
ORIGINAL RESEARCH ARTICLE
published: 28 March 2014

doi: 10.3389/fnint.2014.00028

Recovering stimulus locations using populations of
eye-position modulated neurons in dorsal and ventral
visual streams of non-human primates
Anne B. Sereno1*, Margaret E. Sereno2 and Sidney R. Lehky3

1 Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, USA
2 Department of Psychology, University of Oregon, Eugene, OR, USA
3 Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA

Edited by:

John J. Foxe, Albert Einstein College
of Medicine, USA

Reviewed by:

Robert D. Rafal, University of Wales,
UK
Lakshmi Chandrasekaran, Stowers
Institute, USA

*Correspondence:

Anne B. Sereno, Department of
Neurobiology and Anatomy,
University of Texas Health Science
Center at Houston, Medical School
Building, 6431 Fannin St., Suite
7.160A, Houston, TX 77030-1501,
USA
e-mail: anne.b.sereno@uth.tmc.edu

We recorded visual responses while monkeys fixated the same target at different gaze
angles, both dorsally (lateral intraparietal cortex, LIP) and ventrally (anterior inferotemporal
cortex, AIT). While eye-position modulations occurred in both areas, they were both more
frequent and stronger in LIP neurons. We used an intrinsic population decoding technique,
multidimensional scaling (MDS), to recover eye positions, equivalent to recovering fixated
target locations. We report that eye-position based visual space in LIP was more accurate
(i.e., metric). Nevertheless, the AIT spatial representation remained largely topologically
correct, perhaps indicative of a categorical spatial representation (i.e., a qualitative
description such as “left of” or “above” as opposed to a quantitative, metrically precise
description). Additionally, we developed a simple neural model of eye position signals
and illustrate that differences in single cell characteristics can influence the ability to
recover target position in a population of cells. We demonstrate for the first time that
the ventral stream contains sufficient information for constructing an eye-position based
spatial representation. Furthermore we demonstrate, in dorsal and ventral streams as well
as modeling, that target locations can be extracted directly from eye position signals in
cortical visual responses without computing coordinate transforms of visual space.
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INTRODUCTION
In this study we compare spatial representations in a dorsal area,
lateral intraparietal cortex (LIP), and a ventral area, anterior
inferotemporal cortex (AIT). We recorded from LIP and AIT
because both are high-level visual areas in the dorsal and ventral
streams respectively, where differences between dorsal and ven-
tral processing are likely to be most salient. While LIP is generally
associated with representations of space (Colby and Duhamel,
1996), AIT has in the past been commonly associated with the
representation of complex shapes for object recognition (Tanaka,
1996) rather than space.

We shall be concerned solely with spatial information derived
from modulations in neural activity caused by changes in eye
position (gaze angle), as occurs when the eyes fixate a par-
ticular stimulus presented at different locations. The retinal
position of the stimulus is constant, but eye position changes.
Conceptually this eye-position based space is quite different
from the most commonly studied situation, retinotopic-based
space. In measuring retinotopic-based space, eye position is
constant but the retinal location of the stimulus changes. We
have previously conducted a study of retinotopic-based space
(Sereno and Lehky, 2011), which showed that a representation
of retinotopic space does indeed exist in AIT, as well as reported
on dorsal/ventral differences in retinotopic spatial representa-
tions. Here we present an analogous study of eye-position based
space.

Eye-position modulations of visual cortical responses have
long been established in the dorsal stream, notably in area 7a
and LIP (Andersen and Mountcastle, 1983; Andersen et al., 1985,
1990). More recently, eye position has also been demonstrated to
modulate neural responses in the ventral visual stream, including
cells in V4 (Bremmer, 2000; Rosenbluth and Allman, 2002), infer-
otemporal cortex (Lehky et al., 2008), as well as hippocampus and
parahippocampus (Ringo et al., 1994).

Responses of a cell as a function of eye position are often
described as the gain field for that cell. When mapping out a gain
field, the same stimulus is always viewed at the same retinal loca-
tion; just the gaze angle (i.e., angle of the eye in the orbit) changes.
For some gaze angles, firing rates can be substantially higher than
other gaze angles, even though there is no change in the reti-
nal stimulus. Previous work has often approximated gain fields
as being planar (e.g., Andersen et al., 1990; Bremmer, 2000). If
firing rates are plotted in the third dimension as a function of the
x and y coordinates of eye position, then these gain fields can be
visualized as tilted 3D planes.

Here we extract eye position from a population of cells hav-
ing a diversity of gain fields (that is, each cell is modulated by
eye position in a different way). If a stimulus is fixated, then
decoding eye position is equivalent to decoding stimulus posi-
tion. By localizing stimuli in this way, we adopt a completely
different approach than what has been used in the past. In the
past, eye-position modulations or gain fields have often been
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interpreted as a mechanism for producing spatial coordinate
transformations between a retinotopic frame of reference and a
head-centered frame of reference (Zipser and Andersen, 1988;
Andersen et al., 1993; Snyder, 2000; Salinas and Abbott, 2001;
Lehky et al., 2008). In contrast, here we use gain fields (i.e.,
eye position signals) alone to localize stimuli directly, without
any changes in coordinate systems defining the physical space in
which neurophysiological signals can be interpreted.

Eye positions are extracted from our data using population
decoding methods. We have had recent success with a funda-
mentally different approach (namely, multidimensional scaling,
MDS) to population decoding than is most commonly used
(reviewed in Lehky et al., 2013). In addition to our previous
work on retinotopic space (Lehky and Sereno, 2011; Sereno and
Lehky, 2011), MDS methods have been used to decode visual
shape (Rueckl et al., 1989; Young and Yamane, 1992; Rolls and
Tovée, 1995; Murata et al., 2000; Op de Beeck et al., 2001; Kayaert
et al., 2005; Kiani et al., 2007; Lehky and Sereno, 2007). MDS
is an example of what we call an intrinsic method for popula-
tion decoding, in contrast to such popular methods as weighted
peak averaging or Bayesian estimation, which are extrinsic decod-
ing methods. We have extensively discussed these two approaches,
as well as reviewed the representational advantages that intrinsic
(as opposed to extrinsic) approaches offer (Lehky et al., 2013);
see also Kriegeskorte and Kreiman (2011), whose multivariate
approach to population coding is similar to what we call intrinsic
coding.

Using this same intrinsic approach we previously used for
retinotopic visual space, we show for the first time that stimulus
locations can be recovered solely from eye-position modula-
tions; see (Sereno, 2011; Sereno and Lehky, 2012) for preliminary
reports of these findings. This is a significant departure from a
recent report suggesting eye-position modulations are too unre-
liable to be used for localizing stimuli (Xu et al., 2012). Once
individual stimulus locations are extracted from eye position
modulations, then in principle, by scanning the visual field with
a series of saccades, the locations of multiple objects can be
determined and placed into a spatial map.

Previous studies of eye position have generally not conducted
a population analysis of the data. Rather, these studies have con-
fined themselves to pointing out that receptive field properties of
individual cells are consistent with the theoretical requirements
for producing a coordinate transform, without actually using the
population data to recover a spatial map. We are aware of no pre-
vious work that has attempted to do a general reconstruction of
space based solely on eye position modulations of neural activity
in any cortical area. Further, we believe this will be the first quan-
titative comparison of eye-position based visual space between
dorsal and ventral visual streams.

MATERIALS AND METHODS
BEHAVIORAL TASK
We were interested in measuring the effects of different angles
of gaze (i.e., eye position) on the responses of a neuron to the
same fixated stimulus. Each trial began with the presentation of
a fixation spot at the center of the visual display (Figure 1A, first
panel). After the monkey was stably fixated on the fixation spot

(yellow indicates where the animal was fixating), a stimulus of the
preferred shape for the neuron appeared at one of eight periph-
eral locations (solid ring indicates target location; dashed rings
indicate other possible locations). The animal was required to
make an immediate saccade (indicated by the arrow) to the tar-
get in order to obtain a liquid reward (Figure 1A, second panel).
When the eye position reached an invisible acceptance window
centered around the target, the fixation point was extinguished
and the target persisted on the screen for an additional 400 ms.
Thus, after the saccade, the eye was stably fixated on the target
at one of eight possible gaze angles (Figure 1A, third panel, yel-
low indicating animal’s eye position). For this study we focus on
neural responses during this last epoch of the trial (third panel),
where across trials we can record the response of each neuron to
the same fixated stimulus at different eye positions (gaze angles).

PHYSIOLOGICAL PREPARATION
Single-cell recordings were conducted on 2 male macaque mon-
keys (Macaca mulatta, 10 kg; Macaca nemestrina, 8 kg) while they
performed the behavioral task described above. Prior to train-
ing a standard scleral search coil was implanted to monitor eye
position. Recording was carried out in both LIP and AIT of
each monkey from chambers implanted over the right cerebral
hemisphere. The chambers for LIP, implanted first, were centered
3–5 mm posterior and 10–12 mm lateral. The chambers for AIT
were implanted after recording from LIP had been completed and
were centered 18 mm anterior and 18–21 mm lateral. Details of
the surgical procedures have been described earlier (Sereno and
Amador, 2006; Lehky and Sereno, 2007). All experimental proto-
cols were approved by the University of Texas, Rutgers University,
and Baylor College of Medicine Animal Welfare Committees
and were in accordance with the National Institutes of Health
Guidelines.

DATA COLLECTION AND VISUAL STIMULI
The electrode was advanced while the monkey performed the
task. All encountered cells that could be stably isolated were
recorded from extracellularly and included in the raw data set.
Either a platinum-iridium or tungsten microelectrode (1–2 M�,
Microprobe) was used.

Stimuli were displayed on a 20-inch, 75-Hz CRT monitor with
a resolution of 1152 × 864 pixels, located 65 cm in front of the
monkey. The monitor subtended a visual angle of 27◦ × 36◦
(height × width). Other than the stimulus pattern or fixation
spot, the screen was completely black. Beyond the monitor was a
featureless 45 × 60 cm black screen (40◦ × 54◦). With the excep-
tion of slight illumination from the screen patterns, the task was
performed in darkness. The monkeys viewed the stimuli binocu-
larly. The size of the fixation window around the fixation spot was
0.5◦ (half-width).

