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A brain-computer interface (BCI) system transforms neural activity into control signals
for external devices in real time. A BCI user needs to learn to generate specific
cortical activity patterns to control external devices effectively. We call this process
BCI learning, and it often requires significant effort and time. Therefore, it is important
to study this process and develop novel and efficient approaches to accelerate BCI
learning. This article reviews major approaches that have been used for BCI learning,
including computer-assisted learning, co-adaptive learning, operant conditioning, and
sensory feedback. We focus on BCIs based on electrocorticography and intracortical
microelectrode arrays for restoring motor function. This article also explores the
possibility of brain modulation techniques in promoting BCI learning, such as electrical
cortical stimulation, transcranial magnetic stimulation, and optogenetics. Furthermore,
as proposed by recent BCI studies, we suggest that BCI learning is in many ways
analogous to motor and cognitive skill learning, and therefore skill learning should be
a useful metaphor to model BCI learning.

Keywords: BCI learning, BCI mapping, brain control, human-computer interfaces, motor learning, cognitive skill
learning

Introduction

Brain-computer interface (BCI) technology aims to establish a direct communication pathway
between the brain and external devices. BCI technology has the potential to assist, augment,
or repair human sensorimotor and other cognitive functions, thus improving the quality of
life for individuals with disabilities (Schwartz et al., 2006; Daly and Wolpaw, 2008; Donoghue,
2008; Moran, 2010; Wang et al., 2010c). During the last few decades, significant progress has
been made in the development of BCI systems using various neural recording modalities,
such as intracortical microelectrode arrays that record single/multi-unit activity (Taylor et al.,
2002; Carmena et al., 2003; Hochberg et al., 2006, 2012; Santhanam et al., 2006; Moritz et al.,
2008; Velliste et al., 2008; Ganguly and Carmena, 2009; Pohlmeyer et al., 2009; Ethier et al., 2012;

Frontiers in Integrative Neuroscience | www.frontiersin.org 1 June 2015 | Volume 9 | Article 40

http://www.frontiersin.org/Integrative_Neuroscience
http://www.frontiersin.org/Integrative_Neuroscience/editorialboard
http://www.frontiersin.org/Integrative_Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnint.2015.00040
http://journal.frontiersin.org/article/10.3389/fnint.2015.00040/abstract
http://journal.frontiersin.org/article/10.3389/fnint.2015.00040/abstract
http://journal.frontiersin.org/article/10.3389/fnint.2015.00040/abstract
http://journal.frontiersin.org/article/10.3389/fnint.2015.00040/abstract
http://community.frontiersin.org/people/u/195472
http://community.frontiersin.org/people/u/241493
http://community.frontiersin.org/people/u/101585
http://community.frontiersin.org/people/u/48944
http://community.frontiersin.org/people/u/241230
http://community.frontiersin.org/people/u/136976
http://community.frontiersin.org/people/u/101535
https://creativecommons.org/licenses/by/4.0/
mailto:wangwei3@pitt.edu
http://dx.doi.org/10.3389/fnint.2015.00040
http://www.frontiersin.org/Integrative_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Integrative_Neuroscience/archive


Hiremath et al. Learning in brain computer interfacing

Collinger et al., 2013a; Wodlinger et al., 2015), brain surface
electrodes or electrocorticography (ECoG; Leuthardt et al.,
2004; Schalk et al., 2008; Acharya et al., 2010; Chao et al., 2010;
Miller et al., 2010; Moran, 2010; Schalk and Leuthardt, 2011;
Yanagisawa et al., 2012; Rouse et al., 2013; Wang et al., 2013),
electroencephalography (EEG; Wolpaw and McFarland, 2004;
Daly and Wolpaw, 2008; Bradberry et al., 2010; McFarland
et al., 2010; Doud et al., 2011; Foldes and Taylor, 2011;
Ramos-Murguialday et al., 2013), and magnetoencephalography
(MEG; Mellinger et al., 2007; Buch et al., 2008; Waldert
et al., 2008; Wang et al., 2010b; Sudre et al., 2011;
Boe et al., 2014; Florin et al., 2014).

