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A key characteristic of learning and neural plasticity is state-dependent acquisition
dynamics reflected by the non-linear learning curve that links increase in learning with
practice. Here we propose that the manner by which epigenetic states of individual cells
change during learning contributes to the shape of the neural and behavioral learning
curve. We base our suggestion on recent studies showing that epigenetic mechanisms
such as DNA methylation, histone acetylation, and RNA-mediated gene regulation are
intimately involved in the establishment and maintenance of long-term neural plasticity,
reflecting specific learning-histories and influencing future learning. Our model, which
is the first to suggest a dynamic molecular account of the shape of the learning curve,
leads to several testable predictions regarding the link between epigenetic dynamics at
the promoter, gene-network, and neural-network levels. This perspective opens up new
avenues for therapeutic interventions in neurological pathologies.
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INTRODUCTION
At the very outset of modern learning and memory research it was
established that changes in behavior are usually acquired through
a dynamic, gradual process of iterative experience, and that the
relation between learning-strength and practice—i.e., the learn-
ing curve—is usually non-linear (Thorndike, 1898). A non-linear
learning curve implies that the contribution of each learning-
instance to the overall learning-strength is state-dependent rather
than fixed (see Anderson, 2000 for many types of learning curves).
For Example, the traditional Rescorla-Wagner associative learn-
ing model (Rescorla and Wagner, 1972), suggests that the asso-
ciative strength increases as a fixed proportion of the difference
between the current associative strength and its asymptote. Thus,
this model predicts a negatively accelerating learning curve (see
Figure 1). Although the vast majority of learning curves were
described at the behavioral level it was realized that any behavioral
manifestation of learning and memory entails some form of per-
sistent neural plasticity. This suggested that there must be neural
learning curves that reflect changes in neural plasticity as a func-
tion of practice. Several studies described such neural learning
curves (Barnes, 1979; Cooke and Bear, 2010). For example, Cooke
and Bear (2010) observed a diminishing neural learning curve in
the visual cortex following a 5-day visual-exposure, showing that
the stronger the current synaptic state, the smaller the increment
upon future learning. These results are also consistent with most
behavioral learning-curves (Anderson, 2000). However, although
much has been learnt about the biochemical cascades underly-
ing learning and memory, the molecular and cellular processes
that render neural learning-dynamics state-dependent and deter-
mine the shape of the neural learning curves, are, as yet, poorly
understood.

There are many different forms of long-term neural plasticity
(persisting for more than 24 h). These include synaptic plastic-
ity, which entails either changes in the efficacy of pre-existing
synapses [for example, long-term potentiation (LTP; Bliss and
Collingridge, 1993)] or the formation or elimination of synapses
(Holtmaat and Svoboda, 2009); changes in somal depolarization
(Kemenes et al., 2006) and even interactive and synergistic activity
of both synaptic- and non-synaptic plasticity (Gao et al., 2012).
In spite of the vast heterogeneity of mechanisms underlying long-
term neural plasticity, de-novo transcription and translation are
necessary processes common to all (reviewed in Leslie and Nedivi,
2011). The transcribed and/or translated gene products operate
via diverse cellular mechanisms to modify neuronal properties
that enable long-term neural plasticity such as the morpholog-
ical changes taking place in the pre-synaptic axonal structures
(Giuditta et al., 2002) and in the post-synaptic dendritic spines
during long-term potentiation (LTP; a form of synaptic plasticity;
Caroni et al., 2012). However, since there is constant turnover of
proteins at synapses, it has been suggested that epigenetic mecha-
nisms, which regulate experience-dependent gene expression and
underlie its persistence are involved in maintaining functional
neural states by supporting the persistent expression of the nec-
essary RNAs and proteins (Miller and Sweatt, 2007; Zovkic et al.,
2013).

THE INVOLVEMENT OF EPIGENETIC MECHANISMS IN
LEARNING AND MEMORY
Persistent epigenetic changes are mediated through the opera-
tion of four types of interacting epigenetic mechanisms (Jablonka
and Lamb, 2005/2014): (i) Chromatin-marking—whereby chro-
matin (the complex of DNA, proteins, and other components that
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FIGURE 1 | A hypothetical negatively accelerating learning-curve;

based on the Rescorla-Wagner associative learning model. In this
model, each learning-induced increment in associative strength is a fixed
proportion of the difference between the current associative strength and
the learning asymptote.

