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Previous research suggests that high functioning (HF) children with autism spectrum
disorder (ASD) sometimes have problems learning categories, but often appear to
perform normally in categorization tasks. The deficits that individuals with ASD show
when learning categories have been attributed to executive dysfunction, general deficits
in implicit learning, atypical cognitive strategies, or abnormal perceptual biases and
abilities. Several of these psychological explanations for category learning deficits have
been associated with neural abnormalities such as cortical underconnectivity. The
present study evaluated how well existing neurally based theories account for atypical
perceptual category learning shown by HF children with ASD across multiple category
learning tasks involving novel, abstract shapes. Consistent with earlier results, children’s
performances revealed two distinct patterns of learning and generalization associated
with ASD: one was indistinguishable from performance in typically developing children;
the other revealed dramatic impairments. These two patterns were evident regardless
of training regimen or stimulus set. Surprisingly, some children with ASD showed
both patterns. Simulations of perceptual category learning could account for the two
observed patterns in terms of differences in neural plasticity. However, no current
psychological or neural theory adequately explains why a child with ASD might show
such large fluctuations in category learning ability across training conditions or stimulus
sets.

Keywords: prototype, hyperspecificity, categorization, autism, Asperger’s, cortical plasticity

Introduction

Autism spectrum disorder (ASD) is characterized by deficits in communicative and social skills
as well as repetitive actions/fixed interests (American Psychiatric Association, 2013). Because
these deficits are behaviorally salient and a major source of difficulties faced by individuals with
ASD, researchers have often focused on these symptoms when attempting to identify or treat

Abbreviations: ADI-R, Autism Diagnostic Interview-Revised; ASD, autism spectrum disorder; CASL, Comprehensive
Assessment of Spoken Language; HF, high functioning; LR, learning rate; NWD, negative weight decay; QAC, Qualitative
Abnormalities in Communication; QARSI, Qualitative Abnormalities in Reciprocal Social Interactions; RRSB, Restricted,
Repetitive, and Stereotyped Patterns of Behavior; SOM, self organizing map; TD, typically developing; WISC-IV, Wechsler
Intelligence Scale for Children-4th Edition.
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the underlying causes of this disorder (Baron-Cohen, 2002;
Volkmar et al., 2004; Dawson et al., 2010; Bishop-Fitzpatrick
et al., 2013). Recent neural and behavioral evidence suggests,
however, that less obvious dysfunctions in basic learning and
perceptual-motor mechanisms may play a greater role in ASD
than was previously assumed (Casanova et al., 2002; Rubenstein
and Merzenich, 2003; Markram and Markram, 2010; LeBlanc
and Fagiolini, 2011; Yizhar et al., 2011; Donnellan et al., 2012;
Robledo et al., 2012; Torres et al., 2013). Such difficulties
may degrade a child’s ability to learn basic categories and to
generalize what they learn (Cohen, 1998; McClelland, 2000;
Grossberg and Seidman, 2006; Dovgopoly and Mercado, 2013).
Learning to correctly categorize facial, vocal, and body language
expressions are important precursors to understanding and
using the social cues that guide interactions and communication
(Rochat, 1999; Mundy and Neal, 2000; Kuhl, 2004; Quinn et al.,
2011; Vouloumanos and Curtin, 2014). Consequently, category
learning and generalization deficits may underlie or exacerbate
many of the social and communicative deficits seen in ASD.

Research examining category learning and generalization in
individuals with ASD has produced mixed findings (Klinger and
Dawson, 2001; Molesworth et al., 2005; Bott et al., 2006; Gastgeb
et al., 2006, 2012; Molesworth et al., 2008; Church et al., 2010;
Vladusich et al., 2010; Soulières et al., 2011; Froehlich et al.,
2012; Schipul, 2012). With binary feature categories, Klinger
and Dawson (2001) found deficits in the use of prototypes in
children with ASD. Since that initial finding, other researchers
using the same type of categories have found normal prototype
effects in recognition memory and categorization performance
(Molesworth et al., 2005; Soulières et al., 2011). However, some
individuals with ASD showed clear difficulties in the initial phases
of category formation (Bott et al., 2006; Molesworth et al., 2008;
Soulières et al., 2011). In research using more complicated visual
images, such as faces and random dot patterns (RDPs), the
findings are also mixed (Gastgeb et al., 2009, 2012; Church et al.,
2010; Vladusich et al., 2010; Soulières et al., 2011; Froehlich
et al., 2012; Schipul, 2012). Studies of RDP category learning
by children and adults with ASD, and of face categorization by
adults, revealed significant abnormalities in both learning and
generalization (Gastgeb et al., 2009, 2012; Church et al., 2010,
2015). Other studies of adults with ASD using similar stimuli did
not find significant abnormalities in generalization after training
with visually complex categories, thoughmost did find significant
differences in other measures such as learning rate (LR) and brain
adaptation (Vladusich et al., 2010; Soulières et al., 2011; Froehlich
et al., 2012; Schipul, 2012; Fiebelkorn et al., 2013).

