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Because the environment is cluttered, objects rarely appear in isolation. The visual
system must therefore attentionally select behaviorally relevant objects from among many
irrelevant ones. A limit on our ability to select individual objects is revealed by the
phenomenon of visual crowding: an object seen in the periphery, easily recognized in
isolation, can become impossible to identify when surrounded by other, similar objects. The
neural basis of crowding is hotly debated: while prevailing theories hold that crowded
information is irrecoverable — destroyed due to overintegration in early stage visual
processing — recent evidence demonstrates otherwise. Crowding can occur between
high-level, configural object representations, and crowded objects can contribute with
high precision to judgments about the “gist” of a group of objects, even when they are
individually unrecognizable. While existing models can account for the basic diagnostic
criteria of crowding (e.g., specific critical spacing, spatial anisotropies, and temporal tuning),
no present model explains how crowding can operate simultaneously at multiple levels
in the visual processing hierarchy, including at the level of whole objects. Here, we
present a new model of visual crowding—the hierarchical sparse selection (HSS) model,
which accounts for object-level crowding, as well as a number of puzzling findings in the
recent literature. Counter to existing theories, we posit that crowding occurs not due to
degraded visual representations in the brain, but due to impoverished sampling of visual
representations for the sake of perception. The HSS model unifies findings from a disparate
array of visual crowding studies and makes testable predictions about how information in
crowded scenes can be accessed.
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INTRODUCTION

Peripheral vision is not what it seems. Despite the subjective expe-
rience of seeing rich detail throughout the visual field, if we are
pressed to report the identity of one individual object among oth-
ers in the periphery, we are very often unable to do so due to the
phenomenon of crowding (Levi, 2008; Figure 1). Crowding occurs
when an object appears among clutter; we lose individual access
to the identities of objects spaced too closely together. Access to
individual objects is replaced with access to textures of objects —
we have an impression of the kind of “stuff” that occupies different
regions of space, but no awareness of individual items (Cavanagh,
2001; Tyler and Likova, 2007; Balas et al., 2009; Greenwood et al.,
2009; Freeman and Simoncelli, 2011). Crowding imposes a fun-
damental limitation on our ability to identify objects in everyday
life (Whitney and Levi, 2011).

Yet there is another sense in which our visual experience in the
periphery is misleading: the experience of crowding seems to imply
that the brain simply lacks the bandwidth to represent individual
objects outside of those that we scrutinize at the fovea; indeed,
nearly all current models of crowding posit that the experience
of crowding reflects an underlying irreversible loss of information
due to a visual processing bottleneck (He etal., 1996; Levi, 2008;
Pelli, 2008; Balas etal., 2009; Greenwood etal., 2009; Freeman

and Simoncelli, 2011; Nandy and Tjan, 2012). However, emerg-
ing research shows that much more information survives in the
periphery than previously thought, albeit sometimes outside the
reach of conscious awareness. One clue comes from the fact that
we can readily recognize objects that require configural processing,
such as faces, when we see them in the periphery (McKone, 2004;
Louie etal., 2007), despite the fact that the features of a face in the
periphery crowd each other (Martelli etal., 2005). How does the
brain reconstruct the arrangement of the features of a face after
those features have been jumbled together? That crowding hap-
pens at many different representational scales, occurring between
basic features (Levi, 2008), object parts (Martelli etal., 2005),
and whole objects (Louie etal., 2007; Farzin etal., 2009; Wal-
lace and Tjan, 2011), is paradoxical if crowding at early stages of
visual processing destroys the information required by higher-level
stages.

We recently directly tested the degree to which object-level
information can survive crowding for use in subsequent visual
processing (Fischer and Whitney, 2011). We presented sets of faces
in the periphery and asked observers to report either the expres-
sion of an individual (crowded) face from the set, or the average
expression of the set as a whole. We found that even for sets of faces
where observers were at chance in discriminating the expression
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FIGURE 1 | Visual crowding. (A) When fixating the penny on the left in the
upper panel, the center object on the right is difficult to identify, although it
is clear that something is present in the center. In the lower panel, in the
absence of surrounding clutter, identifying the same object at the same
eccentricity is much easier. Crowding impairs the ability to recognize (but
not the ability to detect) objects amidst visual clutter. (B) Faces crowd each
other. While fixating the orange dot in the upper panel, it is relatively
difficult to recognize the identity of the central face due to crowding from
the flanking faces. In the lower panel, in the absence of flanking faces, the
central face is easier to identify. Crowding between faces is not simply due
to crowding of low-level features such as edge information — inverting or
scrambling the flanking faces, which preserves low-level features but
disrupts holistic face information, reduces crowding between faces (Louie
etal., 2007; Farzin etal., 2009; Fischer and Whitney, 2011).

of the crowded face that particular face contributed with high pre-
cision to the perceived average of the set, an effect that cannot be
explained by a contribution of low-level features alone. Individ-
ual object information is not lost amid the clutter in the crowded
periphery, it is simply inaccessible to perception. In support of
these findings, another recent study found that illusory contour

formation, a process that relies on the configuration of the inducer
stimuli, can also survive crowding of the individual inducers (Lau
and Cheung, 2012) [but see (Banno and Saiki, 2012) for data sug-
gesting that size information does not survive crowding]. Further,
crowded objects can unconsciously influence behavior by priming
subsequent responses (Faivre and Kouider, 2011; Yeh etal., 2012)
and biasing preferences (Kouider etal., 2011).