constitute the chromosome) assumes different local and global
conformations as it changes in response to signals. Examples of
chromatin marks are methyl (CH3) groups added to cytosines
in DNA (catalyzed by DNA methyltransferases, DNMTs) which,
when present in regulatory regions, can repress transcription (Yu
et al., 2001) and when oxidized into 5-hydroxymethylcytosine
(5-hmC) correlates with transcriptional activation (Branco et al.,
2012); histone post-translational modifications (PTMs) that ren-
der histones more or less accessible to transcription factors (Gräff
and Tsai, 2013); histone variants (specific histone proteins that
can displace the usual histones) that alter the conformation of
chromatin and its accessibility to modifying enzymes; and non-
histone proteins that are bound to DNA and are involved in
chromatin marking, the regulation of chromatin condensation
and topology, and the control or stabilization of other chromo-
somal functions (Talbert and Henikoff, 2010). (ii) RNA-mediated
gene silencing—whereby silent states are initiated and actively
maintained through repressive interactions between non-coding
small RNA molecules and complementary regions in mRNA and
DNA. Examples include microRNAs (miRNAs) and their comple-
mentary mRNA (Spadaro and Bredy, 2012) and piRNAs that are
involved in the regulation of transcription in neurons, and long
non-coding RNAs (Lasalle et al., 2013); in addition, small double-
stranded RNAs can also activate genes (saRNAs), adding another
layer of complexity to RNA-mediated regulation (Li et al., 2006).
(iii) Structural templating—whereby pre-existing three dimen-
sional cellular structures act as templates for the production of
similar structures within the same cell or in daughter cells, such as
the cellular inheritance of prions (Shorter and Lindquist, 2005).
(iv) Self-sustaining loops—whereby a specific pattern of intracel-
lular activity can be maintained when genes and their products
form autocatalytic loops (Lisman et al., 2002).

During the last decade many studies showed that there
are causal links between epigenetic mechanisms and long-term

learning and memory. It was shown that learning induces
both gene-specific and genome-wide (global) changes in neu-
rons’ epigenome (the cells’ developmentally-established epige-
netic state) and that manipulations of neural epigenetic activity,
for example by catalyzing or inhibiting the activity of histone-
modifying or DNA-methylating enzymes, affect learning and
memory (for recent reviews see Blaze and Roth, 2013; Zovkic
et al., 2013).

Gene-specific epigenetic changes were found in studies using
rodent models of long-term neural plasticity. The majority of
studies showed, as expected, that genes that support neural plas-
ticity (i.e., genes whose expression levels increase following learn-
ing) are associated with positive regulatory epigenetic changes
such as reduced DNA methylation and enhanced histone acety-
lation. Similarly, genes that inhibit the formation of memory
are epigenetically suppressed following learning. For example,
it was fond that several hours after training in the contextual
fear conditioning paradigm (whereby a certain chamber is asso-
ciated with an electric shock) rats’ hippocampal neurons are
demethylated at plasticity-facilitating genes such as the imme-
diate early-gene Zif268 (Miller et al., 2010), reelin (Miller and
Sweatt, 2007) and bdnf (Lubin et al., 2008), while PP1, a learning-
suppressing gene, becomes methylated (Miller and Sweatt, 2007).
Thirty days after contextual fear conditioning, robust methyla-
tion of calcineurin, a suppressor of memory, was observed in
cortical neurons (Miller et al., 2010), and several days after the
extinction of this memory, hippocampal neurons are deacety-
lated (at H3) at the c-Fos promoter (Bahari-Javan et al., 2012).
A similar pattern was observed in other forms of learning: 2 h
after the extinction of cued-fear conditioning, there is an increase
in histone H4 acetylation around the BDNF P4 gene promoter
in the pre-frontal cortex (Bredy et al., 2007) and several hours
after the induction of LTP, the bdnf and reelin genes in the
medial pre-frontal cortex neurons are demethylated (Sui et al.,
2012).

In addition to gene-specific changes, neuroepigenetic stud-
ies also show that there are genome-wide effects, which may
represent an overall “aggregate” effect of learning. A survey of
these studies (Bronfman et al., 2014) points to a positive cor-
relation between increased global levels of histone acetylation,
DNA methylation, and learning. Furthermore, manipulations of
the enzymes that enhance global histone acetylation or global
DNA methylation enhance the strength and persistence of learn-
ing, while a decrease in these enzyme activities decreases learn-
ing. These results appear to be consistent across taxa, time,
brain-region, and learning task. Table 1 presents representative
examples.

