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In their paper “Oral motor deficits in speech-impaired children with autism” (Front. Integr. Neu-
rosci. 7:47). Belmonte et al. (2013) argue that expressive language deficits in a subgroup of people
with autism result from the impairment of the oromotor function. As a matter of fact, the paper
appeared in a Frontiers Research Topic that brings movement to the forefront of autism research.
Ultimately, this collection of papers aims to support the view that movement and cognition should
be considered jointly if we want to properly diagnose and treat this condition, and that motor
abnormalities may constitute a significant and robust endophenotype for autism spectrum disor-
ders (ASD) (see Esposito and Paşca, 2013). At the same time, advances in genome-wide technology
have yielded an increasing amount of genes related to autism, which point to specific mecha-
nisms and pathways underlying its associated deficits (Jeremy Willsey and State, 2014). However,
as pointed out by Jeste and Geschwind (2014) robust endophenotypes of the disorder based on
these findings are still forthcoming and the gap between the pathophysiology of autism and genes
still remains open. The goal of this commentary is to contribute to bridge this gap between genes
and ASD, focusing specifically on motor dysfunction and language deficits in people with autism.
In doing so, we will adduce considerations from the fields of the biology of language and of lan-
guage evolution (aka Biolinguistics). We hope that steps of the sort we take will eventually help us
better understand the comorbidity, heterogeneity, and variability of ASD, but also the biological
underpinnings of the human faculty of language.

In our recent research (Boeckx and Benítez-Burraco, 2014a,b; Benítez-Burraco and Boeckx, sub-
mitted) we have put forth three set of genes that we think are important for the emergence of the
two basic components of our species-specific capacity for acquiring and using a language, which
we have labeled our “language-ready brain”: our specific mode of cognition (namely, the ability to
form cross-modular concepts), and our specific way of externalizing thoughts, usually in the form
of strings of sounds. In the linguistic literature these two separated abilities are usually referred to
as the syntax-semantics interface and the morphophonological component, respectively.

The first set of genes is centered around RUNX2, a gene involved in skull and brain develop-
ment. According to our findings, the evolutionary modification of this network may account for
our more globular head shape (compared to Neanderthals) and for the concomitant rewiring of
different connections between cortical and sub-cortical (specifically, thalamic) structures, which
provide the scaffolding for our species-specificmode of cognition (see Boeckx and Benítez-Burraco,
2014a for details). The second set is centered on the ROBO1 and FOXP2 interactomes, two genes
that have been repeatedly associated to speech disorders, and which emerge from the literature
as prominent molecular signatures of vocal learning and motor control (see Boeckx and Benítez-
Burraco, 2014b for details). The third set is clustered around AUTS2 and it provides additional
robust links between the two main networks we have uncovered (see Benítez-Burraco and Boeckx,
submitted for details). Many components of these three sets show fixed changes in modern humans
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compared to Neanderthals/Denisovans, which affect their reg-
ulatory regions, their coding regions, or both. Overall, we
think that most of the genetic changes that brought about our
language-readiness did not occur in a mosaic fashion, but rather
revolved around changes in skull/brain morphology and neural
connectivity that resulted in a more globular brain.

It is with this background in mind that we want to approach
Belmonte et al.’s (2013) paper and ultimately, the motor perspec-
tive on language dysfunction in autism. What we have found is
that many candidates for ASD belong to the three gene sets we
believe are important for language development in the individual
and in the species. For example, as part of our set centered on
RUNX2 one finds CTNNB1 (O’Roak et al., 2012), HRAS (Com-
ings et al., 1996), DLX1 (Liu et al., 2009), DLX5 (Nakashima
et al., 2010), PTEN (Naqvi et al., 2000; Butler et al., 2005), and
SMURF1 (De Rubeis et al., 2014), all potential ASD candidates.
Similarly, one finds several candidates for ASD among the genes
comprising the second set, centered on the FOXP2/ROBO1 inter-
actomes, including ROBO2 (Suda et al., 2011), FOXP1 (Hamdan
et al., 2010), POU3F2 (Lin et al., 2011), and CNTNAP2 (Alarcón
et al., 2008). Finally, AUTS2 (Oksenberg and Ahituv, 2013) is a
robust candidate for ASD, and this is also the case with other
genes that are functionally linked to it, like TBR1 (Deriziotis et al.,
2014), FEZF2 (Wang et al., 2009), PAX6 (Maekawa et al., 2009)
and SATB2 (Kwan, 2013).

When we move from genes to cellular function, we find that
these three set of genes, and specifically the ones we just high-
lighted, regulate processes that are central in the pathophysi-
ology of autism. Concerning the set centered on RUNX2, it is
primarily related to skull morphogenesis, thalamic development
and the specification, migration and interconnection of GABAer-
gic neurons within the forebrain. Interestingly, autism some-
times entails deviations in head shape, resulting from deviations
in brain growth and connectivity (Cheung et al., 2011). More
importantly, aberrant development of GABAergic interneurons
has been linked to ASD (Di Cristo, 2007). Lastly, autism usually
involves the impairment of thalamocortical connectivity (Nair
et al., 2013). The thalamus acts as an efficient mode of cortico-
cortical connections that we deem necessary for cross-modularity
and for going beyond stereotypical behaviors (see Boeckx and
Benítez-Burraco, 2014a for details). Overall, given the role of this
set of genes in language development and evolution, the fact that
we find among them several autism-candidate genes may help
explain the distinctive mode of cognition observed in people with
autism, but also their problems with (receptive) language (e.g.,
Tager-Flusberg et al., 2005).