The central component of a BCI system is its neural decoder,
a set of decoding weights that transform or map brain activity
to behavior of an external device, e.g., robotic arm movement
(Figure 1). Establishment of an effective BCI mapping relies
on two synergistic processes (Figure 1). The first is decoder
calibration, where decoding weights are calculated based on
brain activity and corresponding external device behavior data.
The second process is BCI learning, where a BCI user learns
the relationship between brain activity and resulting external
device behavior given specific decoding weights. In another
word, the user learns to generate specific cortical activity
patterns for controlling external devices with the given decoding
weights.

Researchers have developed many advanced signal processing
and neural decoding algorithms for the decoder calibration
process (Brockwell et al., 2004; Blankertz et al., 2006; Müller
et al., 2008; Yu et al., 2009). In contrast, the BCI learning
process is much less understood. To address this knowledge gap,
this article will focus on BCI learning with two goals. First, in
agreement with recent studies (Yin et al., 2009; Koralek et al.,
2012; Rouse et al., 2013; Wander et al., 2013; Sadtler et al., 2014),
we contend that BCI learning is analogous tomotor and cognitive
skill learning and that theories and practice developed for skill
learning should inform research in BCI learning. Second, we
review approaches that can promote BCI learning, particularly in
the context of restoring volitional arm movement or controlling
movement of external devices, such as computer cursors and
robotic arms. BCI learning is a broad topic and it will be
challenging to cover all aspects of BCI learning with reasonable
depth in this review article. Hence, this review article focuses

FIGURE 1 | Decoders can be either linear or non-linear. For simplicity, we
have shown a schematic illustrating the relationship between brain activity (N),
BCI control signals (C), and decoding weights (W) for a linear decoder. W
implements BCI mapping, i.e., it maps brain activity, N, to a BCI control
signal, C.

on BCI systems that use implantable electrodes, such as ECoG
and intracortical microelectrode arrays, with the goal of restoring
motor function.

Types of BCI Mapping

This section discusses BCI mapping in relation to the concept of
‘‘mapping’’ in the field of human-computer interfaces (HCI). BCI
systems can be considered as a type of HCI, and BCI research
should benefit from established HCI theoretical frameworks.
Specifically, the term ‘‘mapping’’ has been widely used in HCI.
Norman, a pioneer in HCI research (Norman, 1988), defined
mapping as the relationship between human input (e.g., a
computer mouse movement) and the resulting behavior of the
system under control (e.g., a computer). Analogously, we define
BCI mapping as the relationship between brain activity and the
resulting behavior of an external device, such as movement of a
computer cursor or a robotic arm. BCI mapping can be classified
into two main types: biomimetic and artificial. The biomimetic
mapping-based BCIs use decoders that aim to capture the natural
relationship between cortical activity and volitional arm or hand
movement which is then used to control a prosthetic arm,
orthosis, or functional electrical stimulator (Georgopoulos et al.,
1986; Salinas and Abbott, 1994; Moran and Schwartz, 1999;
Brockwell et al., 2004; Paninski et al., 2004; Heldman et al., 2006;
Schalk et al., 2007; Wang et al., 2007, 2010a; Shimoda et al., 2012;
Chen et al., 2013). This type of mapping potentially provides an
intuitive control scheme without undue cognitive load, especially
during the initial phase of BCI learning (Wessberg and Nicolelis,
2004). Biomimetic mapping was used to achieve cortical control
of high-performance prosthetic limbs using single/multi-unit
activities recorded with intracortical microelectrode arrays in
individuals with paralysis (Hochberg et al., 2012; Collinger et al.,
2013a; Wodlinger et al., 2015).

Artificial mapping does not follow the natural relationship
between cortical activity and arm/hand movement. Rather,
this method either remaps cortical activity into a different
movement of a device, or maps cortical activity to device
movement using arbitrary decoding weights (Fetz, 2007; Moritz
et al., 2008; Schalk et al., 2008; Ganguly and Carmena, 2009;
McFarland et al., 2010; Wang et al., 2013). A BCI user has
to learn this novel mapping in order to control an external
device with his brain activity. For example, Wang et al.
remapped cortical activity associated with thumb and elbow
movements to two-dimensional (2D) movements of a computer
cursor (Figure 2; Wang et al., 2013). During BCI training,
the participant was told to associate four flexion/extension
movement patterns with four cursor movement directions in
x − y planes. Attempted movements of thumb, elbow, both
thumb and elbow, and no thumb or elbow (rest) were associated
with for left, right, up and down, respectively. It is also worth
noting that this approach allowed the participant to move the
cursor in any directions in the 2D workspace and not just
up, down, left, and right. The participant, an individual with
long-term paralysis due to cervical spinal cord injury, learned
this mapping and achieved cortical control of a computer
cursor.
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FIGURE 2 | Artificial mapping for ECoG-based brain control used in
Wang et al. (2013). Brain activities corresponding to thumb and elbow
movements are mapped on to a two-dimensional workspace to serve as the
basis for 2D cursor control.