The effects of the manipulations of enzymes that regulate
DNA methylation described in the Table are in line with stud-
ies showing that knocking out Piwi genes, which contribute to
DNA methylation, results in reduced long-term facilitation (LTF),
whereas Piwi overexpression enhances it (Rajasethupathy et al.,
2012). A study showing that a gain-of-function mutation in the
Mecp2 gene (a gene that produces a protein that binds to methy-
lated DNA and contributes to the inhibition of transcription)
increases its binding to methylated DNA and enhances learning
(Li et al., 2011) also points in the same direction.
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Table 1 | Genome-wide Epigenetic changes induced by learning.

Genome-wide epigenetic changes Time/Region/Task Aminal References

PTMs (HISTONE-TAIL ACETYLATION AND DI- AND TRI-METHYLATION)

1 Contextual fear conditioning increases acetylation of
histone H3. Artificially elevating levels of histone
acetylation in vitro enhances the induction of LTP

20 min–1 h
Hippocampus
Contextual fear conditioning

Rodents Levenson et al., 2004

2 Increase in acetylation of Histones H3 and H4; HDAC
inhibitors facilitate learning

3 h–Weeks
Hippocampus and Cortex
Environmental enrichment; Associative
learning; Spatial learning

Rodents Fischer et al., 2007

3 Increase in H3 acetylation across all regions of the
hippocampus, while acetylation of lysine 9 on H3 is
downregulated selectively in CA1. H4 acetylation is
influenced in opposite directions in CA1 and DG, and is
insensitive in CA3

1 h
Hippocampus
Spatial memory

Rodents Castellano et al., 2012

4 Increase in H3 acetylation 15 min
Right parietal ganglion
Food aversion

Snails Danilova et al., 2010

5 HAT (CBP/p300) activation (by CSP-TTK21) enhances
memory (extending the time during which memory can
be retrieved)

24 h
Hippocampus
Spatial memory

Rodents Chatterjee et al., 2013

6 Overexpression of HDAC2 decreases dendritic spine
density, synapse number, synaptic plasticity, and
memory formation; HDAC2 deficiency results in
increased synapse number and memory facilitation.

24 h
Hippocampus
Contextual fear conditioning; Spatial
memory

Rodents Guan et al., 2009

7 HDAC1 overexpression enhances extinction Days
Hippocampus
Contextual fear extinction

Rodents Bahari-Javan et al., 2012

8 Deletion of the hda4, a homolog of the mammalian
HDAC4 leads to enhanced memory, while the
overexpression of this gene diminishes it

18–48 h
The nervous system
Thermotaxic task

C. elegans Wang et al., 2011

9 HDAC inhibition enhances memory 2 h
Pre-frontal cortex
Contextual fear extinction

Rodents Bredy et al., 2007

10 HDAC inhibition enhances memory 24 h
Dorsal hippocampus
Object-location memory

Rodents Hawk et al., 2011

11 HDAC inhibition enhances memory 24 h
Hippocampus
Contextual fear conditioning

Rodents Mahan et al., 2012

12 Increased H3 acetylation during reconsolidation; p300
HAT inhibitor impaired reconsolidation of strong
memory; HDAC inhibitor enhances reconsolidation of a
weak memory and an increase in histone H3
acetylation

1 h after consolidation
Central brain
Context-signal memory reconsolidation

Crab Federman et al., 2012

13 Increase in trimethylation of H3K4 and dimethylation of
H3K9

1–24 h
Hippocampus
Contextual fear conditioning

Rodents Gupta et al., 2010

(Continued)
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Table 1 | Continued

Genome-wide epigenetic changes Time/Region/Task Aminal References

14 Increase in H3 di- and tri-methylation of histones 1–24 h
Entorhinal cortex
Contextual fear conditioning

Rodents Gupta-Agarwal et al.,
2012

15 H3S10 phosphorylation, H3K14 and H4K5 acetylation,
and H3K36 trimethylation are increased rapidly (1 h–1
day) in the hippocampus, and remotely (1 day–7 days)
in the PFC; Enhanced histone PTMs (by inhibition of
PP1) facilitate memory, while inhibition of histone
PTMs impairs memory

1 h–7 days
Hippocampus and PFC;
Object memory

Rodents Graff et al., 2012

16 Increase in H3 acetylation and DNMT3A expression;
HDAC inhibitor enhances memory; DNMT inhibitor
impairs memory

90 min
Lateral amygdala
Cued fear conditioning

Rodents Monsey et al., 2011

DNA METHYLATION

17 Total DNMTs, total HATs and global acetylation of H3
and H4 are elevated; infusion of DNMT inhibitor
suppresses the induction of LTP (several hours) and
interferes with trace fear memory (24 h); infusion of
HDAC inhibitors enhances LTP (several hours) and trace
fear memory (24 h)