Thus, a satisfactory theory of crowding must account for not
only for the perceptual degradation that crowding produces, but
also for how certain information survives crowding and can con-
tribute to downstream processes. The most prominent current
models of crowding posit that crowding results from excessive
integration of information appearing in the periphery, due to
the number of neurons representing a given location in space
(Pelli, 2008; Pelli and Tillman, 2008), lateral connections shaped
by image statistics during development (Nandy and Tjan, 2012),
or the resolution of visual attention (He etal., 1996). Some
over-integration models can successfully account for most or
all of the classical properties of crowding, but all posit infor-
mation loss due to a resolution bottleneck, and thus cannot
explain how crowded visual features or objects can be avail-
able with high fidelity to downstream processes. Another related
model of crowding, the positional averaging model (Greenwood
etal., 2009), posits that crowding results from pooling position
information to reduce positional uncertainty. Positional aver-
aging may also account for object-level crowding (Dakin etal.,
2010), but it still posits information loss, and cannot account
for how holistic object information survives crowding and influ-
ences ensemble perception (Fischer and Whitney, 2011). Thus,
while the general idea of involuntary pooling captures many
aspects of crowding and likely plays a role, over integration is
not the whole story. Other models of crowding, including sub-
stitution (Wolford, 1975; Chastain, 1982) and contrast-gain or
masking based models (Krumhansl and Thomas, 1977; Chas-
tain, 1981; Petrov and Popple, 2007) are not more successful;
they similarly require that information about crowded objects
is lost or substantively modified, a prediction that has been
overturned (Faivre and Kouider, 2011; Fischer and Whitney,
2011; Kouider etal., 2011; Lau and Cheung, 2012; Yeh etal.,
2012).

Here we propose a new model of visual crowding, the hierar-
chical sparse selection (HSS) model, in which unconscious object
processing continues unencumbered by clutter in the scene. Our
model accounts for the known characteristics of crowding, and
generates several predictions for future tests (Box 1).

THE HIERARCHICAL SPARSE SELECTION MODEL OF VISUAL
CROWDING

Our proposed model rests on two principles. First, large receptive
fields or integration regions do not imply the loss of fine-scaled
information. While it is true that the output of a single neuron
with a large receptive field will carry highly integrated, spatially,
and featurally ambiguous information in the presence of visual
clutter, a population of many such neurons can carry sufficient
information to resolve details on a scale far smaller than the recep-
tive field size. Indeed, the feature or object at a precise location
can be isolated from amongst clutter by combining the outputs
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BOX 1| HSS model predictions.

The HSS model makes a number of concrete predictions at both
the behavioral and neural levels for future testing:

(1) The HSS model predicts that crowded stimuli are represented
robustly in the brain even though they are blocked from
conscious individuation. Thus, it should be possible with both
fMRI pattern analysis and neurophysiological recordings to find
precise representations of crowded objects in the brain.

(2) The HSS model predicts that the critical spacing of crowding
is different for different stimulus categories (e.g., gratings,
faces, bodies, objects, etc.) because crowding is a function of
receptive field size within the cortical map in which the stimulus
is represented. There is already some evidence that critical
spacing differs across stimulus categories [see (WWhitney and
Levi, 2011) for a review], but the spatial extent of crowding
has not yet been precisely characterized for a wide variety of
stimuli, nor has there been a test of the relationship between
receptive field size and the extent of crowding across stimulus
categories.

(3

In the HSS model, precise information about crowded objects
persists in the visual processing stream despite the perceptual
experience of crowding. Thus, information about crowded
targets may be available to other processes in addition to
ensemble perception and priming. For example, action may not
suffer from crowding as much as perception (Bulakowski etal.,
2009).

@

A prediction of the HSS model is that with extensive experience
viewing a particular stimulus category at a particular position in
the visual field, it may be possible to reduce crowding through
training. If information about a crowded target is present but
requires fine-tuned connections to decode, it may be possible
to train up the required connections. However, such training
should not transfer to other sufficiently different stimulus
categories even at the same spatial location because crowding
depends on connections to the particular map that the stimuli
are represented in. There is indeed evidence that training can
reduce the strength and extent of crowding (Wolford etal.,
1988; Chung, 2007; Hussain etal., 2012), but the specificity
of the reduced crowding to object category remains to be tested.