There is no strict division between biomimetic and artificial
BCI mapping; rather both are parts of a continuous spectrum.
Most biomimetic mapping-based studies use neural recording
technologies that provide a small and potentially noisy and
biased sample of the total neuronal population that controls
natural limbmovement. Thus, even though biomimetic mapping
is intended to be intuitive, BCI users likely have to undergo a
certain degree of BCI learning. Conversely, artificial mapping-
based studies often build BCI learning on top of existing
cortical activity patterns that naturally represent certain neuronal
processes, such as those for mouth and limb movement control
(Schalk et al., 2008; McFarland et al., 2010; Wang et al., 2013).

Establishing the Initial BCI Mapping Using
Movement-Related Paradigms

Before any BCI learning can take place, we first need to establish
the initial mapping between brain activity and intended device
behavior. This is the neural decoder calibration process. While
it is possible to just use a set of arbitrary or random decoding
weights (Ganguly and Carmena, 2009), the typical practice is to
calculate decoding weights using neural data and corresponding
limb movement data. This practice is motivated by previous
neurophysiology studies which have demonstrated that neurons
in various cortical areas, most notably in themotor and premotor
areas, fire in specific and reliable ways during the execution of
volitional movements (Georgopoulos et al., 1986; Moran and
Schwartz, 1999; Paninski et al., 2004; Wang et al., 2007, 2010a;
Truccolo et al., 2008; Kaufman et al., 2010). A common approach
for decoder calibration for individuals who are able to move
their arm is the following: first, have the subject perform a series
of overt movements; second, calculate decoding weights with
a certain algorithm, such as the population vector algorithm
(Georgopoulos et al., 1986), or the optimal linear estimator

(Salinas and Abbott, 1994), and the decoding weights capture the
relationship between brain activity and natural arm movement;
last, the decoding weights map brain activity to real-time control
signals for external devices (Helms Tillery et al., 2003).

Clinical BCI users typically have limb paralysis or
dysfunction, thus making it difficult or impossible to use
overt movements for decoder calibration. One way to address
this problem is to derive decoding weights using action
observation paradigms based on the concept of the mirror
neuron system (MNS). The MNS is a collection of neurons in
the premotor and inferior parietal areas that fire both when an
individual acts and when the individual observes the same action
performed by another person (Buccino et al., 2004; Iacoboni and
Dapretto, 2006; Rizzolatti and Sinigaglia, 2007; Fabbri-Destro
and Rizzolatti, 2008). Studies in non-human primates (Tkach
et al., 2007, 2008; Velliste et al., 2008) and able-bodied human
subjects (Hari et al., 1998; Iacoboni and Dapretto, 2006; Perry
and Bentin, 2009; Press et al., 2011; Collinger et al., 2014) suggest
that primary motor cortex also demonstrates congruent activities
during both action observation and action execution. Reliable
motor cortical activation during action observation was also
observed in individuals with chronic limb paralysis (Dushanova
and Donoghue, 2010; Wang et al., 2013; Collinger et al., 2014).
Therefore, action observation can be an effective approach for
identifying the mapping between motor cortical activity and
limb movement in absence of overt movement.

Another approach for neural decoder calibration in
individuals with limb paralysis is to use motor imagery, which
activates a cortical substrate similar to that of overt movement
(Porro et al., 1996; Crammond, 1997; Jeannerod and Frak, 1999;
McFarland et al., 2000; Jeannerod, 2001; Sharma et al., 2006).
Research has demonstrated that able-bodied individuals can
perform motor imagery to successfully operate BCI systems
(Pfurtscheller and Neuper, 2001; Leuthardt et al., 2004; Schalk
et al., 2008; Blankertz et al., 2010; Miller et al., 2010). In addition
to action observation and motor imagery, simply instructing
individuals with paralysis to attempt limb movement can reliably
activate the motor and somatosensory cortices. BCI studies
in individuals with paralysis have used this approach for both
decoder calibration and brain control (Hochberg et al., 2006,
2012; Truccolo et al., 2008; Collinger et al., 2013a; Wang et al.,
2013). Combination of the above techniques, such as action
observation and attempted movement, will likely yield strong
and reliable activation of the motor cortical areas for the initial
neural decoder calibration in individuals with limb paralysis.