Prior to the start of data collection for each cell, preliminary
testing determined the most effective shape stimulus for that cell
(shape producing the highest firing rate) from amongst eight pos-
sible shapes (Figure 1B). After the most effective shape was found,
further preliminary testing was used to find stimulus positions
producing a robust response, using a grid of locations over a range
of stimulus eccentricities and polar angles.
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FIGURE 1 | Experimental and data analysis methods. (A) Task design,
showing sequence of events in a single trial. Yellow indicates where the
monkey was fixating at each phase of the trial. After the monkey was
stably fixating, the stimulus shape appeared randomly at one of eight
peripheral locations (first panel). Dotted circles show possible target
locations. The monkey immediately made a saccade to the stimulus
(second panel). After the saccade (third panel, marked in green) the
monkey was stably fixating the target (indicated by the yellow highlight) at
some gaze angle. On different trials the target location randomly changed,
so we could measure response to the same target stimulus for different
eye positions. (B) Set of possible stimulus shapes. Preliminary testing of
each cell indicated which of these eight shapes was the most effective
stimulus for that cell, which was then used for subsequent measurements
of eye-position modulations. (C) Example of interpolated/extrapolated

responses used for multidimensional scaling (MDS) analysis, illustrated
with data from one cell. Eight filled circles indicate locations where data
was collected. Based on those data points an interpolated/extrapolated
surface was fit (colored contours), providing an estimate of neural
responses to a fixated stimulus over a continuous range of different eye
positions. The colored contour map therefore forms a gain field for the cell,
providing estimated responses at any arbitrary eye position. Eight open
circles are an example set of interpolated/extrapolated eye positions used
as input to MDS. Scale bar shows firing rates corresponding to the
different colors in the estimated gain field. Only colored regions nearby
data locations served as input locations for MDS calculations. That is, as
no data came from blanked out regions (polar angles very different from
data points, as well as the central area), interpolated values from those
regions did not enter into MDS calculations.

When testing eye-position modulations of neural responses,
the target stimulus could appear at eight possible locations.
The eight locations were arranged in a circle, all with the same
eccentricity but different polar angles (Figure 1A, first panel).
The chosen eccentricity, selected during the preliminary testing,
reflected a balance between the two goals of maintaining a robust
response and keeping similar stimulus locations for different cells.
It did not necessarily maximize responses for each cell. The polar
angles of the eight positions covered a full 360◦ in approximate
45◦ increments. Stimulus size for different cells ranged from 0.65◦
to 2.00◦ (mean: 0.8◦), increasing with eccentricity.

After the monkey made a saccade to one of these eight tar-
get positions, the eyes were then at different gaze angles. We
recorded each cell while the animal stably fixated the target at
these different angles of gaze.

The goal was 12 correct trials per eye position, and median
value of correct trials was 12, but in some cases we lost the cell
before completing all desired trials. The number of trials was

minimally 5, and almost always in the range 8–12. Only cor-
rect trials were further analyzed. Stimuli were presented in block
mode. All eight positions were used once in random order to form
a block, before being used again in the next block.

During data collection, we also tested and documented retinal
spatial selectivity for the same cells by presenting the most effec-
tive stimulus shape at eight retinal positions while the monkey
maintained central fixation. We have previously presented a com-
parison of retinotopic space in LIP and AIT based on these data
(Sereno and Lehky, 2011).

DATA ANALYSIS
Data analysis methods here are essentially identical to what we
previously used to study shape encoding and retinotopic space,
but now applied to a different data set (eye position signals) and
topic (eye-position based space).

Visual latency for each cortical area was determined from the
pooled peristimulus histogram for all cells in a given cortical area,
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and defined as the time to half peak height of the histogram
(92 ms for AIT and 70 ms for LIP). The time period used for the
ANOVA and other analyses described below corresponded to a
period when the eye was fixated on the target stimulus, imme-
diately following the saccade from the central fixation spot. The
period started 25 ms after the eye left the fixation window shifted
by visual latency, and ended 200 ms after leaving the fixation win-
dow also shifted by visual latency. Thus, the analysis period began
at 117 ms (AIT) or 95 ms (LIP) after the start of the saccade and
its duration was 175 ms. Examination of eye coil traces showed
that 25 ms was sufficient time for the eye to arrive and stabilize
on the target stimulus. Overall, after shifting by visual latency the
analysis window for AIT was 117–292 ms after the eye left the
fixation window, and for LIP it was 95–270 ms. During the anal-
ysis window, the monkeys maintained stable fixation 92% of the
time. We only included these stably fixated trials. Although not
required to remain fixated on the target, on the majority of tri-
als the animals maintained fixation until the target disappeared
(400 ms after initial fixation).

Cells showing significant eye-position modulation of response
(main effect of gaze angle) were identified using analysis of vari-
ance (ANOVA, p < 0.05). Subsequent analysis focused on those
significant cells.

For each cell, a selectivity index for eye-position modulation
was calculated:

SI = rmax − rmin

rmax + rmin
(1)

with rmin and rmax being the minimum and maximum responses
of the cell over all gaze angles tested. The values of selectivity index
extended over the range 0.0–1.0, with higher values indicating
greater eye-position modulation.

Because mean eccentricity of stimulus location in AIT and
LIP was not identical, we performed an analysis of covariance
(ANCOVA) to take eccentricity into account as a potential con-
founding factor when comparing the mean eye position selectiv-
ity for the two cortical areas. This essentially involved doing a
separate linear regression for each cortical area for SI vs. eccen-
tricity, and then determining if the two regression lines were
significantly different or not.

The most important population level analysis performed
was multidimensional scaling (MDS) (Shepard, 1980; Borg and
Groenen, 2010). It was used to extract a global spatial map
of stimulus locations based on a population of eye position
responses. Our use of MDS for extracting spatial representations
from neural populations has been extensively described in the
context of retinotopic-based spatial signals (Sereno and Lehky,
2011); (see also Lehky and Sereno, 2011). The current applica-
tion to eye-position based spatial signals is entirely analogous, and
only a summary description will be given here. All MDS calcula-
tions were carried out with the Matlab Statistics Toolbox using the
“cmdscale” command.

The MDS procedure was as follows. The responses of all cells in
the data sample for a given brain area (LIP or AIT) to the stimulus
at a particular eye position were combined to form a population
response in the form of a neural response vector for that location. If
there were n neurons in the population then the response vector
had n elements in it. For each gaze angle, the same population

of neurons had a different response vector. Thus, the starting
point for the population level analysis is the high-dimensional
population response vectors, with one response vector for each
eye-position.

The next step was to calculate how much the response vec-
tor changed when eye position changed. This distance calculation
was done for all possible pairs of response vectors (in other
words, all possible pairs of eye positions), and the results were
placed in a distance matrix. If there were m eye positions, then
the distance matrix was an m × m square matrix. We used a
correlation distance measure between response vectors, d = 1-r,
where r was the standard Pearson correlation coefficient between
pairs of response vectors. We used correlation distance rather than
Euclidean distance because it was immune to non-specific shift in
the overall firing rate of neurons.

MDS finds a low dimensional representation of the data in
which the original distances between population response vec-
tors are preserved as closely as possible. Given an m × m distance
matrix whose elements are δi,j (distance between the neural
response vectors for ith and jth eye positions), the MDS algorithm
seeks to find m output vectors x such that

∑
i < j(d(xi − xj) −

δi,j)
2 is minimized using an iterative optimization algorithm,

where d () is the distance measure.
The output of MDS was a set of low-dimensional vectors, one

for each eye-position. As gaze-angle is a two-dimensional vari-
able, we were particularly interested in plotting the MDS output
in two-dimensional space. If the relative positions of recovered
points in this 2D space were isomorphic with the relative posi-
tions of the original gaze angles, then responses of the sample
neural population successfully encoded eye position.

During the dimensionality reduction process, MDS produces
a set of numbers called eigenvalues, which indicate how much of
the variance of the data is captured by the low-dimensional rep-
resentation. The number of eigenvalues is equal to the original
dimensionality of the encoding neural population (number of
neurons in our data set). To use these eigenvalues we first normal-
ize them so that their sum equals one. The normalized eigenvalues
directly give the fraction of variance that each dimension of the
MDS output accounted for in the data. We sort the normalized
eigenvalues in order of their magnitudes, from largest to small-
est. If our small neural population were able to perfectly recover
the original gaze angles in a 2D space that was isomorphic with
the original gaze angles, all the variance in the data would be
accounted for in the first two dimensions of the MDS output
(first two sorted normalized eigenvalues) and all the other dimen-
sions would have zero eigenvalues. If the first two dimensions
are unable to capture all the variance in the data, the recovered
low dimensional representation will be less isomorphic with the
original gaze angles (less accurate) and we will find non-zero
eigenvalues in the higher dimensions. In the figures, we only list
the five largest eigenvalues.

A second way to quantify the accuracy of the eye-position rep-
resentation recovered by the MDS analysis of population data is
to use the Procrustes transform (Gower and Dijksterhuis, 2004;
Borg and Groenen, 2010). The output of the MDS analysis is
based purely on firing rates in a neural population, without
any additional labeling of how the firing rate of each neuron
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relates to physical units of gaze angle. Therefore, the MDS out-
put has firing-rate based values of eye position, whose numerical
values are arbitrarily scaled relative to the values of physical
eye positions given in degrees of visual angle. As neural repre-
sentations of eye positions and physical eye positions were on
different measurement scales we could not compare them directly.
Rather we examined how relative values of recovered eye positions
compared to the relative values of the actual eye positions.

The Procrustes transform is a method for determining the
degree to which the relative values of two sets of points are iso-
morphic. To do that, the set of eight positions recovered from
neural activity by MDS, N, based on inputs in units of spikes/s,
was linearly transformed to numerically match as closely as pos-
sible the eight physical positions, P, specified in degrees of visual
angle (i.e., to make the two sets of points, N and P, as congru-
ent as possible, without changing the relation between points
in N). The Procrustes transform minimizes the sum of squares for
the errors T (N) − P, where T is a linear transform that includes
translation, scaling, rotation, and reflection. In practice we used
the “procrustes” command in the Matlab Statistics Toolbox.