2–24 h
Medial pre-frontal cortex
LTP; trace fear conditioning

Rodents Sui et al., 2012

18 Enhanced DNMT expression after conditioning;
blocking DNMT’s activity abolishes memory

1 h
Hippocampus
Contextual fear conditioning

Rodents Miller and Sweatt, 2007

19 Learning involves DNMT3 upregulation and, depending
on treatment time, DNMT inhibition reduces the
acquisition and retention of memory and alters its
extinction

5 h
Mushroom bodies
Pavlovian olfactory discrimination and
extinction

Honey bee Lockett et al., 2010

20 Exposure of slices to DNMT inhibitor results in an
immediate diminution of LTP

3 h
Hippocampus
LTP (in vitro)

Rodents Levenson et al., 2006

21 Blocking DNMT activity impairs memory 2 h
Hippocampus
Contextual fear conditioning

Rodents Lubin et al., 2008

22 Blocking DNMT activity impairs memory 1–30 days
Hippocampus; Dorsomedial pre-frontal
cortex
Contextual fear conditioning

Rodents Miller et al., 2010

23 Blocking DNMT activity impairs memory acquisition 24 h
Hippocampus
Conditioned place preference

Rodents Han et al., 2010

How can one explain these global, robust correlations in a
highly context-sensitive functional system? The positive corre-
lation between neural plasticity and global increase in histone
acetylation seems natural, since this type of PTM renders the
DNA, which is wound around the histones, more accessible
to transcription factors, and hence more prone to activity-
induced gene-expression supporting neural plasticity. However,
DNA methylation is usually associated with gene silencing, espe-
cially in gene promoter regions (Yu et al., 2001)—a property
that seems to be at odds with the overall positive relation of

increased DNA methylation with enhanced learning and mem-
ory. Three explanations have been suggested to account for this
correlation (i) that methylation leads to the repression of the
synthesis of specific memory-repressors, and hence to improved
learning (e.g., Yu et al., 2011; Sui et al., 2012); (ii) that increased
methylation in the body of the gene is associated with increased
transcriptional activity; and (iii) that DNMTs are involved in both
DNA methylation and demethylation and its demethylating role
explains why its level increases with learning (Chen et al., 2012).
However, although such suggestions may explain some specific
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effects, they do not account very well for the correlation between
global increase in DNA methylation and improved learning. It
is not clear that the methylation of suppressor genes is more
prevalent than demethylation of learning enhancing genes, that
the demethylating role of DNMT I is more common than its
methylating role, and that methylation in the body of the gene
has a greater quantitative effect on overall methylation than the
suppression of promoters by methylation.

We propose an elaboration and an extension of the first
proposal, and suggest that the increased global levels of DNA
methylation is related to the suppressor of learning-suppressing
sequences, but that the class of suppressors are not protein coding
genes but rather the genomically widespread clusters coding for
precursor sequences of miRNAs (pre-miRNAs), which, when pro-
cessed, interfere with the gene-expression necessary for plasticity.
Our suggestion is consistent with a study showing that knock-out
of Dicer1 (a key enzyme in the biogenesis of miRNAs) in mice,
led to improvement in a variety of learning tasks (Konopka et al.,
2010). Further studies should investigate whether the correlation
between global increase in DNA methylation levels and long-term
learning and memory is indeed mediated by the suppression of
pre-miRNAs, and if so by what means.

Another possible explanation for the positive correlation
between DNA methylation levels and learning may be related
to the central role of inhibition and pruning in learning. The
increased levels of global DNA methylation may reflect lateral
inhibition, whereby gene-activity in “competing” neural networks
(i.e., neurons that are not involved in the specific learning) is
being actively silenced so as to enable the efficient establish-
ment of the relevant associations. Such a process may include
the migration of positive regulators of DNMTs, such as piRNAs
through exosomes from the focal network to the neighboring
networks. Exosomes are vesicles measuring 50–90 nm contained
in larger intracellular multivesicular bodies (MVBs), which are
released from certain cells into the extracellular environment by
MVBs fusing with the plasma membrane. Neurons are known
to secrete exosomes (Lachenal et al., 2011; Lai and Breakefield,
2012). If this inactivation plays an important role in learning
we predict that the global increase in methylation would be
specific to formerly active (“competing”) neurons that are not
directly participating in the learning process (i.e., not necessary
for the formation of the specific memory), while the (relatively
few) “relevant” neurons will exhibit more demethylation, espe-
cially in learning-related genes. This possibility is consistent with
recent findings showing that global methylation levels in neurons
increase throughout ontogeny (Lister et al., 2013) and may thus
reflect the selection-processes during synaptic pruning (for early
discussions see Changeux et al., 1973; Changeux and Danchin,
1976; Edelman, 1987).