BCI Learning and Motor/Cognitive Skill
Learning

BCI learning and motor/cognitive skill learning share many
common characteristics, including the learning stages and neural
substrates that support learning. In terms of learning stages,
Fitts and colleagues suggested that motor/cognitive learning
follows three stages (Fitts and Posner, 1967; VanLehn, 1996):
(1) cognitive stage—an individual learns basic information
about the goals and parameters of the task, i.e., learns what
to do; (2) associative stage—an individual learns to convert
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their knowledge about the task into actual action, i.e., learns
how to do; (3) automatic stage—an individual performs a task
automatically, withminimal effort, and independent of conscious
awareness (Logan, 1988). The automatic process requires little or
no conscious effort, particularly in terms of workingmemory and
attention. This process reduces mental fatigue, and enables an
individual to multitask. BCI learning seems to go through similar
stages. Human subjects of BCI studies have anecdotally reported
transitioning from a very deliberate cognitive stage to a nearly
automatic stage after practice (Curran and Stokes, 2003; Wander
et al., 2013). The ability and time for a BCI user to arrive at the
automatic stage will likely vary, depending on neural recording
modalities, BCI mapping strategies, complexity of devices to be
controlled, a user’s cognitive functions, etc. Nevertheless, once
learning reaches the automatic stage, a BCI user should be able
to multitask, such as carry on a conversation with someone else
while controlling a cursor using brain activities (Miner et al.,
1998; Foldes and Taylor, 2013).

In terms of neural substrates, during BCI learning, there is
significant involvement of a distributed network spanning the
motor cortex, prefrontal area, parietal area, cerebellum, and
striatum, all of which are also engaged during motor/cognitive
skill learning (Doyon and Benali, 2005; Wander et al., 2013).
Part of this network’s activity decreases during BCI learning
as a subject transitions from the cognitive to automatic stage
(Wander et al., 2013). Furthermore, plasticity in corticostriatal
circuits has been implicated in motor learning (Barnes et al.,
2005; Kimchi and Laubach, 2009; Yin et al., 2009), and
corticostriatal plasticity seems to be necessary for BCI learning,
as well (Koralek et al., 2012). Overall, BCI learning seems to
capitalize on many of the same neural circuitries involved in
motor and cognitive skill learning.

Another important aspect of BCI learning to consider is ‘‘BCI
illiteracy’’, which has been observed in EEG studies (Vidaurre
and Blankertz, 2010). BCI illiteracy describes the phenomenon
that certain individuals had much more difficulty in learning
BCI control than others. One study reported that an estimated
15–30% of the study participants did not achieve proficient
BCI control by the end of the study (Dickhaus et al., 2009).
Poor BCI performance was attributed to individuals using a
wrong strategy of imagining a movement instead of imaging
the kinesthetic movement, and reduced modulation depth of
sensorimotor rhythm during motor imagery for EEG (Blankertz
et al., 2009). BCI illiteracy has not been reported by BCI studies
using implantable electrodes, but the number of subjects studied
is typically small (Leuthardt et al., 2004; Hochberg et al., 2012;
Collinger et al., 2013a; Wang et al., 2013). Further studies
are needed to better understand the underlying cause of BCI
illiteracy and identify new BCI learning strategies that will
alleviate BCI illiteracy.