To report how well the neurally-derived positions match the
physical positions, we use an error measure called stress, which is
a normalized sum of squared errors between T (N)and P:

Stress =

√√√√√
∑

i

∑
j

(
dij − d̂ij

)2

∑
i

∑
j

(
dij − 〈

dij
〉)2

(2)

In the equation, dij is the physical Euclidean distance between

stimulus locations i and j, d̂ij is the distance recovered by MDS
from the neural population representation, and 〈·〉 is the mean
value operator. The Procrustes calculations were done in three
dimensions, as in most cases three dimensions accounted for
virtually all the variance in the MDS output. As the physical stim-
ulus points were two-dimensional, we set the value of the third
physical dimension equal to zero for all points when doing the
calculations.

A small stress value signifies that the relative values of recov-
ered and actual eye positions closely match and indicate an
accurate neural representation of eye position. By convention, a
stress value of less than 0.1 indicates that the MDS analysis has
captured an accurate representation of the variable under con-
sideration (analogous to the p < 0.05 convention in hypothesis
testing statistics).

To produce the neural response vector at each eye position
required by MDS, it is necessary for data from all cells in our data
set to be recorded at the same eye positions. That is, when apply-
ing MDS to a population response vector, the method assumes
that the entire population has received the same stimulus. In prac-
tice, as our cells were recorded one at a time, eye positions for
different cells varied. We followed two mathematical procedures
to deal with this issue.

The first approach illustrated in Figure 1C was to use the
available data (indicated by the solid black dots) to create an inter-
polated gain field for each cell that estimated neural responses for
nearby eye positions (indicated by the open circles) (cf., Zipser

and Andersen, 1988, for previous use of interpolation to generate
gain fields). Figure 1C shows an example interpolated gain field
for a cell, in which a color code (see scale bar) indicates firing rates
for different eye positions with the actual firing rate data collected
for that cell indicated by the solid black dots. Using these interpo-
lated gain fields we could then estimate neural response (i.e., open
circles) at an identical eye position for all neurons in our sample,
as required by MDS.

For each cell, we calculated a response gain field for all possi-
ble eye positions using bilinear interpolation (and extrapolation)
from eye position data we had for that cell, which were responses
to fixated stimuli at 8 positions. Bilinear interpolation is a gen-
eralization of linear interpolation to functions of two variables
(in this case x and y coordinates of eye position). This procedure
was strictly analogous to what we previously used for retinotopic
space (Sereno and Lehky, 2011); (see also Zipser and Andersen,
1988). Using gain fields derived in this manner, we were able to
estimate responses for each cell at any desired gaze angle within a
limited range of eccentricities.

We performed two variant methods for creating interpolated
gain fields. One variant used mean neural responses across all tri-
als to create an interpolated gain field for each cell. The other
used single-trial data as input, creating a separate interpolated
gain field for each trial. Each single-trial response of a cell was
treated as coming from a separate cell in the encoding popula-
tion. Therefore, the total population in this case was found by
summing over the number of cells in our sample multiplied by
the number of trials for each cell.

The second approach to meeting the MDS requirement for
identical eye positions for all cells in the population was to use
averaging rather than interpolation. In the averaging method, for
purposes of doing MDS calculations the actual eye position asso-
ciated with each cell was replaced by a population average of eye
position. When eye positions for a subset of cells fell within a
small range of eccentricities (eye position locations across all cells
within 3.3◦ of each other in AIT and 1.7◦ in LIP), we replaced
the actual eye position eccentricity for each cell with the average
eccentricity within that population. Based on these average eye
positions we then proceeded with the MDS analysis. Here we shall
emphasize the interpolation procedure as it offers more flexibil-
ity, as was discussed in Sereno and Lehky (2011), reserving the
averaging procedure as a confirmatory method.

As MDS is a global method, all trials for all eye-positions for all
cells included in the analysis contributed to each extracted point
in the output (396 trials for AIT and 408 trials for LIP). The
MDS procedure doesn’t provide a means for calculating variances
of the outputs directly using a formula. Therefore, to examine
variability in results from the MDS analysis, we used bootstrap
resampling, repeating the MDS analysis many times, each with a
different resampling of the data. For each eye position in each cell,
100 bootstrap resamplings of individual trials were taken with
replacement. These were used to generate 100 eye position gain
fields for each cell using the interpolation method. The gain fields
were in turn combined to form 100 populations, and an MDS
analysis was performed on each population. Standard deviations
of various MDS results could then be calculated from the set of
resampled MDS analyses.
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We were also interested if differences in results between AIT
and LIP could be attributed to differences in the signal to noise
ratio in their responses. To do this we calculated Fano factors
for the data. The Fano factor is the ratio of variance to mean
in the responses, F = Var (x) /Mean (x), where x is spike count
during the spike train interval rather than spike rate. Variance
was calculated from trial-to-trial variability in responses to the
same stimulus. The Fano factor is actually a noise to signal ratio
rather than a signal to noise ratio, but it serves equivalently for
our purpose.

Finally, to compare the most responsive eye position in a cell’s
gain field with the most responsive retinal position for a stimulus,
both over eight positions arranged in a circle, we calculated the
circular correlation coefficient using the formula of Fisher and Lee
(1983):

rcirc =
∑

sin
(
ai − aj

)
sin

(
bi − bj

)
{∑

sin2 (
ai − aj

)} 1
2
{∑

sin2 (
bi − bj

)} 1
2

(3)

where a and b are the two variables under consideration, and
the summation is over 0 ≤ i < j ≤ n where n is the number of
observations (eight in this case).

MODELING
We created a model to demonstrate the principle that eye posi-
tion and stimulus location can be recovered from a population of
neurons with different gain fields, without a transform of spatial
coordinates.

The shape of the gain field was a slanted sheet, similar to those
described in monkeys (Andersen et al., 1985, 1990; Bremmer,
2000). Extreme gaze angles in a particular direction produced the
highest firing rates, while extreme gaze angles in the 180◦ oppo-
site direction produced the lowest firing rates. Central fixation
produced an intermediate firing rate. The shape of the sheet was
not planar, but had a sigmoidal curvature along one dimension.
Using a sigmoidal profile was a convenient way of keeping neu-
ral responses in the model bounded to a limited range, in keeping
with biophysical limitations.

Gain fields were described by the following equation, with
relative firing rate r given by:

r = (
erf

[(
σx sin(−θ) − sin2 (θ) δ

)

+ (
σ y cos (θ) − cos2 (θ) δ

)] + 1
)
/2 (4)

The neural activity is relative because it is on the arbitrary scale
0.0–1.0, rather than having realistic values. The terms inside the
square brackets define a tilted 3D plane, with the third dimen-
sion being firing rate as a function of 2D eye position. A sigmoid
cross section is imposed on that plane with the error function
erf. Finally, the range of the erf sigmoid is shifted from the range
[−1,1] to [0,1] by adding one and dividing by two, as firing rates
cannot be negative. Figure 8 shows some example model gain
fields produced by [Equation (4)], in which a color scale codes
firing rate as a function of x and y eye position.

In [Equation (4)], the slope of the gain field, σ , defined how
rapidly the field changed. The parameter θ defined the orienta-
tion or azimuth of the gain field tilt. The parameter δ controlled
the location within the visual field of the inflection point of the
sigmoid. The sigmoid inflection point is also the midpoint of the
firing rate range in the gain field (0.5 in the range [0,1]). This last
variable δ shifted the axis of anti-symmetry of the gain field away
from passing through the central fixation point, with shift magni-
tude δ ranging from −1 to +1. The offset (shift) was measured as
a fraction of the value of σ . Thus a given gain field was described
by three parameters [σ , θ , δ]. The model did not include noise.

A population of model neurons with different gain fields
was created by changing the values of [σ , θ , δ] for each neu-
ron. We used σ = [0.250, 0.175, 0.122, 0.085, 0.059, 0.041,
0.029, 0.020], θ = [0, 45, 90, 135, 180, 225, 270, 315], and δ =
[−1.00, −0.75, −0.50, −0.25, 0.00, 0.25, 0.50, 0.75, 1.00]. These
values produced a total of 8 × 8 × 9 = 576 neurons in the
population.

For stimulus conditions we chose a set of 32 eye positions, with
eccentricity = [2◦, 4◦, 6◦, 8◦] and polar angles = [0◦, 45◦, 90◦,
135◦, 180◦, 225◦, 270◦, 315◦]. Each eye position produced a dif-
ferent pattern of activity in the population of 576 neurons. That
is, each eye position produced a different response vector with
length of 576. The 32 response vectors in the model were then
analyzed using MDS in exactly the same manner described above
for physiological data analysis, to produce a spatial map of relative
eye positions.

Gain fields in the experimental literature are frequently fit
by tilted planes (Andersen et al., 1985, 1990; Bremmer, 2000).
A common parametric description of such linear gain fields is
as a function of Euclidean coordinates in the visual field (x, y):
Ax + By + C. We have parameterized the plane [terms inside
square bracket of Equation (4)] differently here, in terms of vari-
ables that we believe are more intuitive for the issue at hand. Our
parameterization of the plane is essentially in terms of spherical
coordinates, in which the parameter θ is the azimuthal angle of
spherical coordinates, and slope σ is a function of the elevation
angle of spherical coordinates. Planar gain fields do not have any-
thing equivalent to our third parameter, the shift parameter δ, as
it is related to the sigmoidal non-linearity that warps the plane in
our gain fields.

The best mathematical description of eye-position gain fields
is still an unresolved issue. Although planar and quasi-planar
gain fields have figured prominently in theoretical descriptions
of data and approximate much published data (e.g., see Figure 1
in Bremmer, 2000; Figure 2 in Morris et al., 2013), actual gain
fields can include more complex shapes. For example, Andersen
et al. (1985) reported that 23% of gain fields did not contain a
significant planar component.