Finally, and perhaps most intriguingly, the global effects
involving methylation and acetylation may represent a mnemonic
principle first suggested in the early 20th century by Semon (1921,
1923); discussed by Schacter (2001), where acquisition-encoding
processes bear on changes in inter- and intra-network resonance
dynamics, dynamics which are “reawakened,” expanded and
modified upon retrieval. Under this conceptualization, global epi-
genetic effects, which are involved in the encoding and retrieval

processes that occur during the episodes that follow the first expo-
sure to the learning conditions, involve an increase in the number
of encoding cells and hence in the expansion of the size and num-
ber of neural networks involved in learning. Hence, the changes
occurring during learning can be best observed at the global level
rather than only the gene or cell level.

Several predictions follow from these proposals: (i) negative
correlation between increased DNA methylation and miRNAs
abundance will be found in single neurons that exhibit plasticity;
(ii) increased methylation will be found in neighboring neurons
that interfere with focused learning; (iii) neighboring neurons
will exhibit increased levels of piRNAs that positively regulate
DNMT activity; (iv) the number of neurons that undergo epige-
netic changes such as DNA methylation and histone acetylation
will increase and spread during learning.

The studies summarized in this section strongly support the
growing consensus that there is a complex, “bidirectional” rela-
tion between the epigenetic system and long-term neural plas-
ticity. Learning induces multiple changes to neurons’ epigenome,
and at least some of these changes persist, thus enabling the nec-
essary ongoing gene-expression that maintains the neural state.
Upon future learning, each neuron’s epigenome constrains or
actively regulates the activity-induced gene-expression pattern
and hence shapes future plasticity (Zovkic et al., 2013). This
unique “time-bridging” involvement of the epigenetic system in
neural plasticity implies that learning may be history-sensitive
via epigenetic dynamics: the influence of future learning may
be dependent, upon the cell-specific epigenetic state, which is in
turn, a function of learning history.

The idea that present and past experience can alter the future
susceptibility and responsiveness of synapses via diverse molec-
ular mechanisms was suggested by Abraham and Bear (1996)
who called this phenomenon metaplasticity, or “the plasticity of
synaptic plasticity” (Abraham, 2008). For example, short expo-
sures to environmental enrichment that do not enhance late-LTP
(>24 h), facilitate it upon re-exposure 6 weeks later (Buschler
and Manahan-Vaughan, 2012). Another example is weak (sub-
threshold) induction of LTP that does not change synaptic effi-
cacy, yet can alter future changes in plasticity, by mediating the
processes of silent synapses unmasking (a process also referred
to as “priming”; Ward et al., 2006). However, little is currently
known about the factors that affect the shape and dynamics of
neural learning-curves upon continuous (prolonged) learning
acquisition, and many of the underlying mechanisms remain to
be identified.

In spite of the appreciation of metaplasticity, the majority of
studies linking epigenetic changes to enhanced learning focused
on the relation between the “end-points” of a specific learning
task and the corresponding end-point epigenetic states and did
not address the epigenetic dynamics during learning acquisition.
We therefore present simple models, describing how different pat-
terns of epigenetic changes that occur throughout the learning
process may determine the shape of the neural learning curve.

MODELS OF NEURAL EPIGENETIC LEARNING-CURVES
Our proposal is based on the observation that epigenetic mech-
anisms possess “mnemonic” properties and can therefore lead to
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the dynamic, time-dependent, encoding, and storage of informa-
tion during learning. The unique self-perpetuating biochemical
activity of the interacting epigenetic mechanisms ensures that
epigenetic patterns (e.g., patterns of histone modifications or of
DNA methylation) persist long after the initial induction period
(Fischer et al., 2007; Miller et al., 2010; Zovkic et al., 2013).
Hence, unlike most of the genome, the epigenome is “history-
sensitive,” in the sense that it changes as a function of learning
and development over time. Moreover, the epigenome regulates
future activity-induced gene-expression, thus causally determin-
ing the effect of experience on plasticity. This combination of
properties suggests that epigenetic dynamics during learning may
render learning state-sensitive.