Approaches for BCI Learning

During BCI learning, an individual learns to generate specific
cortical activity patterns to control external devices. Similar to
motor/cognitive skill learning, BCI learning produces neural
adaptation in the form of functional reorganization of the

cortex and changes in neuronal tuning properties (Taylor
et al., 2002; Carmena et al., 2003; Neumann et al., 2004;
Jarosiewicz et al., 2008; Chase et al., 2012). The duration of
time required for BCI learning is associated with BCI user
performance, which in turn is related to the paradigm and
neural recording modality used in the study. Schalk et al. showed
that five human subjects used ECoG to achieve 2D cursor
control within a single session (training period of 12–36 min;
Schalk et al., 2008). Wang et al. showed that a participant
with tetraplegia was able to perform 3D cursor control using
ECoG signals in 6 days of BCI training, with training sessions
lasting between 4–6 h (Wang et al., 2013). Collinger et al.
tested an intracortical microelectrode-based BCI system in
an individual with tetraplegia (Collinger et al., 2013a). They
reported that 3D control was achievable within a single session
of BCI training and that 7D control of a robotic arm was
achieved after 66 days of BCI training, with BCI training taking
place three times a week and for about 3 h each time. Given
the essential role of learning in any BCI application, it is
important to survey and understand effective approaches that
can promote BCI learning. These approaches can be roughly
classified into five types: computer-assisted learning, co-adaptive
learning, operant conditioning, sensory feedback, and cortical
stimulation. These approaches are not mutually exclusive, and
researchers often combine some of these approaches to facilitate
BCI learning.

Computer-Assisted Learning
During the initial stage of BCI learning, researchers often
use computer assist to help users learn to modulate brain
signals to control external devices. The process of computer-
assisted learning can be discussed using two concepts from
the psychology of learning. The first is the concept of ‘‘flow
zone’’, which was introduced by Csikszentmihalyi and widely
used in game design (Figure 3; Csikszentmihalyi, 1990; Dickey,
2007; Schell, 2008; Christel et al., 2013). In the flow zone,
the task difficulty is balanced against a person’s capability to
keep the individual engaged with the learning process without
stress or boredom. The second concept is ‘‘shaping’’, originally
proposed by Skinner (Ferster and Skinner, 1957; Skinner and
Ferster, 1997; Gluck et al., 2008). Shaping describes a successive
approximation process during which the task goal is morphed
gradually from coarse to fine, in order to help an individual
refine performance and eventually perform a complex task with
high precision. For example, learning how to play tennis, an
individual will first learn to hit the ball across the court, and
then gradually learn to control where the ball lands. The concepts
of flow zone and shaping are highly connected to each other.
As the task difficulty increases, the goal becomes increasingly
complex and specific. By regulating task difficulty, shaping helps
keep an individual in the flow zone throughout the learning
process.

For BCI learning, computer assist is a powerful means to
control task difficulty and keep the subject in the flow zone
while shaping brain control performance. Summarizing previous
studies (Taylor et al., 2002; Velliste et al., 2008; Collinger et al.,
2013a,b; Rouse et al., 2013; Wang et al., 2013), computer assist is
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FIGURE 3 | Graph of Csikszentmihalyi’s flow state when a person’s
ability to execute a task balances the difficulty of the task they have to
perform (Figure adapted from Csikszentmihalyi, 1990).

the approach where the control signal derived from brain activity
is combined with an assistive signal automatically generated by
a computer to help the subject learn brain control of devices.
Here we describe computer assist in the context of cursor control
for convenience of discussion. Generally speaking, there are two
types of computer assists: active assist and passive assist (Velliste
et al., 2008; Collinger et al., 2013a;Wang et al., 2013). Active assist
directly drives the cursor toward the target location, whereas
passive assist only constrains the deviation of cursor movement
from the ideal trajectory without actively pushing the cursor
toward the target location. Helms Tillery et al. have indicated
that computer-assisted BCI learning led to greater learning rates
than BCI learning without any assist (Helms Tillery et al., 2003).
Furthermore, an effective training schedule to adjust the level of
computer assist and task difficulty is critical to keep the subject in
the flow zone and thus promote rapid BCI learning. While such
adjustments are often done empirically, Zhang et al. has proposed
an adaptive algorithm to automatically adjust computer assist
level based on subject performance in order to maximize the
learning rate (Zhang et al., 2012). Lastly, an important factor to
consider is that computer assist can mask or distort the actual
effect of brain control signals and impair BCI learning. In our
experience, when the amplitude of computer assist is comparable
to the brain control signal the resulting cursor movement can
confuse the subject and even hinder the learning process. More
rigorous modeling and experimental studies are needed to better
inform the field about what type of computer assist to use, when
to use or adjust computer assist, and how much computer assist
should be applied to maximize the learning rate.