RESULTS
We recorded from 80 cells in AIT and 73 cells in LIP. Histology
confirmed that the LIP recording sites were indeed located on
the lateral bank of the intraparietal sulcus. AIT cells came pre-
dominantly from areas TEav and TEad, with a few located in
lateral perirhinal cortex (Brodmann area 36). The histology for
these recordings has been described in detail previously (Lehky
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and Sereno, 2007). Mean latency of neural responses under our
stimulus conditions was 92 ms in AIT and 70 ms in LIP.

Examining the data using analysis of variance (ANOVA),
41.3% (33/80) of AIT cells showed significant response selectivity
for eye position. In LIP, 76.7% (56/73) of the cells were signifi-
cantly eye-position selective. These percentages were determined
at the p = 0.05 level of significance. From amongst cells that met
the p = 0.05 significance criterion for spatial selectivity, LIP cells
on average had greater significance (mean p = 0.0046) than AIT
cells (mean p = 0.0142).

For all recorded cells, mean stimulus eccentricity in AIT
was 4.3◦ (range: 2.1◦–10.0◦), and in LIP it was 10.9◦ (range:
6.3◦–17.7◦). For the subset of cells with significant eye-position
selectivity, mean stimulus eccentricity in AIT was 3.9◦ (range:
2.1◦–6.9◦). For LIP cells with significant eye-position selectivity,
mean stimulus eccentricity was 11.2◦ (range: 6.3◦–17.7◦).

Different cells had different mean responses over all eye posi-
tions tested. For AIT cells with significant eye-position modula-
tion, average response ranged from 3.4 to 96.0 spikes/s, with a
grand average over all cells of 21.2 spikes/s. For LIP cells with
significant eye position modulation effects, the range was 0.4–
84.6 spikes/s, with a grand average of 19.7 spikes/s. The difference
in grand average responses for AIT and LIP was not significant
under a t-test (p > 0.7) and a Wilcoxon rank sum test (p > 0.35).
While there was no significant mean firing rate difference between
LIP and AIT for stimuli fixated at different gaze angles, we have
previously found that LIP had a significantly higher mean firing
rate than AIT for stimuli presented at different retinal locations
with gaze angle centrally fixed (Sereno and Lehky, 2011).

The eye-position selectivity index (SI) [Equation (1)] was cal-
culated for each cell in our sample. Figure 2A presents histograms
of the SI-values. The mean SI for AIT cells with significant eye-
position selectivity was 0.45. LIP cells with significant eye position
selectivity had a higher mean SI-value of 0.66. In other words, LIP
cells showed greater modulation of their responses as gaze angle
changed than AIT cells. The difference between mean SI in AIT
and LIP was significant at the p = 0.001 level under a Wilcoxon
rank sum test.

We used analysis of covariance (ANCOVA) to examine the
influence of two factors on the values of the eye-position SI in
our sample of neurons: (1) eccentricity, and (2) brain area (AIT
or LIP). The ANCOVA results showed that eccentricity was a sig-
nificant factor affecting SI (p = 0.026), and that brain area was
not a significant factor (p = 0.353). In other words, there was no
significant difference in the magnitude of gaze angle modulation
in AIT and LIP for our sample, once different eccentricities of cell
samples in the two areas were taken into account.

The time course of visual responses in AIT and LIP (PSTHs)
are plotted in Figures 2Bi,ii, respectively, averaged over all cells
showing significant selectivity for eye position under ANOVA.
Separate plots indicate average response at the best eye position
(solid line) and worst eye position (dashed line) in each brain
area.

A notable difference between the two brain areas is that
LIP cells at their least responsive eye position are on aver-
age suppressed relative to baseline, whereas AIT cells are
not. We have previously reported a similar suppression in

LIP cells at their least responsive retinotopic position (Sereno
and Lehky, 2011). In particular, similar to what we noted
with respect to retinotopic responses, the presence of sup-
pressed responses in LIP serves to increase the dynamic range
of responses to different angles of gaze (target spatial positions)
and may contribute to the higher eye-position SI observed in
LIP (Figure 2A). Interestingly, although suppressed responses
in population averages exist in LIP but not AIT for both reti-
nal and eye position spatial signals, the opposite occurs in the
shape domain. That is, the least effective shape leads to suppres-
sion relative to baseline in AIT, but not LIP (Lehky and Sereno,
2007).

COMPARING RETINOTOPIC AND EYE-POSITION SPATIAL
MODULATIONS
In our task, the eye changed position by moving to a target at
a particular retinotopic location. We were interested to know
whether the eye position producing the strongest response corre-
sponded to the retinotopic target location producing the strongest
response to the same stimulus. In other words, was there any rela-
tion between the spatial topography of a cell’s eye-position gain
field and the topography of its retinotopic responses.

We found that the most responsive eye position matched the
most responsive retinal target position 17.5% of the time in AIT
and 19.2% of the time in LIP. Chance level was 12.5% for the eight
locations used. Bootstrap resampling showed that the observed
correspondence did not significantly differ from chance in either
AIT (p = 0.15) or LIP (p = 0.09). As retinal target positions (and
therefore subsequent eye positions) were arranged in a circle at
eight polar angles, we also calculated the circular correlation coef-
ficient given by [Equation (3)] (Fisher and Lee, 1983) between
retinal responses and eye position responses. In AIT the circular
correlation coefficient had a mean −0.0097 and standard devi-
ation 0.19 across all cells, while in LIP the mean was −0.0030
and standard deviation 0.21, all calculated using Fisher weighted
correlation coefficients.

Thus it appears that the spatial organization of responses
across different retinal locations is very different from the spa-
tial organization of responses for different eye positions. The fact
that they are so different suggests that our post-saccadic gain
field measurements are not contaminated to a significant extent
by residual pre-saccadic receptive field properties, which might
have remained because of sluggish neural dynamics in updating
responses after changing eye position.

We also compared the spatial selectivity indices for retinotopic
position and eye position across all cells. The correlations were
moderately high, being 0.59 for AIT and 0.67 for LIP. This indi-
cates that cells that were more highly modulated by changes in
stimulus retinal position also tended to be more highly modulated
by changes in eye position, even though the spatial arrangement
of modulations was different in each case.

MULTIDIMENSIONAL SCALING
Multidimensional scaling forms the centerpiece of the data analy-
ses here. To deal with the mathematical requirement of MDS that
eye positions for all cells be identical, spatial interpolation from
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FIGURE 2 | Eye position selectivity. (A) Spatial selectivity index (SI)
histograms for AIT (upper panel, Ai) and LIP (lower panel, Aii). The SI
was calculated for each recorded cell using [Equation (1)]. Included are
SI-values for all recorded cells (open bars; second n-value) as well as for
only those cells showing significant spatial selectivity (black bars; first
n-value). Mean SI-value for spatially significant cells is also shown in
each panel indicating the average magnitude of the effects. (B) Average
time course of responses (PSTH), aligned to start of saccade to target
for AIT (upper panel, Bi, red lines) and LIP (lower panel, Bii, blue lines).
Time course calculated over all cells showing significant selectivity for

eye position, at the most responsive eye position (solid line) and least
responsive eye position (dashed line). Shaded regions around lines show
standard errors of responses over cells in the sample population. Zero
time marks when the eye left the central fixation window during saccade
to target. Black bar at bottom shows target presentation period, with
error bar indicating the standard deviation of target onset before saccade
to target. Gray shaded region shows the time period used for data
analyses (ANOVA, SI, and MDS), beginning 25 ms after start of saccade
and ending 200 ms after start of saccade, both times are shifted by the
average latency of the visual responses in the respective cortical area.

the available data points was performed before the MDS anal-
ysis. An example interpolated gain field is shown in Figure 1C,
with neural responses for different eye positions indicated by a
color scale. Responses at identical eye positions for all cells in
our sample, derived from interpolated gain fields, were then used
as input to MDS. Only cells having significant spatial selectiv-
ity under ANOVA and which had an eye-position eccentricity of
less than 10◦ were included, producing population size n = 33 for
AIT and n = 34 for LIP. Responses at 32 eye positions (four eccen-
tricities and eight polar angles; positions arranged in a polar grid
as illustrated in Figure 3A) were calculated for each cell using its
interpolated gain field. Lines connecting these positions have no
significance other than to aid visualization, helping to illustrate
iso-eccentricity positions and iso-polar angles as well as high-
light the overall symmetry of the spatial configuration. These 32
responses for each cell in the AIT and LIP populations were used
as input to MDS.

The grid of eye positions recovered by MDS analysis of AIT
and LIP neural populations is shown in Figures 3B,C (AIT-red;
LIP-blue; with dot color darkening with decreasing eccentric-
ity). Again, lines connecting these recovered eye positions merely

help illustrate the layout and distortions in the recovered spa-
tial configurations. In both brain areas the information con-
tained within their respective neural populations was sufficient
to extract an organized spatial map of eye positions. As the
stimulus was always at fixation for all eye positions, recover-
ing eye position was equivalent to recovering stimulus target
location. Procrustes analyses comparing relative eye positions
in physical space with relative eye positions encoded by neu-
ral populations showed that the spatial map recovered in LIP
was more accurate (less distorted) than the AIT spatial map.
That was indicated by the lower stress value for the LIP analysis
(stress = 0.17 ± 0.02) compared to AIT (stress = 0.53 ± 0.08).
Stress standard deviations are based on MDS analysis performed
on bootstrap resampling of the data. Stresses in AIT and LIP
were significantly different at p = 0.0022, also based on bootstrap
resampling.

