-
tory stimuli administered by an intraoral catheter. As shown in
Figure 2, we observed that in NAc shell of naive subjects the
lesion did not change the DA response to intraoral chocolate.
However, the lesion of mPFC DA terminals produced an ele-
vated, delayed, and prolonged increase of DA in NAc core in
response to an appetitive taste stimulus. In pre-exposed sub-
jects, the lesion did not affect NAc core DA responsiveness to
chocolate while it abolished one-trial habituation of NAc shell DA
response to sweet taste. After DA terminal lesions, an effect on
neither hedonic taste score nor motor activity has been observed
(Bimpisidis et al., 2013).

FIGURE 2 | Effect of 24-h pre-exposure to chocolate (C, 1 ml/5 min, i.o.)

on NAc shell and core dialysate DA in 6-OHDA lesioned in the mPFC or

control rats. Results are indicated as mean ± SEM of change in DA
extracellular levels expressed as the percentage of basal values. Solid
symbol, p < 0.05 vs basal value; *, p < 0.05 vs Sham; #, p < 0.05 vs
Lesioned pre-exposed; §, p < 0.05 vs Sham pre-exposed. (Adapted from
Figure 6; Bimpisidis et al., 2013).

These observations might suggest that the mPFC DA inhibitory
control of DA responsiveness in subcortical striatal areas is dif-
ferent depending on the ventral striatum sub-region studied.
Moreover, different sub-regions within the mPFC (e.g., prelimbic,
infralimbic) have different projections to different compartments
of the NAc. Accordingly, in the NAc shell, which is mostly inner-
vated by the infralimbic area, the cortical-subcortical relationship
might work in an opposite manner to that in NAc core.

This is consistent with the different responsiveness of NAc shell
and core DA to discrete stimuli and conditions (Di Chiara et al.,
2004; Di Chiara and Bassareo, 2007; Aragona et al., 2009; Corbit
and Balleine, 2011; Cacciapaglia et al., 2012).

CONCLUSION
The experimental results here described may help explain, in part,
the reason why traumatic PFC injury often facilitates develop-
ment of drug use disorders (Delmonico et al., 1998). Accordingly,
disruption of PFC functions appears following both traumatic
conditions (Bechara and Van Der Linden, 2005) and history of
drug addiction (Van den Oever et al., 2010; Goldstein and Volkow,
2011). Our data also suggest a correlation between the NAc DA
responsiveness to repeated exposure to a motivational stimulus
and the control of its activity by the mPFC DA. This refers to mPFC
a crucial role in subcortical dysfunction, which may occur in dif-
ferent stages of drug addiction. Similarly, the mPFC plays a crucial
role in subcortical dysfunction, which may occur in different stages
of drug addiction. Other studies show the direct involvement of
mPFC in addiction (Schenk et al., 1991; Weissenborn et al., 1997;
Bolla et al., 2003), drug seeking, craving and relapse, which are
related to drugs taken either by humans or animals (Kalivas and
Volkow, 2005).

Remarkably, we found similarities between the effect of
repeated morphine exposure and selective mPFC DA terminal
lesions on DA transmission in response to motivational taste stim-
uli both in NAc shell and in NAc core. However, this correlation
seems to exist only after prolonged administration of drugs of
abuse, as a single drug exposure did not modify the habituation in
NAc shell (De Luca et al., 2012). Moreover, the absence of any rela-
tionship between DA habituation and taste reactivity (Berridge,
2000; Bassareo et al., 2002; De Luca et al., 2012) has been validated.

In summary, the specific conditions leading to the abolish-
ment of habituation illustrated in this work clarify the meaning
of the habituation phenomenon of mesolimbic and mesocor-
tical DA transmission. Habituation is usually present in NAc
shell, but not in NAc core or mPFC, and it is ruled by intact
DA transmission within the mPFC. However, the appearance
of habituation in the mPFC could be considered as a marker
of mPFC dysfunction in its ability to inhibit crucial subcor-
tical functions. This may result in excessive motivation for
inappropriate actions originating from a clear loss of impulse
control. Finally, yet importantly, NAc DA habituation may
be considered per se as a marker of drug dependence and its
liability.
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