Co-Adaptive BCI Learning
BCI learning has the potential to induce cortical plasticity,
manifested as changes in both modulation depth and preferred
directions of neurons used for BCI control (Taylor et al., 2002;

Jarosiewicz et al., 2008). To maximally capitalize on these cortical
changes, researchers proposed the concept of ‘‘co-adaptation’’,
which involves both periodic calibration of neural decoder and
the brain adapting to the neural decoder (Taylor et al., 2002;
Sanchez et al., 2009). One specific form of co-adaptive learning is
the ‘‘turn-taking adaptation’’ method used in our previous study,
where the subject and neural decoder took turns to adapt to
each other (Wang et al., 2013). During the user learning period,
the neural decoder remained constant for 5 blocks of 20 trials
of real-time BCI operation (approximately 15 min). During the
decoder calibration period, the subject was instructed to behave
consistently for 5 blocks of 20 trials (15 min), i.e., use the same
attempted movement scheme, to generate consistent neural data
for decoder calibration. The decoder was recalibrated either daily
or when the subject’s performance plateaued. Another approach
used by our study was ‘‘incremental learning’’, where each BCI
session always started with the neural decoder used at the end
of the previous session (Wang et al., 2013). This approach was
possible given the stability of the ECoG signals. Differing from
previous approaches where a new decoder was calculated at
the beginning of each day’s testing, the incremental learning
approach enabled the subject to build upon what he learned from
previous sessions (Ganguly and Carmena, 2009).

Operant Conditioning
Operant conditioning is a learning process that makes subjects
associate a particular behavior with a specific consequence
through reinforcements. The reinforcement is provided when
a subject completes a trial successfully, and it can be juice or
food rewards in animal studies, and provision of a token/award
or increments in scores in human studies. In the field of BCI,
operant conditioning is typically used to train experimental
animals to discover the underlying BCI mapping by trial and
error, without explicit instructions (Chase and Schwartz, 2011;
Arduin et al., 2013). Operant conditioning of brain activity
through biofeedback is a particularly useful paradigm for
learning arbitrary BCI mappings (Fetz, 1969, 2007; Ganguly and
Carmena, 2010; Engelhard et al., 2013). In this approach subjects
learn to generate specific brain activity patterns based on real-
time sensory feedback (visual, auditory, tactile, etc.) to complete
a BCI task. Operant conditioning can modulate single neuron
firing rates (Fetz, 1969), ensemble neuronal activity (Ganguly and
Carmena, 2009), neuronal synchrony (Engelhard et al., 2013),
and high gamma band power of field potential signals (Rouse
et al., 2013; Wander et al., 2013). Through operant conditioning
an ensemble of neurons can potentially assume a novel yet
reproducible pattern of activity, allowing the subject to achieve
reliable brain control of a device.

Interestingly, through operant conditioning subjects
sometimes acquire brain control of an external device without
being consciously aware of how they are performing the task
(Kaplan et al., 2005). This is similar to implicit learning (Frensch
and Rünger, 2003), which is defined as ‘‘non-episodic learning
of complex information in an incidental manner, without
awareness of what has been learned’’ (Seger, 1994). In other
words, individuals learn certain skills without being aware that
learning has occurred (Gluck et al., 2008). Implicit learning
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in the context of BCI learning is a scientifically intriguing and
clinically relevant topic to investigate.

Sensory Feedback
Many approaches discussed so far make substantial use of
sensory feedback. Feedback is an essential component of BCI
learning, therefore we are devoting this section for sensory
feedback. Borrowing concepts from motor learning, we will
discuss two types of feedback used in BCI learning: the online
feedback that provides detailed knowledge of performance (KP)
and the offline feedback that provides the knowledge of results
(KR), i.e., success or failure with respect to the goal (Schmidt,
2008). Both KP and KR feedbacks are crucial for effective BCI
learning. KP feedback provides continuous or frequent feedback
to help the participant complete individual trials. For example,
in a typical cursor control task, KP feedback is provided to a
user visually as movement of the cursor under brain control.
KR feedback is provided at the end of a trial or a session, often
through either auditory tones indicating success or failure of a
trial or simply feedback about success rates.