The normalized eigenvalues in Figures 3B,C give the fraction
of variance in the data accounted for by each of the mathematical
dimensions produced by the MDS analysis. The first two mathe-
matical dimensions are interpreted as corresponding to the two
physical dimensions of gaze angle. To be perfectly isomorphic
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FIGURE 3 | Recovery of eye positions from neural population activity,

using a global stimulus configuration and multidimensional scaling

(MDS) analysis. MDS analysis was based on using interpolated neural
responses from recorded neurons that had significant spatial selectivity
under ANOVA. This analysis used mean neural response across trials. (A)

Set of eye positions used as input configuration for MDS analysis. It
consisted of 32 points arranged in a polar grid. The center of the grid
corresponded to central fixation. As illustrated, the eye positions were
arranged over four eccentricities with visual angles of [2◦, 4◦, 6◦, 8◦]. At each
eccentricity, eight locations were arranged in an iso-centric circle at 45◦
polar angle increments. Each of the 32 eye positions produced a different
activation pattern (response vector) in the population of neurons in our data
set. Lines connecting the positions merely help illustrate iso-eccentricity
positions and iso-polar angles as well as highlight the overall symmetry of
the spatial configuration. (B) Configuration of eye positions recovered from
AIT data, shown in red. (C) Configuration of eye positions recovered from
LIP data, shown in blue. There is less distortion apparent in the spatial layout
of the LIP grid compared to AIT and the LIP stress value is lower than in AIT,
indicating a more accurate global recovery of eye positions. For both panels
(A) and (B), color darkens with decreasing eccentricity, to aid visualization.
Also for both panels, normalized MDS eigenvalues are displayed.

with physical space, the first two normalized eigenvalues should
both be equal to 0.5, and all the other dimensions equal to zero.
However, for both AIT and LIP there is a large inequality in the
two eigenvalues, corresponding to a slight vertical squashing of

the eye position map apparent in the plots. The third dimen-
sion in AIT is non-zero, indicative of a level of distortion in
the AIT representation of eye position not present in the LIP
representation.

Neurons in LIP were able to extract eye positions more
accurately than those in AIT, as shown by lower stress values
(Figure 3). To investigate if that was because the relative amounts
of noise and signal were different in LIP and AIT, we calculated
Fano factors for the data. The Fano factor is the ratio between
variance and mean of spike counts in the data, with variance cal-
culated here across trials. A separate Fano factor was calculated
for each of the eight eye positions for each cell, and the set of all
Fano factors for a given brain area (AIT or LIP) were placed in
one pool.

The distributions of Fano factors for spike count in both our
AIT and LIP samples were highly skewed to the right, but a log
transform normalized those distributions. For AIT, the geometric
mean of the Fano factors was 0.76 and the median was also 0.76.
For LIP the geometric mean was 0.73 and the median was 0.76.
The difference in Fano factors for AIT and LIP was not significant,
with p = 0.48 for a t-test and p = 0.51 in a Wilcoxon rank sum
test, using log transformed Fano factors. We conclude that the
difference between the MDS results for AIT and LIP are not due
to differences in the relative noisiness in the two areas.

Figure 3 comprises the basic MDS results, and what follows
in the rest of the MDS section is a series of controls and elabo-
rations on those results. Two variants of the analysis in Figure 3
are shown in Figure 4. In the first (Figure 4A), input to MDS
is single-trial responses rather than mean response over all tri-
als as in Figure 3. In the second (Figure 4B), the input to MDS is
the responses from all cells, and not just cells having statistically
significant eye-position modulations as in Figure 3.

Figure 4A shows that a spatial map of eye positions (tar-
get locations) can still be recovered from single-trial data. The
signal-to-noise ratio in single trials appears sufficient to perform
population coding of location. For purposes of doing MDS, each
single-trial was treated as the response of a different cell, so the
single-trial MDS was based on a noisier but much larger (sev-
eral hundred cells) effective population than the mean-response
MDS. Because the single-trial MDS incorporated information
from all trials, it was still pooling trials, but pooling the infor-
mation in a different way than the mean-response MDS analyses.
It is likely that real neural populations are vastly larger than our
sample. By treating multiple trials of a single cell as single trials
of multiple cells, what Figure 4A shows is that a large population
(several hundred cells) of noisy cells can still effectively decode eye
position.

Figure 4B shows the results of MDS analysis when all cells in
our sample were used and not just significant cells. Comparison
between Figure 3 and Figure 4B indicates that the inclusion of
non-significant cells had only a minor effect.

In Figure 5 we examine error in the MDS results as a function
of eye position eccentricity. Two error measures are presented.
The first (Figure 5A) is a global error measure for the MDS
output as a whole, namely stress, which was described in the
Materials and Methods section. The second (Figure 5B) is a local
error measure for individual points in the MDS output, which
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FIGURE 4 | Two variations of the multidimensional scaling analyses in

Figure 3. Conventions are the same as in Figure 3, with red points
indicating results from AIT and blue points results for LIP. (A) Recovery
of eye positions from neural population activity, using single-trial results
rather than mean results across trials. Each single-trial response for a

given cell was treated in the MDS analysis as a separate cell in the
population. (B) Recovery of eye positions from neural population activity,
using all cells in the data set rather than only cells that had significant
eye-position modulation. Normalized MDS eigenvalues indicated to the
right of each panel.

is simply the standard deviations of those points, which we call
precision.

Figure 5A shows the effect of eye-position eccentricity on the
global accuracy of the recovered spatial maps in AIT and LIP.
For this analysis, instead of performing MDS using a grid of
eye positions as in Figure 3 we did MDS separately for each of
the four rings in that grid, located at four different eccentrici-
ties. Stress is a global measure of accuracy because it depends on
relative positions of the eight points in each ring, not the indi-
vidual points in isolation. Low stress means that the eye positions
recovered by MDS closely matched the shape of a circle, while
high stress means that the MDS output formed a very distorted
circle.

The results are shown in Figure 5Ai, plotting stress vs. eccen-
tricity. This demonstrates that eye-position maps become less
accurate (greater stress) as eccentricity increases for AIT, but not
LIP. At any given eccentricity the LIP map was more accurate than
the AIT map. The difference in stress between LIP and AIT was
significant at all eccentricities except the smallest, 2◦, based on
bootstrap resampling of neurons in the data set. Going from 2◦
to 8◦ in Figure 5Ai, p-values for the difference were 0.24, 0.0049,
0.0013, and 0.0003.

We also compared global accuracy of the eye-position spa-
tial maps when eye position was ipsilateral or contralateral to
the recorded hemisphere. In AIT, the contralateral map was
more accurate than the ipsilateral one (Figure 5Aii). In LIP there

was little difference between ipsilateral and contralateral results
(Figure 5Aiii), with stress remaining independent of eccentricity
for both.

Local error measures, the precisions (standard deviations) of
recovered eye positions in Figure 3, are shown in Figure 5B.
These were calculated from bootstrap resampling of the data, and
as these are local measures the calculations were done individually
for each eye position. Because precision was similar for all eight
eye positions at each eccentricity, we plotted the average precision
at each eccentricity (indicated by the points in Figure 5B; red
points = AIT; blue points = LIP) as a function of eccentricity.
As with stress (Figure 5A), precision increases with eccentricity,
showing that the quality of eye position spatial representations
get worse for larger gaze angles in both LIP (blue line) and AIT
(red line).

Figure 6 examines the robustness of MDS decoding by remov-
ing data (inputs) from some points in the eye position grid and
seeing how that affects decoding of the remainder of the eye posi-
tions. As MDS is a global rather than local decoding method,
removing some of the data could have deleterious effects that
propagate to the decoding of other eye positions. By removing
some of the eye positions we also break the circular symme-
try of the inputs, which might also possibly produce some sort
of special-case configuration advantage. Specifically, we removed
one of the eight polar angle locations in the eye position set and
checked how that perturbed the recovery of the other seven polar
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FIGURE 5 | Global and local error measures for multidimensional

scaling analysis (MDS) results in Figure 3. (A) Global error (stress)
as a function of stimulus eccentricity. Stress values below 0.1 (dashed line in

(Continued)

FIGURE 5 | Continued

each panel) indicate highly accurate spatial representations. (Ai)

Comparison of stress in AIT and LIP using bilateral (ipsilateral and
contralateral) data. (Aii) Stress for AIT representations for ipsilateral and
contralateral eye positions. (Aiii) Stress for LIP representations for
ipsilateral and contralateral eye positions. (B) Local error (precision) as a
function of stimulus eccentricity for both AIT (red points) and LIP (blue
points). Precision is the standard deviation of recovered eye position, as
determined by bootstrap resampling of the data. Precision was individually
calculated for each eye position in Figures 3B (AIT) and 3C (LIP), and then
for each area averaged over all eye positions having the same eccentricity.

angles. Removing one polar angle produced a bull’s-eye polar grid
pattern with a wedge missing (Figure 6A).

Removing one polar angle from the stimulus set had a minimal
effect on decoding the points at the seven remaining polar angles
(Figures 6B,C). Directly comparing eye positions extracted by
MDS for corresponding points in the full (Figure 3) and one-
angle missing sets (Figure 6) with each other, we found stress
values to be 0.0065 for AIT and 0.0121 for LIP (averaged over all
eight comparisons—i.e., a pattern with one of the eight wedges
missing vs. the full pattern for each comparison). This is an
indication that MDS results are robust to changes in the selection
of the input set.

All the MDS analyses described above were done using inter-
polated gain fields. In Figure 7 we examine a second way of deal-
ing with the MDS mathematical requirement that eye positions
for all cells be identical, using averaging rather than interpolation.
For the averaging method, eye positions within a narrow band of
eccentricities were all treated as if they had the same eccentricity
given by the population average. For AIT, all cells in the eccen-
tricity range 3.6◦–6.9◦ were treated as located at eccentricity 4.4◦
(N = 26). For LIP, all cells in the eccentricity range 6.3◦–8.0◦ were
treated as located at eccentricity 7.5◦ (N = 18). For this method,
rather than having a grid of eye positions as in Figure 3, there was
a single ring of eight eye positions at the indicated eccentricity.

The averaging method (Figure 7) was able to extract a spatial
map of eye positions with stress (spatial distortion) values compa-
rable to those found by the interpolation method. For AIT stress
was 0.41 (Figure 7A) and for LIP it was 0.18 (Figure 7B). Similar
to the findings using the interpolation method, stresses in AIT
and LIP under the averaging method were significantly differ-
ent (p = 0.03), based on MDS analysis performed on bootstrap
resampling of the sample of cells in the data.