Past explanations for why individuals with ASD show category
learning deficits have focused on differences in perception
(Plaisted et al., 1998; O’Riordan and Plaisted, 2001; Mottron
et al., 2006), executive dysfunction (Bott et al., 2006), deficient
learning mechanisms (Grossberg and Seidman, 2006; Dawson
et al., 2008; Schipul et al., 2012; Dovgopoly and Mercado,
2013), and abnormalities in neural processing (McClelland,
2000; Grossberg and Seidman, 2006; Markram and Markram,
2010; Fiebelkorn et al., 2013). ASD is generally associated with
difficulties in transferring learning to novel contexts (Lovaas
et al., 1979; Plaisted et al., 1998; Klinger and Dawson, 2001;

Mottron and Burack, 2006; Klinger et al., 2007; Dawson et al.,
2008; Gastgeb et al., 2009), suggesting that some mechanisms
that contribute to atypical perceptual category learning in ASD
may also affect various other learning and generalization abilities.
ASD is also associated with atypical perceptual processing
(Spencer et al., 2000; Happe and Frith, 2006; Mottron et al.,
2006; Dawson et al., 2008; Mottron et al., 2009), which could
affect how categories are formed, as well as how inputs are
represented and compared. Given that perceptual processing
is strongly experience-dependent (Buonomano and Merzenich,
1998), perceptual abnormalities associated with ASD could result
from atypical learning and plasticity mechanisms that affect early
perceptual development (LeBlanc and Fagiolini, 2011).

Differences in methods or sample composition across studies
could potentially account for why some researchers have found
category learning deficits in individuals with ASD whereas others
have not. However, mixed findings have also been reported
within single studies (Bott et al., 2006; Molesworth et al.,
2008; Vladusich et al., 2010; Dovgopoly and Mercado, 2013).
Typically, mixed results within studies have been interpreted
as suggestive of either different subgroups of children with
distinctive neural or cognitive abnormalities, or of individual
differences in basic cognitive abilities. For instance, Molesworth
et al. (2008) suggested that category learning deficits might be
present in a subset of individuals with ASDwho have a lower than
normal mental age or more severe language processing deficits.
Tests of HF children with ASD whose IQ and language abilities
were comparable to those of TD children revealed, however,
that about half of the HF children with ASD had problems
learning RDP-based visual categories (Church et al., 2010, 2015;
Dovgopoly and Mercado, 2013). The neural or behavioral factors
that make category learning more difficult for a subset of children
with ASD thus remain unclear, as measures of IQ, receptive or
expressive language abilities, and overall scores and scores on the
subtests of the Autism Diagnostic Inventory Revised have not
been found to distinguish the subgroups (Church et al., 2015).

The primary goal of the current study was to evaluate the
consistency of visual category learning abilities in HF children
with ASDwhen they were trained using several different stimulus
sets and training schedules. In each category-learning task,
children were first trained through trial and error to classify
abstract shapes as either belonging to the category, or as not
belonging to that category, and then were tested without feedback
on how they classified novel shapes. Previous work has shown
that TD children easily perform such tasks, whereas some
children with ASD find these tasks difficult to learn (e.g., Church
et al., 2010, 2015). A secondary goal of the study was to evaluate
howwell a connectionist model of category learning could predict
the performance of children with ASD.

