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Reaction time has been increasingly used over the last few decades to provide information
on neural decision processes: it is a direct reflection of decision time. Saccades
provide an excellent paradigm for this because many of them can be made in a very
short time and the underlying neural pathways are relatively well-known. LATER (linear
approach to threshold with ergodic rate) is a model originally devised to explain reaction
time distributions in simple decision tasks. Recently, however it is being extended to
increasingly more advanced tasks, including those with decision errors and those requiring
voluntary control such as the antisaccade task and those where sequential decisions
are required. The strength of this modeling approach lies in its detailed, quantitative
predictions of behavior, yet LATER models still retain their conceptual simplicity that made
LATER initially successful in explaining reaction times in simple decision tasks.
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INTRODUCTION
The question of how we choose one option over another has
intrigued neuroscientists in the field of neural decision-making
for many decades. Performing one action rather than another,
say running toward a bus instead of walking, requires more than
just sensory input and a motor output. The brain has to integrate
sensory information and somehow make a decision on what is
the “best” course of action based on this information, and sub-
sequently to implement this decision as a motor response. It is
now widely believed that the brain accumulates sensory informa-
tion toward a threshold level, at which point the evidence has
become convincing enough for a certain decision to be selected
(Carpenter and Williams, 1995; Schall, 1995). Such an accumula-
tor model approach to neural decision-making has been applied
to many important features of decision behavior, yet there is still
much to be explained.

Reaction time is regarded as an experimental “window” into
decision processes. Reaction time, or latency, is composed of more
than the simple sum of times of for sensory input and motor out-
put, and it is this extra time that reflects the time taken for the
brain to choose a response. This additional processing time can
also be called neural procrastination: the brain is taking longer
than it needs to if sensory input and motor output were all that
is needed for a behavioral response. As sensory and motor times
are relatively fixed, reaction time is therefore a useful indica-
tor of decision time. In experimental paradigms, reaction time
varies between one trial and the next, even if exactly the same
experimental conditions are maintained.

Saccades are the rapid eye gaze shift movements which we
make a great number of times every day. A saccade represents the
output of a decision: a choice of where to look. They are espe-
cially useful for studying decision in the laboratory because they
are quick so many of them can be produced in a short space
of time, they have a clear sensory input (e.g., a visual stimu-
lus), and their neuronal pathways are relatively well known. It
is unsurprising, therefore, that saccades have been widely used

to produce reaction time data to give us insight into decision
mechanisms.

The neural control of saccades is mediated primarily by frontal
and parietal cortical regions, basal ganglia and the superior col-
liculus. Although decision-making for generating saccades was
thought to be cortical (Schall, 2001) more recent work sug-
gests the superior colliculus may be involved in decision-making
(Phongphanphanee et al., 2014) and a model of superior collicu-
lar activity can potentially explain express saccades (Trappenberg
et al., 2001). Races between potential decisions have also been
identified in the basal ganglia (Schmidt et al., 2013). The frontal
eye fields (FEF) in the cortex have been particularly studied
as regions for decision-making in eye movements (Pierrot-
Deseilligny et al., 2003). Neurons in these regions project directly
to brain stem structures containing ocular motor neurons so that
they can directly influence the production of saccades (Segraves,
1992; Shinoda et al., 2011). Following target appearance, there
is accumulation of movement-related activity in these regions
toward a threshold, and once the threshold is reached a saccade is
triggered (Hanes and Schall, 1996). The neuronal mechanisms for
saccadic control have been reviewed in detail elsewhere (Pierrot-
Deseilligny et al., 2004), and lesion studies in humans have been
helpful in delineating such mechanisms (Pierrot-Deseilligny et al.,
2002; Machado and Rafal, 2004; Ramat et al., 2007).

THE LATER MODEL
The variability of reaction times is an interesting phenomenon.
When plotted on a histogram, the distribution of reaction times
appears skewed. However, if we take the reciprocal of the laten-
cies and plot these in a similar fashion, the resulting distribution
appears Gaussian. This tells us that perhaps it is the reaction rate
rather than reaction time per se which is a more important reflec-
tion of the underlying decision process. A Gaussian or normal
distribution of reciprocal latencies implies that these reciprocals
have equal variability around a mean value. If reciprocal latencies
are plotted cumulatively (a reciprobit plot) then a straight lineis
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obtained (Figure 1). Such a distribution can then be explained
by a very simple and elegant model—the LATER model. It is
important to note that although saccadic reaction times have been
studied in great detail with this type of decision modeling, man-
ual reaction times to auditory or visual stimuli have also been
found to have straight line distributions much like saccades and
can therefore be modeled similarly (Carpenter, 1981; Pearson and
Carpenter, 2010).