Thus, the observation that eye position spatial maps could be
extracted from visual responses in cortical populations was repli-
cated using two approaches to performing the MDS calculations,
interpolation, and averaging. The observation that LIP produced
more accurate eye position maps than AIT was also replicated
under these two approaches. The fact that the basic observa-
tions are reproducible under two independent analysis methods
strengthens the case that these findings are not an artifact of using
a particular approach.

MODELING
We constructed a model to recover eye positions from a popula-
tion of model neurons with diverse gain fields, analogous to what
was done with the data from LIP and AIT neurons. Such a model
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FIGURE 6 | Multidimensional scaling recovery of eye positions using a

partial set of inputs. Conventions are the same as in Figure 3. (A) Eye
positions used as input configuration for MDS analysis, with one wedge or
sector removed compared to the complete set shown in Figure 3A.
(B) Configuration of eye positions (red points) recovered from AIT using
partial data set. (C) Configuration of eye positions (blue points) recovered
from LIP using partial data set. Colors darken at lower eccentricities to aid
visualization. Both data panels give stress between recovered eye positions
and physical eye positions, as well as stress between recovered eye
positions for full and partial data sets. Small stress values between full and
partial data indicate that eye position recovery is not highly sensitive to the
precise composition of the global configuration used as input to MDS.

lays the foundation for studying the effects of different gain field
characteristics on the representation of eye-position space under
well defined parametric conditions, which are more difficult, if
not impossible in the laboratory.

There were 576 neurons in the model population, each with
a different gain field described by [Equation (4)]. Example gain

FIGURE 7 | Multidimensional scaling recovery of eye positions from

population data using the averaging method with a subset of cells

rather than interpolation method employed in Figure 3. (A)

Configuration of eye positions recovered from AIT (red points).
(B) Configuration of eye positions recovered from LIP (blue points). This
averaging method replicates the observation found using the interpolation
method; namely, that LIP neurons produce a more accurate representation
of eye position than AIT (lower stress in LIP than AIT). Normalized MDS
eigenvalues indicated to the right of each panel.

fields are shown in Figure 8, with neural response as a function
of the x and y coordinates of eye position coded in color (see
scale bar at right side). Each gain field is described by different
values for the parameters slope, orientation (azimuth), and offset
(shift), which correspond to the variables [σ , θ , δ] in [Equation
(4)]. The dashed lines in the gain fields indicate the inflection
point of their sigmoidal shape. That is, the dashed lines repre-
sent the center axis where the model gain field has its midpoint
response value of 0.5 (denoted by green in the color scale) over
the relative response range 0.0–1.0. The value of the offset param-
eter sets the position of the dashed line relative to central fixation
at [0,0]. Zero offset places the dashed line passing through [0,0],
producing anti-symmetric gain fields (gain fields centered around
central fixation). Non-zero offsets place the dashed line away from
the central fixation point, producing asymmetric gain fields with
respect to central fixation. The three gain fields in Figure 8A have
non-zero offsets and therefore are asymmetric. The three gain
fields in Figure 8B have zero offsets and are anti-symmetric and
centered around central fixation.

The stimulus and eye position conditions underlying the
model were the same as for the experimental data: neural response
to an identical visual stimulus fixated at a variety of eye posi-
tions (gaze angles). The configuration of eye positions used as
input to the MDS analysis is shown by the open circles in
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FIGURE 8 | Model results showing decoding of eye position, using

multidimensional scaling on a population of model neurons with

diverse eye-position gain fields. Population consisted of 576 neurons, each
with a different gain field. Gain fields were defined by three parameters:

slope, orientation, and offset, defined in [Equation (4)]. The color (see scale at
right) represents the relative response rate at each eye position. The midpoint
firing rate (green) within each gain field (0.5 within the range 0.0–1.0) is

(Continued)
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FIGURE 8 | Continued

shown by a dashed line. (A) Successful decoding of eye position by the
model including asymmetric gain fields with large non-zero values of the
offset parameter δ = [−1.00, −0.75, −0.50, −0.25, 0.00, 0.25, 0.50, 0.75,
1.00]. (Ai–iii) Three examples of model gain fields with large offsets.
Dashed lines do not pass through the origin (central fixation), indicating
model neurons included asymmetric gain fields. Open circles indicate eye
position locations used as input to MDS analysis, consisting of 32 different
eye positions. (Aiv) Multidimensional scaling model results for recovering
eye positions, including gain fields with asymmetric gain fields produced
using large offsets. Recovered eye positions closely correspond to physical
eye positions depicted by open circles in panels (Ai–Aiii). Low stress value
indicates the model was able to recover a very accurate representation of
relative eye positions. To aid visualization of the spatial configuration of
recovered eye positions, the color in the recovered eye position points

darkens with decreasing eye position eccentricity. (B) Unsuccessful
decoding of eye position by the model using anti-symmetric gain fields
produced by small (near zero) offsets (offset parameter, δ = [−0.100,
−0.075, −0.050, −0.025, 0.000, 0.025, 0.050, 0.075, 0.100]. (Bi–Biii) Three
examples of model gain fields with zero offsets. Dashed lines pass through
the origin (central fixation), indicating anti-symmetric gain fields. Open
circles indicate spatial locations used as input to MDS analysis, consisting
of a stimulus fixated at 32 eye positions. (Biv) MDS modeling results using
nearly anti-symmetric gain fields produced using small (near zero) offsets.
In this case the model failed to extract accurate eye positions, creating a
high stress value, as recovered positions did not closely correspond to
physical eye positions depicted by open circles in panels (Bi–Biii) As in
(Aiv), color in the recovered eye position points darkens with decreasing
eye position eccentricity. In this case, however, the different recovered eye
position eccentricities lay nearly on top of each other.

Figures 8Ai–iii,Bi–iii. Each of those 32 eye positions produced a
different response vector in the model neural population, which
could then be decoded by the MDS procedure.

The three example gain fields in Figure 8A had asymmetric gain
fields with large offset values δ = [−1.00, −0.75, −0.50, −0.25,
0.00, 0.25, 0.50, 0.75, 1.00]. The synthetic data produced by the
model with such gain fields were analyzed in an identical manner
to that used with the actual data (MDS followed by a Procrustes
analysis). As shown in Figure 8Aiv, we were able to recover a
highly accurate spatial map of eye positions from those synthetic
data (stress = 0.002).

However, not all gain field population characteristics
were successful in recovering eye positions (or equivalently,
recovering stimulus locations), importantly indicating that
this simple model is not tautological. If the gain fields
were very close to anti-symmetric (small offset values
δ = [−0.100,−0.075,−0.050,−0.025, 0.000, 0.025, 0.050,
0.075, 0.100]), as in Figure 8B, recovery of eye positions was
quite bad (Figure 8Biv), much worse than for the asymmetric
gain fields in Figure 8Aiv. Note that there is little correspon-
dence between the recovered eye positions in Figure 8Biv
and the physical eye positions shown by the open circles in
Figures 8Bi–iii.

We do not know whether the asymmetric/anti-symmetric dis-
tinction made here is of fundamental importance for real-world
gain fields. Interestingly, the two types of gain fields happened
to have strikingly different capabilities for encoding eye posi-
tion, under the simple mathematical description of gain fields we
chose for the model. Basically, the modeling demonstrated that
some gain field characteristics were better than others for decod-
ing eye position signals. Possibly other gain field characteristics
besides anti-symmetry may be important in decoding eye posi-
tion in actual brains. Hence, the modeling may point to what
gain field properties to measure in real cells. Further development
and investigation of different parameters of the model are sure to
provide insight into our understanding of eye position signals, as
well as the representation of space in different brain areas more
generally.

DISCUSSION
We demonstrate here for the first time that spatial maps of eye
position can be extracted directly from visual cortical responses in

both a ventral structure (AIT) as well as a dorsal structure (LIP)
(see also Sereno, 2011; Sereno and Lehky, 2012 for preliminary
reports). Extracting eye position is equivalent to extracting the
location of a fixated stimulus. Our success in population decoding
of eye position signals stands in contrast to recent reports based
on recordings in the dorsal stream that such modulations were
unreliable (Xu et al., 2012) or inaccurate (Morris et al., 2012)
when used for calculating target position during the period fol-
lowing an eye movement. Secondly, in a first direct comparison of
regions of the brain where we expect dorsal/ventral differences in
visual processing to be highly salient, we demonstrate significant
differences in the representation of eye-position based space. We
further elaborate on the meaning and consequences of these main
findings as well as others below.

METHOD: ADVANTAGES OF POPULATION CODING vs. SINGLE CELL
ANALYSES
In this study, we used a population decoding technique, MDS,
to extract gaze angle and stimulus location from a population
of cells modulated by eye position. We believe a population
approach to eye-position signals, going beyond characterizations
of individual cell properties, was critical to better understand
how those signals are utilized and how they differ across corti-
cal areas. Previous studies of eye-position modulations, including
Xu et al. (2012) and Morris et al. (2012), have generally just
reported the presence of such modulations in individual cells
without analyzing the data with any form of population decoding
(Andersen and Mountcastle, 1983; Andersen et al., 1985, 1990;
Galletti and Battaglini, 1989; Ringo et al., 1994; Galletti et al.,
1995; Squatrito and Maioli, 1996; Bremmer et al., 1997; Guo
and Li, 1997; Boussaoud et al., 1998; Trotter and Celebrini, 1999;
Bremmer, 2000; DeSouza et al., 2002; Rosenbluth and Allman,
2002; Lehky et al., 2008).

METHOD: ADVANTAGES OF INTRINSIC vs. EXTRINSIC POPULATION
DECODING ANALYSES
One recent study has subjected eye-position modulations to a
population coding analysis (Morris et al., 2013) and also reported
findings in disagreement with the conclusions of Xu et al. (2012)
that eye position information was too unreliable to be used in
real time (see also Kaplan and Snyder, 2012). Consistent with
our findings, Morris et al. (2013) report that eye positions and
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stimulus locations can be decoded from short-duration dor-
sal stream eye position signals. Although Morris et al. (2013)
included a population analysis of eye-position data, their data
were confined to dorsal stream cortical areas, namely LIP, VIP,
and MT+ (i.e., MT and MST), without data from the ventral
stream. A second key methodological difference between our
study and that of the Morris et al. (2013) is that we adopted
an intrinsic method, MDS, for our population decoding analy-
sis while they used extrinsic methods, Bayesian classification and
maximum likelihood estimation. A consequence of these differ-
ent approaches to analyzing the data is that they had to label
each neuron with information about its gain field whereas we
did not.