of many highly overlapping receptive fields, as has been described
in detail in the ensemble- and coarse-coding literature (Eurich
and Schwegler, 1997; Pouget etal., 2000; Purushothaman and
Bradley, 2004), and large receptive fields may in fact be a more
efficient means of carrying fine spatial information than small
receptive fields (Baldi and Heiligenberg, 1988; Snippe and Koen-
derink, 1992; Eurich and Schwegler, 1997). Figure 2A depicts this
concept: neurons tuned to facial features have receptive fields
that cover many features at once for a face seen in the periph-
ery. Each individual neuron signals ambiguous information about
the features present at a given location, yet with a proper decod-
ing scheme, a combination of the outputs of many neurons can
resolve the feature present at a given location. Thus, object pro-
cessing can proceed unencumbered by clutter given precise enough
wiring from one stage to the next. This notion is consistent with
the fact that higher-level visual areas that are closely tied to the

perception of object identity and position (Williams et al., 2007;
Fischer etal., 2011; Maus etal., 2013) have large receptive fields
even in central vision (Raiguel etal., 1995; Amano etal., 2009),
yet we can resolve and identify closely spaced objects in central
vision.

If high-fidelity information can be transmitted through a neu-
ral system with large receptive fields, why does crowding occur?
The second component of our proposal is that while the feed-
forward cortical object processing hierarchy possesses the copious
and fine-tuned connections necessary to resolve the relevant fea-
tures at every stage, the operation which “reads out” selected cells’
outputs to conscious perception does not. Key to this notion is
that within a coarse coding framework, unambiguous features and
objects need not be explicitly represented by individual neurons
at any stage of processing. Rather, information about an individ-
ual visual feature is encoded across a population of cells, and this
information is decoded between stages of processing by the pre-
cise pattern of connections between neurons in one stage and the
next. In the example in Figure 2, no single neuron at the facial
feature processing stage unambiguously represents the nose, nor
does any single neuron at the face identification stage. However,
the presence of the nose at its precise location is conveyed between
the facial feature processing and face identification stages by a spe-
cific and finely tuned pattern of connections. If the selection of
information from a given map for perception relies on connec-
tions to a subset of the units in this map (a “sparse selection”),
there may be insufficient information available to unambiguously
decode the selected feature (Figure 3B). Thus, it is only possi-
ble for an observer to perceptually individuate an object when it
can be unambiguously decoded from this limited sparse selection
of the information in the neural population representing it, and
this requires that the object is sufficiently separated from the clut-
ter around it. However, object processing carries on regardless of
whether this condition of sufficient separation is met (Figure 3C).
It is important to differentiate sparse selection from the unrelated
notion of sparse coding. Here, by “sparse selection” we mean capi-
talizing on information from a limited and sometimes insufficient
number of units, whereas “sparse coding” refers to a sufficient cod-
ing scheme that favors having the smallest number of active units
possible.

Why would perceptual selection only sample a subset of the rel-
evant information available for resolving objects in the periphery?
There are two likely reasons: First, attention must be highly flexi-
ble, able to select any feature from any position in the visual field.
The number of connections required to perfectly sample infor-
mation from any visual map in the brain is prohibitive. Putative
attentional regions in the fronto-parietal network (Corbetta et al.,
1993; Buschman and Miller, 2007) and the pulvinar (Petersen et al.,
1987; Fischer and Whitney, 2012) possess widespread connectiv-
ity throughout the brain, but connect with only a subpopulation
of the cells in a given brain region (Curcio and Harting, 1978;
Schall etal., 1995; Kaas and Lyon, 2007). Second, the integrated
ensemble information that we perceive in the periphery is useful
for providing a rapid gist of the scene (Oliva, 2005), as well as
guiding attention and saccades (Torralba etal., 2006). Trading off
individual object information for ensemble representations in the
periphery might be a benefit rather than a hindrance.
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FIGURE 2 | The HSS model of visual crowding. Unambiguous information
about features or objects is passed between processing stages via an
ensemble- or coarse-coding scheme, using a sufficient number of receptive
fields with dense connections to avoid information loss through
overintegration (A). Perceptually accessing an object from a given map

relies on a sparse selection of a subset of the receptive fields or
connections from that particular map only, resulting in the read-out of an
ambiguous conscious percept (B). Thus, an object that is perceptually
crowded can nonetheless be passed, intact, to a subsequent texture
processing stage (C).

Importantly, our proposal is not that crowding results from the
same limit on the spatial resolution of attention proposed by He
etal. (1996). Their model asserts a smallest area of the visual field
over which attention can operate; our model is about the spar-
sity of sampling within that region. Attentional sampling could
be highly spatially specific, yet if attention samples from a limited
number of receptive fields at the selected location, the object at
that location cannot be resolved. Further, the sparse selection we
propose can happen at any level of processing and is not limited
by a single resolution of attention. It is the size of the recep-
tive fields at a specific level of analysis, coupled with a sparse
sampling of the information represented at that level of analy-
sis for perceptual access that causes crowding. The HSS model
predicts that the critical spacing for crowding (the maximum dis-
tance at which a flanker can be positioned from the target and
still cause crowding, as a function of eccentricity) differs for dif-
ferent stimulus classes (see Discussion), whereas the attentional
resolution model predicts a single critical spacing for all stim-
uli based on the smallest possible attentional window at a given
eccentricity.