We present a model based on the chromatin marking system
of DNA methylation. Although other epigenetic systems may be
as suitable, we chose DNA methylation because of the acknowl-
edged persistence of DNA methylation marks (e.g., Cedar and
Bergman, 2012; Smith and Meissner, 2013), because methylation
marks can accumulate (e.g., Ibrahim et al., 2011; Lu et al., 2013),
and because global increase in DNA methylation levels is consis-
tently correlated with enhanced learning (Table 1). However, the
model can easily be adapted to any other epigenetic mechanism,
for example to the accumulation of acetylation of histones and
to the more complex construction of activity-specific epigenetic
modifications, involving, for example, various types of histone
modifications. In the model we make the simplifying assumption

that there is a linear relationship between levels of DNA methy-
lation, gene expression, and synaptic plasticity. This assumption
is made solely for illustrative purposes and relaxing it does not
alter the model’s predictions. For example, the model can describe
learning that is dependent on crossing a certain epigenetic mark-
ing threshold (for example, a certain number of chromatin marks
must be reached for transcriptional activation or inactivation).
In this case, while the accumulation of chromatin marks may be
gradual, the effect on learning will be abrupt and step-like.

The model describes hypothetical kinetics of DNA methyla-
tion accumulation at three levels: the level of a suppressor single
gene (Figure 2); the level of a gene network within a single neuron
(Figure 3), and the level of a neural network involving three neu-
rons (Figure 4). It shows how a specific pattern of accumulated
epigenetic marks—a pattern we call the epigenetic profile—can
eventually affect learning acquisition dynamics. At each level,
two patterns are demonstrated, since we assume that epigenetic
learning profiles are influenced by DNA sequence, cell type and
ontogenetic stage, and hence may differ between genes, neurons,
and brain regions (different brain regions indeed show different
methylation patterns; Hata et al., 2013).

At the level of a single gene, we suggest that the manner by
which methylation accumulates at the gene’s promoter region
during learning would determine the gene’s expression level upon
future learning (i.e., the gene’s “learning curve”). Consider for
example a plasticity-suppressing gene. In our model, each instance

FIGURE 2 | Epigenetic dynamics during learning can shape the neural

learning-curve at the single gene level: Initially (t1), two

learning-suppressing gene promoters (purple and yellow rods) have

similar basal methylation level (red buttons). During learning, (t2–tn) these
two genes exhibit different patterns of epigenetic change and subsequently,

different changes in expression levels. The purple gene exhibits a diminishing
pattern of methylation marks accumulation (purple line; right upper panel) and
therefore an inverse, diminishing “gene-expression learning curve” (purple
line; right lower panel). The yellow gene exhibits a linear pattern of
methylation accumulation and a linear learning curve (yellow line).
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FIGURE 3 | Epigenetic dynamics during learning can shape the neural

learning-curve at the single neuron’s gene-network level. At (t1), two
types of neurons (black rectangle and blue ellipse) have similar overall basal
methylation level (depicted by a 3-gene network: yellow, pink, and purple
rods). During learning, (t2–tn) the two neurons exhibit different patterns of

changes in their overall methylation level, their genes’ expression profiles,
and eventually their synaptic strength. The black neuron exhibits a
diminishing pattern of overall methylation accumulation and a diminishing
learning curve (black line) while the blue neuron exhibits a linear pattern of
methylation accumulation and a linear learning curve (blue line).

FIGURE 4 | Epigenetic dynamics during learning can shape the neural

learning-curve at the neural-network level. Two neural networks (green
and red squares) comprised of 3 neurons each (black rectangle, blue ellipse,
and green diamond), have similar overall basal methylation level at (t1).
During learning, (t2–tn) these two networks exhibit different patterns of

epigenetic change and subsequently different levels of overall methylation.
The green network exhibits an accelerating pattern of overall methylation
accumulation and therefore an accelerating learning curve (green line).The
red network exhibits a diminishing pattern of methylation accumulation and
therefore a diminishing learning curve (red line).

of learning is assumed to induce additional methylation marks
at the gene’s promoter region, down-regulating its expression—
a process necessary for the manifestation and maintenance of
plasticity. Importantly, different suppressor genes (or the same
suppressor gene in different cells) may have different epige-
netic profiles and thus exhibit different cumulative patterns. This
would result in different expression levels during different states
of learning acquisition, even if at the “end-point” of learning these
genes may be similarly methylated (see Figure 2). Similar logic
applies to learning-supporting genes, where progressive decrease
in DNA methylation (demethylation) is expected during learning.

At the level of a single neuron, we focus on the global methy-
lation level of the neuron’s genome, illustrated here by the overall
level of methylation in a gene-network comprised of 3 learning-
related suppressor genes or gene regulators. We assume that as a
result of learning, the neuron’s global methylation increases. Note
that the pattern of increase could differ between neurons: some
neurons may exhibit non-liner increase in global methylation,

whereas the pattern of changes in global methylation in other
types of neurons could be linear (Figure 3).