No need for labeling
We refer to MDS as an intrinsic decoding method, because it is
based purely on neural firing rates without any additional infor-
mation about the receptive field characteristics of neurons in the
population. Because there is no additional information besides
firing rate, the neurons are unlabeled. In contrast, for extrinsic
decoding methods such as weighted peak averaging or Bayesian
estimation, neurons require labeling with additional information
besides firing rate, such as the location of tuning curve peaks
or response statistical distributions (for recent reviews of more
common extrinsic approaches, see Pouget et al., 2000; Sanger,
2003; Averbeck et al., 2006; Quian Quiroga and Panzeri, 2009).
As Morris et al. (2013) state, their analysis “used knowledge of
individual eye-position tuning properties to estimate the associ-
ated eye position.” Differences between the extrinsic and intrinsic
approaches are extensively discussed in our recent review on pop-
ulation coding (Lehky et al., 2013). In sum, an intrinsic approach,
such as that used here, has advantages both in terms of physiolog-
ical plausibility (no need for labeling) and representation (such as
invariance).

Relational and invariant
Besides the labeled/unlabeled distinction, a second important dis-
tinction between intrinsic and extrinsic approaches is relational
vs. atomistic representations. Intrinsic representations are rela-
tional while extrinsic representations are atomistic. With respect
to the problem of coding eye positions, a relational representa-
tion means that the relative positions of a set of eye positions
are extracted from neural activity, rather than the absolute posi-
tions of individual eye positions, which provides advantages with
respect to invariances (for further discussion, see Lehky et al.,
2013).

Greatest precision at small eccentricities
We calculated a local measure of spatial error, precision
(Figure 5B), and found that spatial precision (standard error for
individual eye positions) increased as gaze angle increased, both
in dorsal and ventral areas. Therefore the greatest spatial preci-
sion for eye-positions occurred at small eccentricities. In contrast,
Morris et al. (2013) found an opposite relation, with the least pre-
cise spatial representation (highest spatial error) at the central eye
position, improving as eccentricity increased. Although we feel it
unlikely, it is possible that there are sample differences between

the studies, given the relatively limited populations of recorded
cells in both studies. It remains for future experimental and the-
oretical investigations to separately examine eccentricity effects
in detail and test how eye position signals influence perception
and how spatial encoding is influenced by various receptive field
properties, stimulus conditions, and/or analysis assumptions.

VENTRAL vs. DORSAL STREAMS
The visual system is divided into a ventral stream extending
into inferotemporal cortex, and a dorsal stream extending into
structures in parietal cortex. This division received widespread
attention following the work of Ungerleider and Mishkin (1982),
who associated the two streams with different aspects of per-
ceptual processing leading to the classic what/where dichotomy.
Over the decades, various researchers built upon this fundamental
distinction. Goodale and Milner (1992) proposed an influential
revised account of the differences between ventral and dorsal pro-
cessing, in which the previous perceptual what/where dichotomy
became a perception/action dichotomy. Both Jeannerod and
Jacob (2005) and Rizzolatti and Matelli (2003), while accepting
the perception/action distinction, further elaborated on it and re-
emphasized that the dorsal stream is not purely engaged in con-
trolling action but does have a perceptual aspect as well. Recent
work has shown that while shape (e.g., Sereno and Maunsell,
1998; Sereno et al., 2002; Konen and Kastner, 2008) and spa-
tial (e.g., Sereno and Lehky, 2011) representations are present in
both dorsal and ventral streams, they often differ from each other
in significant ways (Lehky and Sereno, 2007; Sereno and Lehky,
2011).

Space is a fundamental aspect of visual representation both in
the dorsal and ventral visual streams. In the dorsal stream, the
location of an object is obviously important during visuomotor
control of actions. In order to grasp or make a saccade to an
object, its location must be represented. In the ventral stream, the
spatial arrangement of different features of an object must be reg-
istered to form a coherent object percept (Edelman, 2002; Newell
et al., 2005). The inability to synthesize an object percept from
local features may underlie some forms of visual agnosia (Farah,
2004). Likewise, the locations and spatial relationships among
multiple objects are important in scene perception (Hayworth
et al., 2011) and cells modulated by changes in the spatial arrange-
ment of stimuli have been reported in the ventral stream (e.g.,
Missal et al., 1999; Aggelopoulos and Rolls, 2005; Messinger et al.,
2005; Yamane et al., 2006).

Although space is important in both dorsal and ventral
streams, a widespread assumption is that any spatial information
or spatially selective modulations of ventral areas are derived from
inputs from dorsal stream areas (e.g., Ungerleider and Haxby,
1994; Corbetta and Shulman, 2002; Kravitz et al., 2011). In con-
trast, we have previously reported that there are dorsal-ventral
differences in the representation of retinotopic space (Sereno and
Lehky, 2011) and have argued that spatial information in the two
streams, like shape information in the two streams (Lehky and
Sereno, 2007), is developed in parallel and is largely independent.

Support for a minimum of two independent spatial repre-
sentations in the visual system also comes from neuropsycho-
logical studies reporting implicit feature binding (without visual
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awareness) remaining in a patient with posterior parietal damage
who lacks the more familiar explicit feature binding (Friedman-
Hill et al., 1995; Wojciulik and Kanwisher, 1998). As binding
requires location or spatial information, those results suggest
two qualitatively distinct spatial representations, possibly in dor-
sal and ventral streams (Wojciulik and Kanwisher, 1998), as the
authors of this study also suggest.

Likewise, based on neurophysiological findings, we have pre-
viously argued that the differences between dorsal and ventral
streams is not based on a strict dichotomy between shape and
spatial processing (Lehky and Sereno, 2007; Sereno and Lehky,
2011). Rather, each stream independently encodes both shape
and spatial information, but with differences in the encoding of
shape and spatial signals in each case, with each stream geared
to different functionalities. For the dorsal stream areas, pre-
cise coordination of the body (hand, eye, etc.) position with
respect to object or world position is critical for real-time
control of action and navigation. Hence a metrically accurate
(or coordinate) egocentric spatial reference frame is required.
On the other hand, spatial representations for recognition and
memory in the ventral stream are concerned with relations
of objects (or parts of objects) with each other rather than
with the body, so that they may more often operate within
an allocentric reference frame. Oftentimes, it is sufficient for
these ventral spatial representations to be categorical (i.e., to
the left of, on top of, etc.) rather than coordinate (metri-
cally accurate). Kosslyn et al. (1989); Kosslyn et al. (1992) dis-
cuss the distinction between categorical and coordinate spatial
representations.

VENTRAL vs. DORSAL DIFFERENCES IN EYE POSITION BASED SPATIAL
REPRESENTATIONS
In this study we have found dorsal/ventral differences in the
encoding of eye-position space, extending previous work compar-
ing dorsal/ventral encoding of shape (Lehky and Sereno, 2007)
as well as dorsal/ventral encoding of retinotopic space (Sereno
and Lehky, 2011). We found that while responses in AIT and
LIP were both capable of representing spatial maps of eye posi-
tion, the map formed by AIT was more distorted (comparing
Figures 3B and C), with spatial distortion measured as stress
[Equation (2)]. Nevertheless, the AIT map still retained the cor-
rect topological relationships. That a ventral structure such as
AIT is capable of forming a representation of space purely on
the basis of eye-position modulations is a significant departure
from current thinking. The higher accuracy of LIP spatial rep-
resentations and lower accuracy of AIT spatial representations for
eye-position space we found here mirrors the same characteristics
we previously reported for retinotopic space (Sereno and Lehky,
2011).

One possible interpretation for the observed differences in eye-
position accuracy is that LIP, as a dorsal structure, is forming a
metric or coordinate representation of space required for accurate
visual control of motor actions, whereas AIT, as a ventral struc-
ture, is forming a categorical or qualitative representation of space
sufficient for object categorization or organizing the contents of
a scene. For example, if the ventral stream is processing a visual
scene for input to memory, it may be sufficient to localize different

objects in a qualitative manner, “to the left of. . . ” or “on top
of. . . ” rather than in a metrically or numerically precise manner.
While our results do lead to an interpretation of dorsal/ventral
differences in terms of the metric/categorical distinction in spa-
tial representations, the experimental design doesn’t directly test
the allocentric/egocentric distinction.

VENTRAL vs. DORSAL DIFFERENCES IN SPATIAL DISTORTIONS
ACROSS ECCENTRICITY AND LATERALITY
We found greater spatial distortion [i.e., stress, Equation (2)] as
gaze angle increased in AIT but not LIP (Figure 5A), indicat-
ing less accurate representations of eye-position space at larger
eccentricities for the ventral area. This is different from what we
observed for retinotopic space, where spatial distortion increased
with retinal target eccentricity for both AIT and LIP (Sereno and
Lehky, 2011).

In considering this difference between eye-position space and
retinotopic space, it should be noted that stimulus conditions are
quite different in the two cases. For eye-position space as exam-
ined in this study, the stimuli are at fixation straddling both the
ipsilateral and contralateral visual fields. It is only position of the
eye in the orbit that is deviated to the ipsilateral or contralat-
eral side. For retinotopic space, the visual stimuli were presented
to the ipsilateral or contralateral visual field at some eccentricity
away from fixation.