COMPUTATIONAL MODEL
To test the outcome of drawing a sparse sample from coarse-
coded visual information, we constructed a computational model

aimed at decoding crowded visual features based on the output of
randomly tiled receptive fields.

Model construction

The display images were 101 x 101 pixel images consisting of white
symbols drawn on a black background (Figure 3A). There were
three possible symbols: a triangle, an X, and a circle, each drawn
within a 20 x 20 pixel area in the images. In all display images, one
symbol was placed at the center of the image; this center symbol
was the crowded item that the model aimed to decode. In training
images, two additional random symbols (flankers) were placed at
random locations within the image; the training set comprised 120
such images — 40 images with a triangle at the center, 40 images
with an X at the center, and 40 images with a circle at the center.
Model testing was conducted on an independent set of 60 images
constructed in the same fashion for basic model testing or with
the flankers placed at specific locations for testing of asymmetries
and substitution errors (described below).

The model consisted of receptive fields tiled over the image
space (the input layer) whose outputs were fed into a neural net-
work with one 10 unit hidden layer and a 3 unit output layer
(Figure 3B). On each iteration of model training and testing, we
tiled 24 receptive fields over the image space in random loca-
tions. Receptive fields had a mean diameter of 50 pixels. The
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FIGURE 3 | Computational model results. (A) Example display for model
training and testing. One symbol (the target item) was positioned in the
center of the image, and two other randomly selected symbols (flankers)
were positioned in random locations elsewhere in the image. (B) Schematic
depiction of the neural network decoding model. Twenty-four receptive fields
were tiled in random locations over the image. RFs had random tuning
functions, but an equal number of RFs were optimally tuned to each of the
three symbols (8 RFs optimally tuned to each of circles, triangles, and Xs).
The model contained a ten unit hidden layer and a three unit output layer.
Each node in the hidden layer was connected with each of the 24 RFs, and
with each of the three nodes in the output layer. The three output layer nodes
corresponded to the three symbols, and stimulus decoding was determined
by taking the maximally responsive node in the output layer in a
winner-take-all fashion. (C) Comparison of performance for the full model vs.
the sparse selection model. While the full model classified the target symbol
with high accuracy (90.4% correct) despite the presence of flankers (blue
data), classification performance of the sparse selection model decreased
monotonically as more connections were removed (red data). Thus, although
fine-scaled information can be decoded from a population of neurons with
large receptive fields, robust decoding of crowded stimuli relies on a full
sampling of the information present in the neural population. (D) RF scaling
with eccentricity yielded the inner-outer asymmetry characteristic of visual
crowding. We tested the model performance using images with one flanker
positioned either on the foveal side of the target symbol (here shown to the
left of the target symbol) or on the eccentric side of the target symbol.
Classification was significantly worse when an outer flanker was present vs.
an inner flanker (p < 0.001), mirroring effects found in human performance
(Bouma, 1973; Petrov etal., 2007). (E) Using the same test images as those
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used to test the innerouter asymmetry, we found that when the model
made a classification error, it was significantly more likely to report the
flanker as the target than to report the symbol that was absent from the
display (p < 0.001). This is consistent with human performance; observers
frequently substitute a flanker for the target in a crowded display (Wolford,
1975; Chastain, 1982). (F) We varied RF ellipticity in the model from 1.0
(circular) to 0.5 (half as tall as wide). For each value of RF ellipticity, we
tested model performance with images in which flankers were positioned
either to the left and right of the target (LR flankers; positioned along the
radial dimension relative to the fovea) or above and below the target (AB
flankers; positioned along the tangential dimension). WWe computed the ratio
of performance when AB flankers were present to performance when LR
flankers were present as a measure of radial bias in model performance.
Radial bias increased monotonically as RFs became more elliptical,
demonstrating that asymmetrically shaped RFs are a plausible source of the
radial bias in crowding. However, the validity of the HSS model does not
hinge on elliptical RFs. Other potential sources of the radial bias in crowding
such as saccadic influences on the development of lateral connections
(Nandy and Tjan, 2012) could be similarly integrated into the HSS model. (G)
A visualization of the crowding zone based on the neural network model
performance (the region of space around the target within which the
presence of a flanker crowds the target). The white cross marks the location
of the target; model performance was tested with a single flanker positioned
at every possible location within the display. Here, we expanded the size of
the display space by 50% relative to previous tests of model performance in
order to visualize the full extent of the crowding zone. The visualized
crowding zone is reminiscent of the elongated spatial interaction zones found
by Toet and Levi (1992).
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left side of the image was treated as being more foveal and the
right side of the image more eccentric, such that the image rep-
resented a patch of the right visual field. Receptive field size
scaled linearly with eccentricity with a slope of 0.7, consistent
with the scaling in extrastriate object-selective cortical regions
(Amano etal., 2009). Each receptive field was preferentially tuned
to one of the three symbols but responded to some degree to
each of the symbols. The response of a receptive field was com-
puted by convolving a filter (a 20 x 20 image of the symbol
that the RF was maximally tuned to) over the entire image and
then taking the maximum of the convolution output within the
region of the display image that the RF covered. Thus, when
the optimal stimulus was present anywhere within an RF, the RF
response was 1.0; if the preferred stimulus was partially within
the receptive field or a non-preferred stimulus fell within the
receptive field, the response was less than 1 but greater than 0.
We applied a rectification that mapped negative convolution val-
ues (possible if two stimuli fell close together within the RF)
to 0. If no stimulus fell within a receptive field, its response
was 0.