Materials and Methods

Participants
The study sample consisted of 56 HF children with ASD and
thirteen TD children; all were between the ages of 7 and 13 years-
old. Thirteen of the children with ASD and the thirteen TD
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children were recruited to participate in a study comparing slight
modifications in the training regimens used for category learning
(Situation A). Forty-three different HF children with ASD were
recruited to participate in two different category learning studies
on the same day (Situation B). The data from their standard
training conditions (baseline conditions) are included here.
The HF children with ASD had a prior clinical diagnosis of
Asperger’s disorder (American Psychiatric Association, 2000),
autism, or PDD-NOS (pervasive developmental disorder-not
otherwise specified). They were recruited from a psychosocial
intervention program and all met strict inclusion criteria.
Inclusion criteria were a WISC-IV, (Wechsler, 2003) short-
form IQ composite > 70 (and a major index score {VCI or
PRI} ≥ 80); receptive or expressive language score ≥ 80 on
the CASL (Carrow-Woolfolk, 1999), and a score meeting ASD
criteria on the ADI-R (Rutter et al., 2003). All testing to determine
inclusion (WISC-IV, CASL, and ADI-R) was conducted by
doctoral-level psychologists and graduate students with advanced
training in the specific measures. These structured screening
procedures and inclusion criteria have been used in numerous
treatment trials and basic studies for HF children with ASD
(e.g., Lopata et al., 2012; Thomeer et al., 2012, 2015), as well
as prior perceptual studies of HF children with ASD (e.g.,
Church et al., 2010, 2015). TD children were recruited by the
staff running the psychosocial intervention program from a
database of children used in previous studies who matched
a subset of the HF children with ASD for age, gender, and
IQ. There were no significant differences between the HF
children with ASD and their matched controls (see Table 1
for demographic and test score information). None of the HF
children with ASD or the TD children had significant visual
impairments or acuity problems. Those that wore corrective
lenses for minor visual acuity problems were monitored to
ensure they used their corrective lenses during all screening
testing and the current experiments. Earlier studies of HF
children with ASD found no significant differences in visual
perceptual acuity from that of TD children (Volker et al.,
2010; McDonald et al., 2014). Ten of the HF children with
ASD and 10 matched TD children from Situation A also
participated in the Church et al. (2010) experiment, and thus
had some past experience with the general task, though not
with the particular categories, stimuli, and training specifics
experienced in this context. For all of the children, at least
one custodial parent or guardian signed a written informed
parental permission for their child to participate, and the child
signed a written informed assent sheet. The parents/guardians
and children had the tasks, time commitments, right to
withdraw, and risks/benefits explained by one of the primary
researchers before they were asked to grant permission/assent.
All procedures were conducted in accordance with a protocol
approved by the Social and Behavioral Sciences IRB at the
University at Buffalo. Results from two of the HF children with
ASD were omitted for having more than four missing values,
one for patterned responding (left–right alternation), and four
participants were dropped randomly to equate conditions used to
counterbalance stimulus sets and the order of their presentation
in Situation B.

TABLE 1 | Demographic characteristics of matched groupsa.

ASD (n = 13) Control (n = 13)

Characteristic Mean (SD) Mean (SD)

Age (years) 10.77 (1.59) 10.85 (1.52)

Parent education
(years)

15.88 (1.80) 15.88 (1.74)

WISC-IV Short
Form IQ

109.24 (11.07) 112.74 (9.18)

Verbal IQ (VCI) 108.86 (12.25) 108.45 (9.01)

Performance IQ
(PRI)

107.65 (11.26) 114.64 (9.76)

CASL

Expressive
language

105.93 (11.33) –

Receptive
language

111.08 (13.06) –

ADI-R

QARSI 21.31 (4.50) –

QAC 15.46 (4.43) –

RRSB 6.54 (2.54) –

n (% of total) n (% of total)

Gender

Male 11 (85.0) 11 (85.0)

Female 2 (15.0) 2 (15.0)

Ethnicity

Caucasian 11 (85.0) 11 (85.0)

African American 2 (15.0) 2 (15.0)

aWISC-IV, Wechsler Intelligence Scale for Children-4th Edition; CASL,
Comprehensive Assessment of Spoken Language; ADI-R, Autism Diagnostic
Interview-Revised (QARSI, Qualitative Abnormalities in Reciprocal Social
Interactions; QAC, Qualitative Abnormalities in Communication; RRSB, Restricted,
Repetitive, and Stereotyped Patterns of Behavior). CASL and ADI-R data only
collected for children in the ASD group as a screening measure for the social
treatment study.