The thalamus also functions as a bridge between several cor-
tical and subcortical components important for the external-
ization of language, as part of the so-called anterior pathway
of vocal learning, which involves the basal ganglia (especially,
the striatum) and the fronto-temporal network connecting Wer-
nicke’s and Broca’s areas (Hickok and Poeppel, 2007; Miller and
Buschman, 2007; Petkov and Jarvis, 2012). All these brain areas
and neuronal networks show anomalies in ASD (e.g., Murphy
et al., 2014). Specifically, tracts between the thalamus and the
motor cortex are compromised in ASD, suggesting that the for-
mer region may play a role in motor abnormalities reported in

this condition (Nair et al., 2013). Overall, the fact that we find
several autism-candidate genes among the genes that are related
to the externalization of language may explain why speech prob-
lems are frequently observed in people with autism. As noted
by Wang et al. (2015) this may be due to the involvement of
the ROBO proteins and their ligand SLITs, which play a central
role in the organization of the specialized forebrain circuits that
control vocal learning, specifically, the forebrain part that con-
nects to brainstem vocal motor neurons (Wang et al., 2015), and
which points to convergent molecular changes in all vocal learn-
ers (Pfenning et al., 2014). The involvement of FOXP2 and its
partners makes this link even more robust and more interesting
for us, since they play a key role in the development and func-
tion of cortico-thalamic-striatal circuits contributing to efficient
motor planning and execution (Fisher and Scharff, 2009; Schrei-
weis et al., 2014). Interestingly, some of these proteins function in
conjunction with ROBOs and SLITs (e.g., CNTNAP2) (Banerjee
et al., 2010). Finally, the constellation of genes around AUTS2 is
important for the establishment of intra- and interhemispheric
connectivity and in particular, of an optimal balance between
excitation and inhibition, which seems to be also impaired in
autism (Just et al., 2004; Yizhar et al., 2011; Zikopoulos and
Barbas, 2013).

Returning to our initial concern of the heterogeneity, variabil-
ity, and specifically, comorbidity between motor and cognitive
disorders observed in ASD, this frequent outcome of research and
of clinical practice may be explained by the fact that the three set
of genes we highlight here, involved in different aspects of cog-
nition and motor behavior, are functionally interconnected. For
example, as we mentioned earlier, some people suffering from
autism bear a defective copy of TBR1. Specifically, disruptions
of TBR1 give rise to severe speech and language deficits, autistic
problems, andmoderate to severe intellectual disability (Palumbo
et al., 2014). This complex, comorbid phenotype may be partially
explained by the molecular interactions TBR1 is involved in. To
begin with, TBR1 interacts with FOXP2 (Deriziotis et al., 2014),
which is relevant for the externalization of language. Moreover,
TBR1 seems to act as a master regulator controlling several other
ASD-candidate genes (Chuang et al., 2015), including AUTS2
(Bedogni et al., 2010). Among Auts2 regulators we find both
Runx2 and Foxp2 (Oksenberg et al., 2014), which are central
pieces of our networks. At the brain level TBR1 contributes to
the establishment of neocortical connectivity with the thalamus
(McKenna et al., 2011), but also of interhemispheric connec-
tions involving callosal axons (Hevner et al., 2001). Importantly,
the integrity of the corpus callosum is frequently reported to be
affected in people suffering from ASD (Kumar et al., 2010; Shukla
et al., 2010). Similarly, a decrease in interhemispheric connec-
tions seems to be a hallmark of this condition (Shukla et al., 2010;
Ingalhalikar et al., 2011). Lastly, in mice Tbr1 haploinsufficiency
also results in defective axonal projections of amygdalar neurons,
which give rise to a deficit in ultrasonic vocalization, social inter-
action, and associative memory and cognitive flexibility (Huang
et al., 2014).

It is also of interest that many of the genes we have focused
on have changed after our split from Neanderthals and Deniso-
vans (see Boeckx and Benítez-Burraco, 2014a,b; Benítez-Burraco
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and Boeckx, submitted for details). It has been hypothesized that
recently evolved neuronal networks are more sensitive to damage
because they are endowed with less robust compensatory mecha-
nisms (Toro et al., 2010). As a consequence, perturbations affect-
ing them (e.g., mutations in specific genes) are expected to impair
their development more easily and more frequently. This could
account for the high prevalence of autism within modern human
populations (according to Gibson, 2009 disorders like ASD are
de-canalized conditions, resulting from the uncovering of cryptic
genetic variation as a consequence of genomic, environmental, or
even cultural perturbations).

In sum, we regard the motor approach to language dysfunc-
tion in autism of outstanding interest for autism research, but

also for our understanding of the biological nature of the human
faculty for language. We believe that the genetic aspects high-
lighted here may contribute to gain a better understanding of the
way in which cognitive and motor behaviors affect each other in
people with ASD.
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