The set of 24 receptive fields comprised the input layer to
the neural network; each RF had a connection to each of
10 units in the hidden layer, and each unit in the hidden
layer had a connection to each of 3 units in the output layer
(Figure 3B). The three output layer units corresponded to the
three stimulus categories; stimulus decoding was determined
in a winner-take-all fashion on the three output units. Train-
ing of the model weights was conducted with scaled conjugate
gradient backpropagation implemented with the Matlab Neu-
ral Network Toolbox (MathWorks, Natick, MA, USA). Model
performance was then taken as the proportion of 60 indepen-
dent test images correctly classified by the model. We conducted
1,000 iterations of model training and testing, randomizing the
stimuli, RF locations, and RF tuning on each iteration, and
we report the average model performance across all iterations.
To test the significance of the model performance, we gener-
ated an empirical chance distribution by shuffling the stimulus
labels prior to model training, then testing on an independent
set of images with the correct labels. Repeating this shuffling
procedure 1000 times produced a distribution of performance
estimates that would be expected by chance; the significance
of the model performance was taken as the proportion of the
chance distribution that was larger than the actual estimated model
performance.

To test whether the same model predicts crowding at the
fovea, we adjusted the overall display size to 61 x 61 pixels from
101 x 101 pixels to keep target, flankers, and receptive fields
within a smaller eccentricity range and closer to the fovea. The
same three images were used (white circle, X, and triangle on
black background) at the same sizes as before (20 x 20 pixels
each). The target was presented in the center of the display image
with two flankers randomly placed in non-overlapping positions.
The number of receptive fields in the model was increased from
24 to 45. This increase combined with the reduction in over-
all display image size lead to an increase in RF density (ratio
of number of RFs to pixel area) by a factor of 5, consistent
with an estimate of cortical magnification from V1 (Sereno etal.,

1995; Engel etal., 1997; Qiu etal., 2006) assuming target eccen-
tricity of 5° in the previous model and 1° or less in the foveal
model. This is a conservative estimate because cortical magnifi-
cation is greater in extrastriate visual cortex than in V1 (Harvey
and Dumoulin, 2011), and object crowding likely occurs beyond
V1 (Farzin etal., 2009; Whitney and Levi, 2011). The remainder
of the model was left unchanged: we used 10 hidden units, 120
training images, and 60 test images to run 1000 iterations of the
model.

Finally, in order to further illustrate and clarify the hierarchi-
cal nature of the model, we present simulations of performance
on two additional tasks, identifying either features or an object
constructed from those features, using the same feature-tuned
receptive fields in the input layer. In these simulations, there were
two possible tunings for receptive fields, a horizontal line and a ver-
tical line. The display images were again 101 x 101 pixel images
with a target at the center. For the feature task, the target and
flankers were either a horizontal or vertical lines. For the object
task, the receptive field tuning remained the same, but the target
and flankers consisted of “tumbling Ts”: the letter T oriented in
one of the four cardinal directions. The size of the receptive fields
was reduced to an average of 20 pixels diameter and the number
of receptive fields was increased to 48, modeling a region with
selectivity for lower-level features. All other aspects of the model
were identical to the original implementation and we tested the
model by performing 1000 iterations with randomized target and
flanker identities, flanker locations, and receptive field locations
within the 101 x 101 display image.

Model performance

Target shape decoding performance was 90.4% correct, signifi-
cantly greater than chance (chance performance = 33.3% correct;
p < 0.001). This result establishes that target identity in a cluttered
array can be resolved from the pooled output of a population
of RFs, even when no individual RF is small enough to encom-
pass the target alone. To test the effect of sparse sampling from
the simulated neural population, we repeated the above analy-
sis, this time removing a portion of the receptive fields from the
network and then retraining (assigning new connection weights)
after the removal of units and prior to testing. This procedure
simulates the case where decoding of stimuli for conscious per-
ception relies on a network of connections entirely distinct from
that of feed-forward processing, connected to a sparsely selected
subset of units. The results of this analysis are shown in Figure 3C:
reducing the number of units sampled for the readout of the
crowded central target led to a monotonic decrease in model
performance, with performance dropping to 90% of the full
model performance when 85% percent of the input units were
sampled. Removing a portion of the receptive fields from the
trained network without retraining prior to testing (simulating
the case where attentional selection taps into the same network
that robustly represents the target identity, but only has access
to a subset of the units in the network) produced a compara-
ble pattern of results. Similarly, removing individual connections
rather than entire RF units from the model also resulted in a
monotonic decrease in performance, though at a slower rate
than removing entire receptive fields. The principle of “sparse
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selection” therefore holds irrespective of whether it is entire units
or individual connections between units that are selected. In short,
decoding target identity from a population of cells requires con-
nections with a sufficient proportion of the cells to resolve those
stimuli that are spaced closer together than the size of a receptive
field.