Learning depends, of course, on complex networks involving
interactions among many neurons. The observed alterations in
epigenetic patterns as a result of learning may therefore reflect the
average change at the neural network level, where different neu-
rons may have different epigenetic learning profiles and hence
contribute differentially to the observed aggregated effect. In a
simplified 3-neuron-network (Figure 4) the learning curves show
diminishing and accelerating changes in time in the averaged
accumulation of DNA methylation within the entire network
(across specific neurons and their underlying genes).

Behavioral learning curves and epigenetic effects are mostly
described using average data. However, the shape of the learning
curve may change when describing it at the individual (Gallistel
et al., 2004) or at the trial-by-trial levels (Glautier, 2013) even
to the extent of rendering it “threshold-like.” We suggest that
the same logic applies to the presumed epigenetic kinetics: some
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epigenetic changes may seem as gradual, just as behavioral acqui-
sition does, yet at finer granularity, epigenetic processes may also
reflect (or affect learning in) a threshold-like process. The rela-
tions between gradual and discrete changes both in the epigenetic
and the behavioral domains remain wide-open for future studies
to investigate.

The model can be expanded to heed Semon’s suggestion that
networks expand during acquisition (Semon, 1921, 1923). Thus,
rather than the number of chromatin marks on a single gene
promoter increasing as a function of acquisition (Figure 2) it
may be the case that the number of genes participating in learn-
ing increases with experience, and with it the number of the
learning-linked chromatin marks we observe. Similarly, not only
the number of marks on a single gene network (Figure 3), but
the number of gene networks responsive to learning may increase
with practice. Finally, and most importantly from this point of
view, the accumulation of marks may occur not just within one
pre-given network (Figure 4), but lead to the increase of the
number of networks participating in learning and retrieval as a
function of the number of learning episodes. The observation that
the effects of learning in one area of the brain are “transferred” to
additional areas (Graff et al., 2012) may support this conjecture.
We believe that in addition to local cumulative epigenetic changes
(such as genes, gene-networks, and neural networks; Figures 2–4)
described in our model, learning also induces an expansion in the
size and quantity of these factors.

The model can be tested by observing the epigenetic changes
that occur at several different points in time during learning
acquisition—and not just at the completion of the training pro-
tocol (as has been done in most studies), at the point in time
where consolidation is thought to peak (e.g., Bousiges et al.,
2010) or at several points in time after learning took place
(e.g., Sui et al., 2012). Any standard neuroepigenetic learn-
ing paradigm, such as those reviewed in the first section and
those mentioned above can be used to acquire these data1 .
We predict that such kinetic studies will show various pat-
terns of cumulative epigenetic changes (such as decrease in
methylation and increase in hydroxyl-methylation of learning-
facilitating genes, increase in methylation of learning-suppressing
genes and increase in global DNA methylation levels). Critically
though, variations in these patterns of epigenetic dynamics
should correspond to variations in behavioral learning curves.
For example, we predict that following the induction of neural
plasticity (via LTP, for example) one will find that: (i) differ-
ent neurons (for example hippocampal vs. cerebellar) exhibit
different neural learning-curves; (ii) these neurons manifest
corresponding differences in their learning-induced epigenetic
marks, such as patterns of changes in DNA methylation and
histone acetylation; and (iii) manipulation of these neuronal
epigenetic kinetics during acquisition, for example by using
inhibitors of epigenetic enzymes, will affect the shape of their
learning-curve.

1A recent study showing that extinction of fear conditioning is associated
with the accumulation of 5-hydroxycytosine (hmC, a chromatin mark asso-
ciated with gene activity), provides the first example of such trial-dependent
epigenetic dynamics (Li et al., 2014).

How can epigenetic changes at the level of single genes, gene
networks, or even neural networks predict change at the behav-
ioral level? The relation between the behavioral and the molecular
levels is clearly very complex, and we do not expect to see a simple
mapping among the behavioral, neural, and epigenetic learning
curves. However, as the review of the relations between epige-
netic modifications and learning reviewed above has shown, in
spite of the multiplicity of relations among different epigenetic
factors and processes that underlie behavior, some robust corre-
lations have been found between changes in the methylation of
single genes and learning, and even more robustly, between more
global changes and learning. We therefore believe that taking into
consideration the kinetics of epigenetic changes as a function of
learning may add to and enrich this picture.