The LATER (linear approach to threshold with ergodic rate)
model is an established model of neural decision that has been
highly successful in explaining reaction time distributions over
the last few decades. In the model, a decision signal starts from
a starting point S0 and rises toward a threshold ST—once the sig-
nal reaches the threshold, the decision is made for a particular
action. The rate at which the decision signal rises varies ran-
domly from trial to trial, but the mean rate of rise is constant
and denoted by the parameter μ. The standard deviation of this
variation in rate of rise is given by the parameter σ. One of the
main reasons LATER is so conceptually attractive for explaining
decisions is that the parameters of reciprocal reaction time distri-
butions are the parameters of the model itself—μ being the mean
rate of rise of the decision signal as well as the mean reciprocal
latency, and σ reflecting the variability in the latency distribu-
tions (Carpenter and Williams, 1995). There are, of course, many
other different kinds of accumulator race models which have been
applied to various tasks; however, these have been discussed else-
where including some attempts at comparisons between different
types of model (Usher and McClelland, 2001; Ratcliff and Smith,
2004; Bogacz et al., 2006; Ratcliff and McKoon, 2008; Heathcote
and Hayes, 2012; Heathcote and Love, 2012; Bitzer et al., 2014),
and here we will focus on LATER.

What does this rise to threshold of the decision signal imply
about the decision process? It is thought to be an accumula-
tion of sensory “evidence” for a hypothesis, and this accumu-
lation occurs in a linear fashion. Once enough evidence for a
certain hypothesis is accumulated, signified by the decision signal

FIGURE 1 | A reciprobit plot of typical saccadic latencies, in which a

straight line is obtained if reciprocal latencies are plotted on a

cumulative y-axis scale.

reaching its threshold, then this hypothesis is accepted and a
decision to respond is made (Figure 2). In this way, LATER is a
quasi-Bayesian model of decision-making and the decision signal
itself mathematically corresponds to the log likelihood ratio of
a certain choice being the correct one (Carpenter and Williams,
1995). One can easily therefore conceive many possible choices,
and the final choice out of a number of options occurs when the
decision signal for this choice reaches threshold before the deci-
sion signals representing the other options. Indeed, a simple task
with a visual target and a visual distractor was modeled by two
LATER units, one representing the target and the other the dis-
tractor, both racing against each other to threshold to determine
the response (Leach and Carpenter, 2001).

Any robust neural model must be subject to empirically
testable predictions, and the LATER model is no exception.
When reaction time distributions are plotted on a reciprobit
plot, a straight line is obtained if the reciprocal latencies follow
a Gaussian distribution. If the mean rate of rise of the decision
signal is increased, then one would predict that the latency
distribution should shift toward shorter latencies. If we alter S0 by
varying prior probability of a stimulus, then one would predict a
swivel in the latency distribution. Indeed, these predictions were
borne out in an elegant set of experiments. The mean rate of rise
was altered by changing the rate of information provision and
prior probability was altered by changing subject’s expectations of
stimulus locations—both manipulations produced the changes in
latency distributions predicted by the LATER model (Carpenter
and Williams, 1995; Reddi and Carpenter, 2000; Reddi et al.,
2003). The importance of predicting complete distributions of
reaction times as opposed to mean/median latencies or latency
quantiles lies in the fact that there can be subtleties to a full
distribution that often point to multiple decision mechanisms
and these could be missed if the distribution is not plotted in full
(Noorani and Carpenter, 2011).