General Procedure
Visual stimuli were created using a computer program that
generated a single shape (the prototype) and subsequently
modified this prototype to generate distorted versions of it
(e.g., Smith et al., 2008). The prototype shape was created
by selecting nine random dots in a sequential order. The
distortions were created by probabilistically moving some or all
dots forming the prototype. A low probability of moving the
dots resulted in stimuli that strongly resembled the prototype.
As the probability of moving the dots increased, the level of
distortion increased [e.g., Level 2 (L2), Level 3 (L3), Level 4
(L4), Level 5 (L5), and Level 7 (L7)]. Random stimuli (R)
were constructed from sets of dots that were unrelated to
the category, and unrelated to each other (see Supplementary
Materials for more details about stimuli construction). The dots
forming the stimuli were connected with lines; which dots were
connected to which was determined by the order of their random
selection. The resultant shapes were filled with different colors
(see Figure 1). Stimuli were of medium brightness and color
varied randomly between red, blue, light blue, green, and yellow.
An IBM-compatible desktop computer was used for testing in
Situation A. IBM compatible laptops were used in Situation
B. Stimuli were presented, responses collected and feedback
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FIGURE 1 | (A) Examples of prototype shapes for each category type.
(B) Examples of non-category shapes created from randomized dot patterns
(Random).

given using DMDX experimental software (Forster and Forster,
2003).

The 26 children from Situation A were tested individually in
a quiet room at the lab. They interacted with the experimenter
engaging in four computer tasks requiring ∼15 min to complete
each task with breaks in between each. They were in the lab
for an hour and a half or less during experimental sessions.
The 43 children in Situation B were tested individually in
groups of four children stationed at different desks with dividers
between them at their summer treatment program, and they
participated in two studies each having the baseline conditions
reported here that lasted ∼12 min. The total experimental
session for these children lasted ∼50 min with a short break
(∼3 min) between the studies. All tasks had a training phase
and a testing phase. The training phase varied depending on the
task conditions (described below). The structure of the testing
phase was the same across all tasks, varying only in terms of
which visual stimuli were presented. Participants learned a new
category for each task. Figure 1A shows the prototype shape
for five categories. All participants received verbal instructions
and written reminders about the goal of each task. All children
received a cover story that they were going to play a computer
game called ghost hunt. In this computer game, the shapes
were ghosts and their job on each task was to hunt down
the ghosts of a particular type. They were directly told that
for each task, the ghosts were abstract shapes, and they were
looking for the ghosts of a particular kind (e.g., cave ghost,
sea ghost, jungle ghost, desert ghost, and castle ghost). They
were also told that ghosts of the same kind resemble each
other, but any kind of ghost could be any color; so they should
not make any decisions based on the color of the ghost. In
Situation A, the children completed four tasks using stimulus
sets based on prototypes 1 through 4 (described in detail below).
The order of the specific tasks and the stimulus sets used for
a particular task varied across children. For TD children, the

order of particular tasks and the stimulus set used for each task
were the same as for their age, sex, and IQ matched child with
ASD.

In Situation B, children completed two baseline category-
learning tasks (comparable to those learned by children in
Situation A), plus two other category-learning tasks that
constituted the experimental conditions (which strongly
manipulated the type of learning or stimuli that occurred during
the training phase, and thus were not comparable to the tasks
used in Situation A). Children’s performance on the baseline
tasks from Situation B was included in the current analysis. The
order of task and stimulus sets used was fully counterbalanced
across children in this situation. Also, in Situation B, researchers
made observational recordings on a behavioral tally sheet
throughout the study to document and quantify behavioral signs
of attention, fidgeting, engagement, and frustration. The children
were also asked at the end of each session if they liked each game,
and whether they thought each of them was difficult and/or
boring.