If supported, we believe that our model may have implica-
tions for the interpretation and study of neurological diseases
that show clear learning impairments, or of anxiety disorders,
like post-traumatic stress disorder (PTSD), where memory reg-
ulation is specifically impaired (Zwissler et al., 2012; Zlomuzica
et al., 2014). Accumulating evidence suggests that many neuro-
logical and neuropsychiatric disorders such as autistic spectrum
disorder (ASD), Alzheimer’s disease (AD) and schizophrenia (SZ)
are associated with altered epigenetic activity. For example, ASD
is associated with a decreased capacity for DNA methylation
(Wu et al., 2010; Melnyk et al., 2012). Furthermore, some of
the DNA methylation deficits in humans were recently found to
be specific to brain-regions such as the temporal cortex and the
cerebellum (Ladd-Acosta et al., 2013) that are associated with
different forms of learning and memory. Similarly, AD is associ-
ated with epigenetic alterations in DNA methylation (Mastroeni
et al., 2010) and abnormal micro-RNAs expression (Barak et al.,
2013). Altered patterns of DNA methylation in immune system
and nervous system development genes were found in PTSD
(Uddin et al., 2010; Mehta et al., 2013), and schizophrenic patients
show decreased genome-wide DNA methylation (Bonsch et al.,
2012) and altered DNA demethylation mechanisms (Dong et al.,
2012). Independently, these (and other) disorders were also char-
acterized by abnormal learning curves: for example, ASD patients
and animal models exhibit more moderate curves, (with slower
acquisition rate), even when they ultimately reach, or are close to
reach, control performance (Solomon et al., 2011; Walker et al.,
2011). Although the methylation changes associated with AD,
PTSD, and ASD have not been related to learning impairments,
we believe that it may be worthwhile testing if some of these
methylation changes influence their epigenetic learning curves.
The epigenetics of PTSD in humans and of acute psychologi-
cal stress in animal models of PTSD suggest that the epigenetic
changes may contribute to the behavioral and cognitive effects of
such psychological stresses (Yehuda and Bierer, 2009; Blaze and
Roth, 2013). We speculate that in people suffering from different
(global and trauma-specific) learning and memory impairments,
learning acquisition dynamics may be found to be abnormal, with
specific brain regions and epigenetic dynamics varying according
to the syndrome. We also predict that task-specific learning curves
that rely on different brain regions would be correlated with
distinct regional epigenetic profile abnormalities, specifically in
DNA methylation, hydroxymethylation and histone acetylation.
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Although learning impairments are only one facet of these syn-
dromes, a better understanding of the dynamics of the epigenetics
underlying them may uncover mechanisms and loci that escape
detection with more static tests. If so, changes in the epigenetic
learning curve may suggest possible novel avenues for thera-
peutic interventions by focusing on specific points in time for
manipulating brain-region-specific epigenetic states.

CONCLUSION
An overview of recent studies that investigate the involvement of
the epigenetic system in long-term learning and memory reveals
that the epigenome changes as a result of learning both at the level
of specific genes and globally, across the entire genome (Blaze
and Roth, 2013; Zovkic et al., 2013; Bronfman et al., 2014). Due
to its mnemonic-like, self-sustaining activity (Miller and Sweatt,
2007; Ginsburg and Jablonka, 2009), the state of the epigenome
can both represent neuronal history and affect future gene activ-
ity, thus bridging future and past learning. If this is indeed the
case, we predict that epigenetic learning profiles that describe the
manner by which the epigenome cumulatively changes as a func-
tion of learning will contribute to the shape of the cell’s learning
curve and to the overall learning curve of the neural networks
that are involved in learning. We suggest that this profile could
differ between tasks and brain regions and correspond to similar
differences in behavioral learning curves observed for exam-
ple in spatial learning (hippocampus) or eye-blink conditioning
(cerebellum). Future studies should therefore investigate how dif-
ferences in pattern of dynamic epigenetic change (especially DNA
methylation, histone acetylation, and global microRNA profiles)
correlate with differences in the shape of behavioral and neuronal
learning curves, identify the factors that determine the neuronal
epigenetic profiles and discover which manipulations result in
changed learning curves.

Learning and the neural plasticity underlying it are cumula-
tive and state-dependent processes. The epigenetic mechanisms
that are involved in mediating, enabling and determining these
dynamics are therefore of both theoretical and practical impor-
tance. The independent observations of abnormal learning curves
and impairments in epigenetic processes in neurological patholo-
gies such as ASD may reflect abnormal epigenetic profiles, and if
so may open up new therapeutic possibilities. The future charac-
terization of epigenetic dynamics during learning acquisition is
therefore likely to be both fascinating and useful.
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