We next asked if model performance followed the well-
established property of inner-outer asymmetry: a flanker pre-
sented in a more eccentric location relative to the target produces
stronger crowding than a flanker presented at the same dis-
tance from the target but in a more foveal position (Bouma,
1973; Petrov etal., 2007). To test for an inner—outer asymme-
try, we trained the model in the same fashion as above, but
tested on images with just one flanker, positioned either 25 pix-
els to the left or 25 pixels to the right of the target. In this
case the flanker was not allowed to be the same symbol as the
target; thus, there were 12 total images in the test set. The
sparse selection model for this and subsequent tests was gener-
ated by dropping a random selection of 50% of the RFs in the
full model post-training. A comparison of model performance
for test images where the flanker was more foveal than the tar-
get (positioned to the left) vs. the images where the flanker was
more eccentric revealed an asymmetry in line with psychophysical
results: the presence of an eccentric flanker yielded significantly
worse model performance (p < 0.001; Figure 3D). This asym-
metry was absent without sparse selection — the inner/outer
asymmetry emerges from the model as a result of the inter-
action between receptive field eccentricity scaling and sparse
selection.

Another well-established aspect of crowding is that when
observers make errors in reporting a crowded target, they report
a flanker rather than another potential symbol with above-chance
frequency [substitution errors; (Wolford, 1975; Chastain, 1982)].
Using the same set of test images as described above for testing the
inner—outer asymmetry, we asked whether the model more com-
monly reported the flanker, rather than the third symbol which
was not present in the display, when it made an error. This was in
fact the case: 70.4% of errors arose from reporting the flanker as
the target, rather than reporting the symbol that was not present
(Figure 3E).

In behavioral tests, flankers positioned radially in relation to
the target (e.g., to the left and right of the target for a target
appearing on the horizontal meridian) crowd more strongly than
flankers positioned tangentially (above and below the target in
the same example), an effect known as a radial bias (Toet and
Levi, 1992). A simple addition to our model could account for
the radial bias in crowding: if receptive fields are elliptical rather
than circular (Motter, 2009), elongated in the radial direction,
a radial bias emerges in the model performance. We tested this
effect by using test images with two flankers either 25 pixels to
the left and right of the target or 25 pixels above and below the
target. We then varied the ellipticity of the receptive fields in the
model from 0 (perfectly circular) to % (half as large in the vertical
direction as in the horizontal direction). The relative performance
for test images with left/right flankers vs. images with up/down
flankers decreased monotonically with increasing RF ellipticity.
That is, the radial bias in model performance increased with

more elliptical RFs, and was significant (a significant departure
(p < 0.05) from a left/right vs. upper/lower performance ratio of
1, which reflects no bias) with ellipticity values of 0.8 or smaller
(Figure 3F).

There is strong evidence for elliptical receptive fields through-
out the visual processing stream in mammals, for example in
V4 of rhesus monkeys (Motter, 2009), in macaque ventral visual
areas (Op De Beeck and Vogels, 2000; Pigarev etal., 2002), in
areas 7, 2la, and claustrum of cats (Sherk and LeVay, 1981;
Rodionova etal., 2004) and in RF subregions in mouse visual
cortex (Smith and Hiusser, 2010). As such, it is important to
incorporate elliptical receptive fields in a computational model
of crowding in ventral cortical regions. Ellipticity is one pos-
sible explanation for the radial bias in crowding, and it would
dovetail with the aforementioned neurophysiological literature.
However, there are other potential contributors to the radial bias
in crowding such as saccadic influences on the development of lat-
eral connections (Nandy and Tjan, 2012) that could be similarly
integrated into the HSS model. Even without elliptical recep-
tive fields, cortical magnification factor in the random placement
of the RFs and eccentricity-dependent size scaling introduced
some radial bias into our model. Our model does not hinge on
any particular mechanism for the production of a radial bias;
rather, the HSS model can be thought of as a module that can
be added to many current models of crowding in order to extend
them to account for how high fidelity information can survive
crowding.