LATER is a model of decision processes. Reaction time how-
ever is composed of sensory detection and motor implementa-
tion, as well as decision. When the visual targets are high-contrast
and thus easily detectable, a LATERian approach predicts reaction

FIGURE 2 | The LATER model of decision. A decision signal accumulates
information about a decision based on information supply and rises toward
threshold in a linear fashion, triggering a response when it reaches
threshold.
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times very well; but when the targets are more difficult to detect, a
random-walk model that integrates noisy afferent signals models
behavior well. Naturally, the models can be reconciled by view-
ing stimulus detection and decision as two separate processes
occurring sequentially, with stimulus detection occurring in a
random-walk fashion followed by the decision process occurring
in a LATERian manner. A model of this sort predicts reaction
time distributions over a wide range of stimulus detectability
(Carpenter et al., 2009).

EARLY SACCADES
On a small number of occasions, experimental subjects produce
saccades whose latencies are very short and do not follow the
main latency distribution. Such “early” responses form a separate
component of the latency distribution on a reciprobit plot, as a
straight line with a shallower gradient than the main component
of the distribution (Figure 3). These early responses therefore
cannot be explained by the same single LATER decision unit that
gives rise to saccades that follow the main distribution (other-
wise they would be part the same straight line on the reciprobit).
Instead, it has been proposed that these early responses are the
result of an “early” LATER decision unit, whose parameters dif-
fer from those of the main LATER unit in having a mean rate
of rise of zero but a very large σ, such that occasionally this
eccentric unit wins the race against the main unit to produce a
fast response. Simulations with such a race between these two
decision units do indeed produce latency distributions with an
early and main component mirroring real life behavior (Noorani
and Carpenter, 2011). One circumstance in which the frequency
of early responses is increased is under conditions of cognitive
distraction. This has been demonstrated experimentally when a
subject is using a mobile phone whilst performing a simple sac-
cadic task, in which there is a larger early component to the
latency distribution. Perhaps when one is distracted there is less
cortical inhibition from “higher” regions like supplementary and
frontal eye fields to more primitive neural regions controlling sac-
cades, such as the superior colliculus, allowing these maverick
early responses to win the decision race more often (Halliday and
Carpenter, 2010).

COUNTERMANDING AND GAP PARADIGMS
The situation frequently arises when one needs to cancel an
impending an action, for example stopping yourself from cross-
ing the street as a car suddenly drives past. In scenarios like this,
there must be a way of suppressing a decision signal that is itself
accumulating and about to generate a response. An established
paradigm for studying this behavior in the laboratory is called
the countermanding task. Here, a visual stimulus appears and the
subject knows they must make a saccade toward it, but sometimes
after the target appears a “stop” signal also appears indicating to
the subject that they must not make a saccade to the target. On
these “stop” trials, the developing decision to generate a saccade
must be canceled. This is called the “countermanding” task. What
is the underlying neural mechanism enabling this to be achieved?
It requires the involution of a new concept—the stop unit, a deci-
sion signal which can accumulate evidence needed for canceling a
response when a stop signal is presented. The stop unit must race
against the “go” unit, which is responsible for triggering a saccade
(Figure 4). In this way, on some trials no saccade occurs because
the stop unit wins the race, whereas on others a saccade occurs to
the stimulus when the go unit reaches threshold first (Logan et al.,
1984). Hanes and Carpenter then demonstrated that a linear rise
to threshold for stop and go processes can successfully account
for the detailed reaction time distributions in this task, with the

FIGURE 4 | The countermanding race model, in which a stop unit

competes with a go unit and the winner of the race determines the

outcome. Trials in which responses failed to be canceled despite presence
of a stop signal are accounted for by the go unit reaching threshold before
stop. Modified with permission from Noorani et al. (2011).

FIGURE 3 | A typical histogram of latencies is shown on the left, and a reciprobit plot of the same data on the right. A prominent component of early
saccades is seen in this distribution. Modified with permission from Noorani and Carpenter (2011).
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mean and variability of the rate of rise of the two types of unit will
determine the precise timing and frequency of these two types of
response. Such a simple model can robustly predict not just the
mean latencies but also (and much more importantly) the latency
distributions and incidence of stop and go responses (Hanes and
Schall, 1995; Hanes and Carpenter, 1999; Boucher et al., 2007). It
must be noted, however, that recent work suggests that stimulus
detection or perception may play a larger role in countermanding
than previous considered (Salinas and Stanford, 2013). Moreover,
countermanding is distinct from task-switching in which a new
instruction puts the old one out of date: in this case, this is likely
to occur through a functional unit to detect the new instruction
which then activates a separate LATER unit to accumulate activity
for the appropriate decision (Sinha et al., 2006).