Feedback can also be categorized based on the sensory
modality it uses, such as visual, auditory, and somatosensory
feedback. Research has demonstrated that visual feedback plays
a key role in skill learning (Hinterberger et al., 2004; Abbott,
2006; Leeb et al., 2006; Blankertz et al., 2008; Barbero and Grosse-
Wentrup, 2010). In addition to visual feedback, the BCI field has
seen a significant increase in the use of somatosensory feedback
to further improve BCI performance. Loss of somatosensory
feedback significantly impairs motor performance, particularly
for grasping and object manipulation (Macefield et al., 1996;
Monzée et al., 2003; Goodwin and Wheat, 2004; Bensmaia
and Miller, 2014). Lack of somatosensory information may
also result in poor motor planning (Brochier et al., 1999).
Thus, it is critical for a BCI system to have the capability to
provide somatosensory feedback, especially for brain control of
prosthetic arms. A number of BCI studies have demonstrated
that electrical stimulation of the peripheral nerve, dorsal root
ganglia, or the somatosensory cortex can elicit artificial sensation
that the subjects can use to perform sensory discrimination tasks
or even closed-loop brain-control tasks successfully (Romo et al.,
2000; Horch et al., 2011; Miller and Weber, 2011; O’Doherty
et al., 2011; Weber et al., 2011, 2012; Johnson et al., 2013; Tabot
et al., 2013; Zaaimi et al., 2013; Bensmaia and Miller, 2014).

Cortical Stimulation
Since cortical stimulation can modulate cortical activity patterns
(Hummel and Cohen, 2006; Harvey and Nudo, 2007), it is
conceivable that cortical stimulation may be able to replace or
supplement repetitive behavior training to induce changes in
cortical activity and accelerate BCI learning (Soekadar et al.,
2014). While this approach has not been well investigated
for BCI learning, previous studies about neuroplasticity (Gage
et al., 2005; Jackson et al., 2006) and rehabilitation using
neurostimulation (Ziemann et al., 2002; Hummel et al., 2005;
Hummel and Cohen, 2006; Harvey and Nudo, 2007; Perez
and Cohen, 2009; Plow et al., 2009; Reis et al., 2009) can
shed some light on the feasibility of this approach. At the

macroscopic level, cortical areas can be stimulated non-invasively
using transcranial magnetic or current stimulations. In the
context of stroke rehabilitation, it has been suggested that
such stimulation can enhance motor cortical excitability and
change cortical connectivity (Hummel et al., 2005; Hummel
and Cohen, 2006; Perez and Cohen, 2009). At the microscopic
level, based on the concept of Hebbian or associative learning,
motor cortical reorganization can be induced by coupling
action potentials of one motor cortical neuron with electrical
stimulation impulses of another motor cortical neuron (Jackson
et al., 2006; Stevenson et al., 2012). A recent pilot study has
shown that transcranial direct current stimulation induces event-
related desynchronization associated with sensorimotor rhythm
(Wei et al., 2013). This event-related desynchronization, along
with motor imagery, was used to improve the performance
of an EEG based BCI. Besides electromagnetic stimulation,
optogenetics is another approach to stimulate cortical tissue. This
technique uses light to activate neurons that have been genetically
modified to have light-sensitive ion channels. Optogenetics has
enabled manipulation of neuronal activity with much higher
spatial and temporal precisions than was previously possible
(Tye and Deisseroth, 2012). Lima andMiesenbock demonstrated
reliable control of neuronal spiking in the millisecond-timescale
and control of excitatory and inhibitory synaptic transmission
(Lima and Miesenböck, 2005). Optogenetics is currently limited
to animal research as it requires genetic manipulation (Chow
and Boyden, 2013), but this technique has great potential for
facilitating learning by inducing repeatable patterns of neural
activity.

Given all these possibilities of directly modulating cortical
activity and connectivity, we believe that cortical stimulation
can be a powerful approach to promote BCI learning. Cortical
stimulation may not only be able to modify general cortical
excitability at a macroscopic level, but also directly entrain
cortical activity into specific spatiotemporal patterns for effective
brain control of external devices.

Conclusion

In this article, we provided an overview of BCI learning by
discussing BCI mapping, relationship between BCI learning and
motor/cognitive skill learning, and approaches for accelerating
BCI learning. We believe that advancement in theories and
practice of BCI learning, coupled with development of clinically
reliable neural interfaces, will ultimately benefit many individuals
with disabilities and our society.
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