Next, we generated a visualization of the spatial extent of
crowding produced by the HSS model (Figure 3G). We used
training and test images that were 150% of the size used in pre-
vious model testing (now 151 x 151 pixels); symbols were still
20 x 20 pixels. To accommodate the larger display image space,
we increased the number of RFs in the model to 48, and the num-
ber of training images to 240. The ellipticity of RFs in the model
was set to 0.5. On each of 100 iterations, we trained the model
using the 240 training images (each had a target at the center of
the image and two randomly positioned flankers), and then tested
the model performance on a series of test images in which a flanker
was positioned at every possible location in the display image. For
each possible flanker location, there were six test images corre-
sponding to all pairings of one symbol type as the target and a
different symbol type as the flanker. Within a given flanker loca-
tion, overall model performance was the % of the six test images
correctly classified. In Figure 3G, the color at a given location in
the image corresponds to the model performance when a flanker
was positioned at that location and a target was positioned at
the center of the image. The performance shown in Figure 3G
is average performance over 100 iterations. The resulting visu-
alized “crowding zone” is reminiscent of the elongated spatial
interaction zones found by Toet and Levi (1992), and addition-
ally shows an inner/outer asymmetry: the region within which a
flanker degrades performance extends further into the periphery
than toward the fovea.

Evidence for whether crowding occurs in central vision is mixed
(Levi, 2008), but crowding is generally thought to be at least weaker
near the fovea than in the periphery. Our foveal model (Figure 4A)
with a modest increase in RF density and a bias toward locating RFs
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FIGURE 4 | Computational model results for fovea and feature tuning. discrimination task (91.06%) in the presence of flankers (solid lines).
(A) Comparison of performance for the full model vs. the sparse selection Sparse selection of feature-tuned receptive fields leads to a monotonic
model at the fovea. Increased receptive field density yields higher full decrease in performance and crowding of features (dashed blue), showing
model performance than in the periphery (98.18%). Sparse selection of that the model predicts crowding at any behaviorally relevant level of
receptive field units leads to a much smaller performance decrease processing. Sparse selection occurs at only in the perceptual readout from
demonstrating reduced crowding in the fovea. Increased receptive field one level and not in the information passed between levels, avoiding the
density in foveal regions can reduce or eliminate the effect of sparse degradation of object level encoding that would occur if object
selection. (B) Demonstration that feature-tuned receptive fields can representation depended on the sparse selection of features (shown in
perform well on both a feature discrimination task (98.73%) and an object dashed red).

at lower eccentricities in accordance with the V1 cortical magnifi-
cation factor (Sereno etal., 1995; Engel et al., 1997; Qiu et al., 2006)
showed higher overall target identification performance, correctly
identifying a target in 98.18% of trials, significantly greater than
chance (chance performance = 33.3% correct; p < 0.001). Fur-
thermore, performance in the foveal model required removing
75% of the RF units to reach 90% of the full model performance,
20% more than the peripheral model and equivalent to a 44%
reduction of the RFs remaining in the peripheral model. We do
not, however, want to stress too strongly the specific values we
obtain. The parameters used here reflect extrapolations of corti-
cal magnification and receptive field scaling into the most foveal
portion of the human visual field, which affect the performance
of the model. Rather, the results should be taken to qualitatively
show that increased density of receptive fields and reduction of the
size of the receptive fields could explain why sparse selection at the
fovea would not result in crowding or would cause much weaker
crowding than in the periphery.

Finally, to demonstrate the hierarchical aspect of the model, we
conducted a simulation of crowding performance using feature-
tuned receptive fields, as opposed to objects or letters. In order
to show that the model predicts crowding for features as well
as objects, we first trained and tested the model with target and
flankers that were horizontal and vertical lines (Figure 4B). Overall
model performance was 98.73%. The model dropped below 90%

of full model performance (88.86%) when 75% of the receptive
fields were removed before retraining, indicating that crowd-
ing would occur in the identification of horizontal and vertical
lines, if there were sparse selection of feature-level information, a
simple task and only 2AFC as opposed to the 3AFC tasks in pre-
vious simulations. This demonstrates the hierarchical aspect of
the model: the model can account for crowding of both features
and whole objects when it is applied at any behaviorally relevant
level.

The HSS model states that attention sparsely selects from the
behaviorally relevant level of the visual hierarchy (Figure 2B),
not that there is a cumulative effect of sparse selection at each
level of the hierarchy. To show why, we trained the full model
of this same network with feature detector receptive fields to
identify “tumbling Ts” at a surprisingly high 91.06% correct per-
formance (Figure 4B). This is a 4AFC task where every target
and flanker contains both of the possible features that any given
receptive field is tuned to and only relative location informa-
tion is useful for the task. At 75% removal of feature tuned
receptive fields, enough to cause crowding of features, “tum-
bling T” performance dropped to 66.6% correct. This scenario
shows what would happen if degraded feature information was
passed forward to subsequent visual processing stages — object-
level information would be severely degraded. This contradicts
many studies that have demonstrated that object level information
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gets through the bottleneck of crowding (Fischer and Whitney,
2011). That is, if sparse selection occurred cumulatively at each
level in the hierarchy (which is not what we are proposing), it
would suffer from the same weaknesses as other crowding models:
it could not account for the preservation of object information
evidenced by object ensembles, priming, and other effects (Faivre
and Kouider, 2011; Kouider etal., 2011; Lau and Cheung, 2012;
Yeh etal., 2012)

Because the HSS model of crowding posits that sparse selection
occurs only at the behaviorally relevant level of representation
(selection occurs at the feature level of representation when the
task is to identify a crowded feature and at the object level when the
task is to identify the object), the object representation is preserved
in the full feed-forward hierarchy. Crowding can still occur at
either level through a sparse selection of either feature or object
level information for conscious awareness.