Another interesting paradigm is the gap task, in which a cen-
tral fixation unit disappears to leave a short period in which there
is no visual stimulus before a peripheral stimulus appears. This
“gap” in between stimuli has been found to speed up reaction
times, perhaps because it provides a warning effect signaling to
the subject the impending appearance of a stimulus. This has also
been modeled by two racing LATER units, except unlike in coun-
termanding there is no stop unit but instead there is a “fixation”
unit in addition to the main saccadic unit. The fixation unit is
activated when the fixation stimulus disappears, and instead of
stopping the main saccadic unit it enhances its decision signal
allowing it to reach threshold more quickly. In this way, this model
quantitatively predicts the reaction time distributions in the gap
paradigm (Story and Carpenter, 2009).

GO/NO-GO PARADIGM
From this early work, LATER gained substantial popularity as a
model of decision-making because of its success in explaining full
reaction time distributions in simple decision tasks in such a sim-
ple conceptual manner. However, no model of decision would
be complete without being able to explain how wrong decisions
come about: people often make errors in their choices. To address
this important problem, we needed a task that would induce sub-
jects to make a large number of errors, such that the latencies of
these responses could be studied in detail to enable us to gain
insight into the underlying decision process. The go/no-go task is
an experimental paradigm in which a visual stimulus is presented
that signifies the subject to make a saccade toward it, but on some
occasions a different stimulus is presented that the subject has
been pre-warned not to respond to. Although the instructions
are clear to the subject, they still respond to the latter stimulus
sometimes—this is classed as an error, a wrong decision. How
can we make this task produce many errors? We did this by mak-
ing the two types of visual stimuli with the same shape and size,
but of different color—a red dot and a blue dot, one of which is
“correct” and one is an “error.” In this way, color is the only dis-
tinguishing feature of the two stimuli, making it rather easy for a
subject to make an error by simply responding to a novel stimulus
of the “wrong” color (Noorani et al., 2011).

The resulting latency distributions from this task are rather
distinctive (Figure 5). If the error response and correct response
distributions are plotted separately on a reciprobit plot, the two
distributions initially overlap, but after a further 60 ms or so,

the two distributions begin to diverge with the error distribution
starting to flatten off whilst the correct distribution rises further.
This can be explained by the arrival of color information in the
cortex after this extra delay, allowing the cortex to make a correct
decision of whether to respond based on the color of the stimulus.
Before this time, such information is not available to the cortex to
make an informed decision and therefore the probability of mak-
ing a correct response is the same as that of an error. A LATERian
approach to modeling these data takes us back to the counter-
manding model, wherein the stop unit is of primary importance.
The initial part of both correct and error distributions is modeled
by an “existence” unit which rises toward threshold on presenta-
tion of any visual stimulus, regardless of its color. If this reaches
threshold, a saccade will occur toward the stimulus, and this can
therefore be a correct or an error response depending on the color
of the stimulus. It will typically be a quick response, as the unit
accumulates immediately on appearance of a stimulus. However,
after another 60 ms delay when color information arrives in cor-
tex (Thompson et al., 1996; Schall and Bichot, 1998), a separate
“color” LATER unit and a stop unit activate. The stop unit has a
fast mean rate of rise, enabling it to frequently cancel the existence
unit (assuming it has not yet reached threshold), whilst the color
unit will produce a correct saccade if it wins the race (Figure 6).
This explains why the correct latency distribution in the go/no-
go task has two steep components: the first one being generated
by the existence unit, and the later part being produced by the
color unit. The stop unit ensures few errors are made after color
information arrives; hence the error distribution flattens off.

THE ANTI-SACCADE TASK
Another and perhaps more complex kind of saccadic decision task
is the anti-saccade task. Anti-saccades are saccadic eye movements
in the opposite direction to a visual stimulus. This is a much more
challenging response than a typical saccade because it requires a
subject to withhold a saccade to a novel stimulus and instead look
away from it (Figure 7). Consequently, anti-saccades are often
used as an experimental paradigm for studying behavioral con-
trol, and are increasingly being examined in clinical conditions
such as Parkinson’s disease and Alzheimer’s disease as a marker
of voluntary control (Munoz and Everling, 2004). Anti-saccades
are typically slower than normal saccades, and in this task a pro-
saccade to the visual stimulus is an error (Fischer and Weber,
1992).