Tasks
A/not A Category Learning Task
In A/not A tasks, the participant must distinguish category
members (Figure 1A) from non-members (Figure 1B) based
on their relative similarity to other members. In the version of
this task used in the current study, each trial consisted of one
shape presented in the middle of a computer screen against
a black background (at a visual angle of ∼4.23◦ in Situation
A and 3.13◦ in Situation B), and two icons presented on the
top left and right of the screen. The icon presented on the
left was always a red circle with a line through it. The icon
presented on the right was either a picture of a cave, a jungle, a
desert, a sea, or a castle. The shape and icons remained on the
screen until the participant made a response. All shapes were
presented in a random order. The program was designed to
move to the next trial if the participant took longer than 7 s to
respond and the trial was marked as a missing trial. Participants
responded to a category member or not by pushing one of two
labeled buttons on a keyboard. The button for each response
was aligned on the same side as the icon corresponding to the
response.

In all conditions, children first experienced a training phase
in which they had to decide if each shape was a member of
the ghost category. During training, in Situation A, they always
experienced 30 shapes in three of the tasks and 60 shapes in
one of the tasks (details provided below). In Situation B, during
training they always experienced 30 shapes. In all Situations
and tasks (training and test), half of the shapes belonged to the
prototype-based category and the other half were non-members.
For all Situations and training conditions, participants received a
short animation of a dancing monkey for each correct response
and the shape moved to the icon of the correct answer after
a wrong response. Following the training, written instructions
appeared explaining that the true ghost hunt was about to begin,
and they would no longer receive any feedback. The test phase
followed these instructions. Sixty images were always presented
in the test phase (five repetitions of the prototype shape, five
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different L2, five different L3, five different L4, five different L5,
five different L7, and 30 different R stimuli). None of the stimuli
presented during testing appeared in the training conditions. No
feedback regarding the accuracy of responding was given during
testing.

Variations of the A/not A Category Learning Task
Forty-three HF children with ASD in Situation B were trained
using a category learning task that replicated the A/not A training
structure originally used by Church et al. (2010). These children
were trained and tested with two versions of the standard
baseline task, involving four different sets of shapes constructed
using the same algorithms as Church et al. (2010). The task
involved training with level 3, 5, and 7 distortions of a prototype
ghost (five shapes from each distortion level), as well as 15
randomly (R) created shapes as non-members. Thirty-six of
these Situation B children were used in the data analyses (two
were dropped for missing values, one for patterned responding
and four to equate counterbalancing of order and stimulus
set).

Thirteen HF children with ASD (none of whom overlapped
with the 36 noted above) and 13 TD children from Situation A
were trained and tested on four modified versions of the A/not
A task used by Church et al. (2010). Each of the four tasks
included a different training regimen and a unique stimulus set.
All of the modifications were intended to increase the difficulty
of the task and to encourage family resemblance averaging. In
the “Repeated” version of the task, which served as the baseline
for comparison, 30 shapes were presented in which 15 were
equally divided between L3, L5, and L7 and the other 15 were R
stimuli. This condition replicated the training regimen described
above for the Situation B children, except that each stimulus
was shown twice during training. For the “High Distortion”
version of the task, we increased the proportion of stimuli with
high-level distortions. In this task, the stimuli were four L3,
five L5, and six L7 shapes; the other 15 were R stimuli. Each
stimulus was shown twice. For the “Blurry” task, we reduced
the spatial frequency of the stimuli to three different levels
(low, medium, and high). There were five L3, five L5, five
L7, and 15 R stimuli. The stimuli were equally divided into
three types of reduced spatial frequency and each item was
presented twice. For the “Unique” task, we doubled the number
of different shapes presented. In this condition, there were ten
L3, ten L5, and ten L7, and 30 R stimuli. Each stimulus was
shown once. All Situation A children completed all four training
tasks.

Data Analyses
Analyses of behavioral data were focused on answering four
main questions. First, we wanted to know whether the A Type
I/A Type II classification of generalization patterns identified
by Dovgopoly and Mercado (2013) would prove to be generally
applicable to HF children with ASD in category learning
tasks. They had found that HF children with ASD could be
divided into meaningful groups for modeling purposes by
applying the criterion that any child with ASD who endorsed
random stimuli more than 30% of the time fell into the