The model performance demonstrates that, in principle, the
HSS model can give rise to the known properties of visual
crowding while supporting the transmission of high precision
information within the cortical object processing hierarchy. This
computational model is not intended to provide quantitative
predictions about the number of neurons required in a coarse-
coding framework or the number of neurons sampled by attention,
but rather to provide a conceptual verification that: (1) fine-
scaled information can be decoded from a population of neurons
with large receptive fields, (2) a sparse selection from a neural
population with large receptive fields results in rapid degra-
dation of target identification and flanker-target confusions in
the periphery but not in the fovea, (3) sparse selection at the
behaviorally relevant level of processing nonetheless leaves high-
fidelity stimulus information intact in the feed-forward visual
processing stream, and (4) properties of receptive field scaling
(in this case, larger receptive fields in more peripheral loca-
tions) can give rise to the asymmetries that are diagnostic of
crowding.

DISCUSSION

The HSS model accounts for both the broad array of previously
known characteristics of crowding and for recent findings that
information can survive crowding, influencing ensemble percep-
tion (Fischer and Whitney, 2011; Lau and Cheung, 2012), priming
behavior (Faivre and Kouider, 2011; Yeh etal., 2012), and biasing
preferences (Kouider etal., 2011). The computational implemen-
tation of the HSS model described above deals with the simple case
of decoding target identity from a small, discrete set of stimuli. The
computational model itself is not intended to provide an exhaus-
tive account of how sparse selection leads to crowding, but rather
to provide a proof of concept that simply reducing the amount
of information sampled for perceptual readout at any particular
level of analysis gives rise to many of the known characteristics of
crowding.

A hallmark of the HSS model is that it posits that crowding
occurs between stimuli that are represented in the same corti-
cal maps but not between stimuli that are represented in distinct
maps (here, by “map” we mean an organized representation of
visual space and/or basis dimensions within an object category).
This feature of the HSS model accounts for why flankers of a

different object category than the target are not effective crow-
ders (Louie etal., 2007; Farzin etal., 2009). Since categorically
different objects and features are coded in separate maps in the
cortex (Op de Beeck etal., 2008), a target will be isolated in its
cortical map and thus recognizable if the surrounding flankers
are sufficiently different to be represented in a different cortical
region. Likewise, this feature of the HSS model explains how
grouping the flankers into an object can break down crowding
(Livne and Sagi, 2007; Saarela etal., 2009) by causing the object
formed by the distracters to be processed in a different cortical
map than the target. Even when the target and flankers are of
the same object category (e.g., a Gabor crowded by Gabors or
a letter crowded by letters), a large difference between the tar-
get and flankers along dimensions such as color, orientation, and
spatial frequency, and others can attenuate crowding (Andriessen
and Bouma, 1976; Nazir, 1992; Kooi et al., 1994; Chung et al., 2001;
Paoder,2007). This could also be the result of compulsory grouping
of the target and flankers into separate objects (Kooi etal., 1994),
but another possibility exists: when the target and flankers dif-
fer markedly along one of these dimensions, even a sparse sample
may be sufficient to successfully resolve the target from the flankers
because of the large target/flanker signal difference. The fact that
visual “pop-out” can alleviate crowding (Poder, 2007) may simply
be due to the target and flankers being different enough to resolve
from the sparse sample of neural outputs available to conscious
perception.

The HSS model also naturally accommodates the finding that
a crowded target can produce adaptation and aftereffects despite
being perceptually inaccessible (He etal., 1996; Aghdaee, 2005;
Whitney, 2005; Harp et al., 2007; Bi et al., 2009): a crowded object
fatigues the same population of cells that it would if it was pre-
sented in isolation — the perceptual phenomenon of crowding does
not interfere with the underlying stimulus representation.

In sum, we present a novel model for visual crowding which
posits that crowding occurs at multiple levels throughout the visual
processing hierarchy, rather than at a single bottleneck. Coun-
terintuitively, information about crowded objects is represented
robustly in the brain, but may be inaccessible to conscious percep-
tion due to a sparse selection of information on which perception
relies. The model is not intended to replace all existing models
of crowding, but it could be a complementary component of any
existing model; the HSS model does help account for many puz-
zling findings in the crowding literature that have otherwise gone
unexplained.
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