Given their wide relevance, it is important to understand the
neural processes by which anti-saccades come about. A study in
monkeys using neuronal recordings demonstrated that a vector
inversion is calculated in the lateral intraparietal area after a 50 ms
delay, a necessary prerequisite for producing a movement in the
opposite direction to a stimulus (Gottlieb and Goldberg, 1999;
Zhang and Barash, 2000). Using a similar approach as for the
go/no-go task, our laboratory asked subjects to perform the anti-
saccade task and we plotted their data as separate anti-saccade
and error distributions on a reciprobit plot. The distributions for
this task are unique: the error distribution begins earlier than the
anti-saccade one and levels off earlier too. The error rate varies
greatly from subject to subject but typically is around 5–30%. A
LATER modeling approach demonstrated that a three-unit model
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FIGURE 5 | Go/no-go task reaction time distributions of correct and

error responses. Initially, the correct and error distributions overlap,
then the correct distribution rises further whilst the error one tends to

flatten at longer latencies. Simulations match the observed distributions
in all cases (p < 0.05, Kolmogorov–Smirnov test). Modified with
permission from Noorani et al. (2011).

fitted the data most accurately with the fewest free parameters,
and this was composed of an error unit that responds to the sud-
den appearance of a novel stimulus, a stop unit which acts to
cancel the developing error response, and the anti-saccade unit
which begins accumulating after a vector inversion delay of 50 ms
(Noorani and Carpenter, 2013; Figures 8, 9).

To perform an even more stringent test of this model, subjects
were asked to perform the task under varying conditions of prior
probability as this is known to affect the distributions (Koval et al.,
2004). For example, in one version of the task there was an 80%
chance of the stimulus appearing on the left and a 20% chance
of it appearing on the right. These conditions created large shifts
in the latency distributions of both correct and error responses
and also greatly affected the error rates. Just as for a simple sac-
cadic task wherein prior probability is explained by changes in
the distance to threshold of a LATER unit, it was hypothesized
that this alteration of the appropriate LATER units would account
for the changes in the observed latency distributions of the anti-
saccade task under varying conditions of subject expectation.

Indeed this was the case: altering the distance to threshold of the
decision units accurately predicted the anti-saccade and error dis-
tributions with different prior probabilities. Previous models of
antisaccades have not incorporated a stop unit (Kristjansson et al.,
2001; Cutsuridis et al., 2007). Crucially, alterations in the stop
unit’s distance to threshold were necessary to predict the large
changes in error rates when prior probability is altered, highlight-
ing the importance of the stop unit in this voluntary behavioral
task (Noorani and Carpenter, 2013).

A widely recognized observation in the antisaccade task is the
correctional eye movements that occur following an error: sub-
jects often tend to make an anti-saccade after they make an error
saccade in order to correct their mistakes (Mokler and Fischer,
1999). Corrections generally occur after the vast majority of errors
in the anti-saccade task, and they are typically quick responses.
However, how such corrections would be generated from a neu-
ral race model is not immediately obvious since the first response
in the task (error or antisaccade) is the result of a decision unit
having won the race and implying the race has ended. How can
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FIGURE 6 | LATERian model of the go/no-go task, in which there are

three competing units. The existence unit is activated by any visual
stimulus regardless of color, generally producing faster responses. The
color unit is activated when a stimulus of the correct color appears, but
there is an extra 60 ms delay before it is activated representing the time for
color information to arrive in cortex. The stop unit is similarly activated at
the same time to cancel the impending non-selective response from the
existence unit. Modified with permission from Noorani et al. (2011).

FIGURE 7 | The antisaccade paradigm. A subject is told to look in the
opposite direction to the presented stimulus.

another decision be made after the race has already finished? In
order to answer this question, the latency distributions of these
separate responses had to first be analyzed in detail. A separate
study was designed to record these new correction responses, in
addition to errors and anti-saccades, allowing the three distri-
butions to be plotted separately. The correction distribution was
seen to be shifted to later time points compared to errors and anti-
saccades, with a frequency typically slightly less than errors (after
all, most errors are corrected). Two possibilities could potentially
explain the correction distribution from the basic anti-saccade
model:

(1) Race continues after the error unit wins. If the error unit wins
and an error is thus produced, a correction can ensue if the
race is allowed continue thereby allowing the accumulating

anti-saccade unit to carry on rising toward threshold and
generate an anti-saccade. Although this is a plausible solu-
tion, this model predicts only fast corrections, so is not able to
capture the whole reaction time distribution for corrections.