Given these differences, one possibility why there was no
eccentricity-related degradation in the accuracy of eye-position
representations in LIP, while such degradation occurred in AIT,
is the following. If dorsal structures use visual information in
the region near fixation to most accurately guide hand and arm
movements, then it would be critical that space in the fixation
region be represented in a metrically accurate manner for all gaze
angles. On the other hand, ventral structures are not involved in
controlling motor actions in the physical world, and space there
may be represented in a more qualitative, categorical manner
in which greater distortions at large gaze angles were tolera-
ble. One consequence of such differences suggests that if ventral
stream areas are important for allocentric representations, then
allocentric spatial representations of an object or scene may be
more spatially distorted for information encoded at larger gaze
angles, and when such stimuli are encoded at ipsilateral angles of
gaze.

On the other hand, for retinotopic space (Sereno and Lehky,
2011), increased spatial distortion away from fixation for both
dorsal and ventral streams may simply reflect generally reduced
accuracy requirements in the visual periphery. Modeling indicates
that this increased retinotopic spatial distortion with eccentric-
ity is not dependent on larger diameter RFs in the periphery,
as increased distortion still occurs for models with constant RF
diameter (Lehky and Sereno, 2011).

VENTRAL vs. DORSAL DIFFERENCES IN ONSET OF EYE POSITION
SIGNALS
Another dorsal/ventral difference is apparent upon examining
Figure 2B, plotting PSTHs at the best and worst eye positions. In
LIP, eye-position modulation starts substantially before there is
any change in eye position (before zero time in the plot, marking
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saccade to target). On the other hand, in AIT the start of the eye-
position modulation comes much later, roughly coinciding with
the start of the eye movement.

Previous work has reported predictive receptive field remap-
ping in the dorsal stream, in which receptive fields shift before the
eye actually moves (Duhamel et al., 1992; Colby and Duhamel,
1996; see also Nakamura and Colby, 2002). Based on timing
considerations (reviewed by Wurtz and Sommer, 2004), recep-
tive field remapping has been attributed to motor efference copy
(i.e., corollary discharge signals associated with the motor plan),
which can precede the eye movement, rather than a propriocep-
tive signal from change in muscle length, which must lag the
eye movement. Our LIP data is not inconsistent with a motor
efference copy source for the early eye-position modulation that
we observed, as those eye-position modulations arose before the
onset of the saccade.

An alternative interpretation for what appears to be LIP eye-
position modulation preceding saccade onset in our data is that
it could instead be attributed to variable locations of the target
stimulus, which was present in the periphery during that period.
The target appears about 200 ms before the eye movement to
target, with the target placed at various retinotopic locations in
different trials. Modulations before the eye movement could have
been due to visual responses to that target or some variable asso-
ciated with those responses, and not eye-position modulations.
However, we don’t think that is the case. As we reported above,
eye-positions producing strong responses are uncorrelated with
retinotopic positions producing strong responses in both areas.
The two plots in each panel of Figure 2B were selected for “best
eye position” and “worst eye position” responses. That means any
retinal responses contaminating our signal, being uncorrelated
with eye position, would be randomly assigned to the “best eye
position” and “worst eye position” plots. Therefore, differences
due to retinal stimulation would be averaged away.

It is difficult for us to give a definitive interpretation as to
why eye-position modulations occur earlier in LIP than AIT, as
this study was not designed to be able to distinguish the source
of the eye position signals. Wurtz and Sommer (2004) review
and prescribe several criteria necessary to identify corollary dis-
charge signals in the primate brain, criteria that the current
study cannot address. Nevertheless, one possible interpretation is
that eye-position modulation in LIP depends on motor efference
(corollary motor discharges), whereas eye-position modulation
in AIT, where significant modulation starts shortly after the sac-
cade onset (35 ms post-saccade, Lehky et al., 2008), depends on
proprioceptive signals. A second, perhaps more likely, possibility,
is that AIT modulations as well as LIP modulations have their
source in corollary motor discharges. Eye-position modulations
due to corollary motor discharges do not necessarily precede eye
movements, but can coincide or lag them as well, depending on
the latency with which the motor efference copy signal reaches
visual cortex (Wurtz and Sommer, 2004). Therefore it may be that
eye-position modulations in LIP and AIT both depend on motor
efference copy, but the efference copy signal has a longer latency
in AIT.

Interestingly, both areas show an additional marked change in
eye-position signals occurring with a lag after saccade onset with

LIP again showing a shorter lag (∼40 ms after saccade onset) than
AIT (∼80 ms after saccade onset). First, this suggests the possibil-
ity that there may be multiple sources of eye-position information
within each stream, one slower than the other, possibly reflecting
different contributions from both motor efference copy and pro-
prioception. Second, the longer lags that occur for not only the
initial but also the later AIT eye-position modulation may indi-
cate longer latencies in general for eye-position signals to reach
AIT. Differences in eye-position signal timings between streams
may therefore reflect feedforward or feedback conduction delays
specific to each stream due either to differences in the number of
processing stages within each stream or where or when the eye-
position signal has entered each stream (i.e., different stages in
hierarchy). It is noteworthy that AIT has longer latencies for both
eye-position signals and visual responses, and any connection
between the two latencies remains to be investigated.

The dynamics of eye-position modulations in the ventral
stream have not been investigated other than in this report and
our own previous report on AIT (Lehky et al., 2008). The dynam-
ics of eye position signals, the role of corollary discharge and
proprioception, and presence/absence of remapping should be
examined on AIT cell responses using the same techniques and
criteria developed and established in superior colliculus, frontal
eye field, and other dorsal stream areas. Such studies, which have
never been done in ventral stream areas, would be able to elu-
cidate the source of those modulations (proprioceptive feedback
or corollary discharges) and perhaps be able to account for the
later occurrence of the onset of eye-position modulations in AIT.
The comparative dynamics of eye-position modulations in the
two streams merits further examination.

DIRECT DECODING OF EYE POSITION MODULATIONS vs. COORDINATE
TRANSFORMS
A major focus of current theoretical thinking on the role of eye
position modulations is that they may be involved in a trans-
form of visual spatial coordinates from an eye-centered reference
frame to a head-centered reference frame. This idea was intro-
duced by Andersen et al. (1985) and formalized in the neural
network model of Zipser and Andersen (1988). In the years since,
it has been elaborated and applied to the interpretation of vari-
ous neural data sets (Andersen et al., 1993; Pouget and Sejnowski,
1997; Boussaoud and Bremmer, 1999; Pouget and Snyder, 2000;
Snyder, 2000; Salinas and Abbott, 2001; Lehky et al., 2008).

The approach taken here fundamentally differs from the above
in that eye position modulations are used to directly decode gaze
angle, and not to transform retinotopic spatial coordinates. There
are no coordinate transforms of visual space in our analysis of
eye-position modulation data.

The variable we were directly extracting is eye position, which
is equivalent to the position of a stimulus at fixation. Finding
stimulus location in this manner does not require performing
any coordinate transformations. Successively fixating different
objects can determine the relative positions of multiple stim-
uli. Such scanning of the visual field typically occurs at a rate
of 3–5 saccades/s (Rayner and Pollatsek, 1992; Rayner, 1998,
2009). Building up relative spatial maps of stimuli across fixa-
tions may be similar to active vision approaches (Ballard, 1991;
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Findlay, 1998) for constructing representations of space using eye
movements.

Although we demonstrate the ability to extract stimulus tar-
get location with eye-position signals alone, we are not arguing
that spatial representations in a given area must be limited to a
single spatial input signal. It is highly likely that different sources
of spatial information (e.g., eye angle, head angle, or vestibular
signals), including information ultimately based on retinotopic
coding, may be combined in different ways at different levels in
the system. Therefore, recovering object locations using changes
in eye position supplements rather than supersedes current ideas
based on computing a series of spatial coordinate transforms (e.g.,
Andersen et al., 1993). Nevertheless, we show here that spatial
representation need not proceed by coordinate transformations,
and that eye position spatial information alone contained within
small populations of cells in both a ventral and dorsal area are
sufficient to fairly accurately recover target stimulus location.

MODELING EYE POSITION BASED REPRESENTATIONS
We present a simple population-coding model of eye-position
representation based on gain fields. Decoding was based on apply-
ing MDS to synthetic data from model neurons, in a manner
identical to the way MDS was applied to actual data. The success
of the model in finding that eye position can be directly decoded
from a population of neurons having a variety of gain fields
highlights several important issues: (1) modeling success with
decoding eye position signals supports our physiological findings
that eye position can be directly decoded from a population of
neurons; (2) modeling success also demonstrates that recovering
space from eye-position modulations is not an artifact of the data
or data analysis methods; (3) modeling is an indication that we
have an understanding of the processes that generated our data;
and (4) having a model opens the way for future modeling stud-
ies, under well-controlled parametric conditions, examining how
gain field characteristics affect the representation of eye-position
space.

In addition, we show that MDS modeling can fail to recover
visual space for particular gain field characteristics (i.e., when
all the sigmoidal gain fields in the population were close to
anti-symmetric around the central eye position). This failure
demonstrates that our approach is not tautological. It is possible
that other configurations of gain fields may also fail to completely
recover spatial information, a topic for future modeling stud-
ies. Such failures point out the advantages of using modeling,
which may highlight aspects of receptive field characteristics and
organization whose significance might otherwise not be apparent.

Further development of gain field models of eye position
may help us to understand how differences in gain field charac-
teristics in different cortical areas lead to differences in spatial
representations in those areas, as well as how individual param-
eters describing gain fields affect spatial representation. Although
many cortical areas show eye-position modulations, quantitative
modeling might also be helpful for identifying cortical areas with
characteristics that optimize the recovery of eye-position infor-
mation for particular applications. Such information could be
useful for guiding the development of brain-computer interfaces
in neuroprosthetic systems.

CONCLUSION
In sum, spatial representations are not confined to the dor-
sal stream. We unequivocally show here, in a first study to use
population-decoding methods to analyze eye-position modula-
tions across visual streams, that visual space is represented in
both dorsal and ventral structures. However, more detailed exam-
ination of how physiological eye position signals in the two
streams differ and how those differences affect population decod-
ing of those signals and relate to functional differences between
the streams is needed. The nature of the eye position based
spatial representation in the two streams is an unexplored fron-
tier that, with the help of novel intrinsic population decoding
techniques, promises to change our understanding of cortical
spatial representation.
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