(2) Race re-starts after the error unit wins. This is a novel con-
cept for race models. Instead of the race completely ending
when an error has been made, the error unit finishes the
race as expected but then the antisaccade unit re-starts from
scratch. It as if the brain knows an error has been made and
in order to correct the mistake it re-sets the antisaccade unit,
this time with no competition from the error unit. Using
the same parameters as for the basic anti-saccade model, this
new model accurately predicted all latency distributions in
detail, including that of the correction responses (Noorani
and Carpenter, 2014).

In order to re-start a race after a decision unit has won, there must
be a way of monitoring the outcome of decision races. Such an
idea is not itself a new one, for example there is some evidence
that the supplementary eye field monitors the results of decision
processes regarding eye movements (Carpenter, 2004) and this
area is thought to be important in anti-saccades (Chapman and
Corneil, 2014).

REACTION TIME AS A CLINICAL BIOMARKER
Saccades are increasingly being explored as potential novel
biomarkers of neurological and psychiatric diseases, in partic-
ular for improving diagnostic accuracy and monitoring disease
progression (Leigh and Kennard, 2004). For example, abnormal-
ities in saccadic latency have been found in Parkinson’s disease,
and these patients also have higher error rates in the anti-saccade
task (Anderson and MacAskill, 2013). Anti-saccade deficits have
been found in patients with Huntington’s disease too (Peltsch
et al., 2008). LATER models of the basic saccadic step task and
the increasingly complex types of saccadic task promise to be
helpful in improving analysis and interpretation of eye move-
ment deficits in such neuropsychiatric diseases (Antoniades et al.,
2010). The main advantage of the models presented in this review
is that they have been grounded in detailed quantitative predic-
tions of full reaction time distributions: a very stringent test of
any decision model. This promises to be useful when applied to
reaction time distributions to patients with these conditions, in
which mean latencies and other task parameters are abnormal,
as it will allow correlation of task deficits with model parameters.
Indeed, a recent international consensus has been reached regard-
ing an optimal protocol of the anti-saccade task for use in clinical
research (Antoniades et al., 2013).

CONCLUSIONS AND FUTURE DIRECTIONS
The use of saccades in neural decision research has proved a
very useful approach. In particular, simulating complete reac-
tion time distributions has been a triumph of the LATER models
of decision, which in recent years has been applied to increas-
ingly complex tasks including the go/no-go and antisaccade
tasks. Given their simplicity, LATER models have proved use-
ful for conceptualizing advanced decision processes. Clinical
research is beginning to incorporate saccadic latency as a poten-
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FIGURE 8 | Three-unit antisaccade model. The pro-saccade unit is turned on by appearance of a stimulus. After a further 50 ms (time taken for vector
inversion in the lateral intraparietal area), the stop and antisaccade units are activated. This model can therefore produce errors and antisaccades.

FIGURE 9 | Antisaccade and error distributions (observed and predicted), demonstrating that the three unit-unit LATER model for antisaccades can

quantitatively predict reaction time distributions in this complex task. Modified with permission from Noorani and Carpenter (2011).

tial biomarker for neuropsychiatric disease. Recent research has
excitingly begun to provide insight to how decisions with mul-
tiple options are generated, with evidence suggesting that this
may involve a race between different neural pathways (Schmidt

et al., 2013), rather like the way in which the LATER model
has been applied to explain behavioral data in such decision
tasks. Emerging work is also beginning to directly link neuronal
activity with parameters of accumulator decision models (Purcell
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et al., 2010, 2012). Challenges of the future will be to correlate
LATERian predictions with neuronal activity by direct neuronal
recordings in order to demonstrate where and how such decision
processes occur in the brain. We have seen how complex tasks
can be modeled with multiple LATER units representing differ-
ent possible response options, and it is likely that these units can
be correlated with groups of neurons in the known oculomotor
regions whose activity represent developing decisions.
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