group modeled with slow learning (A Type II), and any
children with ASD who endorsed random stimuli less than
30% of the time qualified as a typical learner (A Type I).
However, this criterion was determined post hoc based on
its correspondence to the grouping of generalization patterns
revealed by a SOM that was trained with data from all
participants (Dovgopoly and Mercado, 2013), and the criterion
has only been validated as a means of identifying atypically
performing subgroups of children with ASD in one other
study (Church et al., 2015). To address the question of
whether the A Type I/A Type II distinction will continue
to prove generally applicable, we applied this criterion for
identifying children of each type to the new sample of HF
children with ASD, and compared the generalization profiles
associated with identified subgroups. Specifically, any child who
endorsed 30% or more of the random shapes during testing
was classified as fitting an A Type II profile. This threshold
value, based on past behavioral data from the Church et al.
(2010) study, provided an objective criterion for partitioning
children into subgroups in the current study (as opposed
to using an arbitrary, post hoc criterion such as splitting
children into two equal-sized groups based on their overall task
performance).

Second, we wanted to assess not only the applicability of the
A Type I/II classification across samples (and using different
stimulus sets), but also the stability of classifications within
individuals. To address this question, we applied the classification
criterion for each version of the A/not A task performed by each
child. We then compared classifications across tasks performed
by single individuals. All of the children in the study performed
at least two versions of the category learning task, and the 26
children in Situation A (13 ASD and 13 TD) performed four
versions of the task. Ten of the HF children with ASD that
were trained on the four different tasks also participated in the
Church et al. (2010) study, making it possible to assess stability in
generalization profiles over a period of 2 years in different testing
contexts.

Third, we were interested in the stability of generalization
profiles across different variants of the A/not A task. Previous
studies have examined how variations in stimulus construction
or in feedback conditions affect category learning by HF adults
with ASD (Vladusich et al., 2010; Gastgeb et al., 2012), but none
have looked at whether variations in training regimens affect
learning and generalization by HF children with ASD. Because
these new variants of the task had not been previously tested with
TD children, comparisons were made between groups of children
with and without ASD to assess whether atypical generalization
was evident across the four different training regimens. A 3 x (4 x
7) mixed factorial design was used with category endorsement as
the dependent measure, group (ASD Type I vs. Type II vs. TD) as
a between participants variable with three levels, and condition
(Repeated, High Distortion, Blurry, Unique), and stimulus type
(prototype, L2, L3, L4, L5, L7, and random) serving as the
within participant independent variables with 4 and 7 levels,
respectively.

Finally, we wanted to determine if any of the individual
demographic variables or scores on ASD scales, language, or
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IQ tests would predict general performance or the percentage
of random endorsements that dictate A Type I/A Type II
designations.

Neural Network Simulations
Dovgopoly and Mercado (2013) showed that a simple
connectionist model of visual object recognition was able
to simulate the performance of TD children learning to
classify abstract shapes and could also reproduce atypical
generalization patterns observed in groups of HF children with
ASD. This model also successfully predicted generalization
differences between HF children with ASD and TD children
after training with prototypical images (Church et al., 2015).
The applicability and value of this computational model for
simulating generalization patterns after different training
regimens was assessed in the current study by evaluating
predictions of the generalization patterns for the four different
A/not A category learning task variants not previously simulated
by Dovgopoly and Mercado (2013).

The visual images created by Church et al. (2010) provided
the basis for the input set used in all neural network (NN)
simulations. This set of inputs consisted of five L3, L5, and L7
distortions, as well as 15 random shapes. In addition to these
30 images, 15 novel distorted prototypes and 15 novel random
images were created to simulate stimulus sets used in the Unique
condition, and 15 novel stimulus representations from both
the prototype distortion and random categories were created to
simulate the stimuli used in the Blurry training condition. Test
images consisted of the prototype shape and five L2, L3, L4, L5,
and L7 distortions (all different from the training images), as well
as 30 novel random shapes. The images of abstract shapes were
converted into matrices representing features within the images
(for details, see Dovgopoly and Mercado, 2013). Images from the
original Church et al. (2010) study were used as inputs rather
than the actual images used in the current experiments in order
to better establish that the predictions of the model were not
dependent on the particular input set used.

Simulations were conducted using PDPTool (http://www.
stanford.edu/group/pdplab/resources.html#pdptool) running in
the Matlab R2010a environment, and using customized data-
processing scripts written in Matlab, Perl 5.12.2, and Ruby 1.9.2
programming languages. All simulations involved a multilayer
NNwith 144 input nodes, 144 hidden layer nodes, and 144 output
layer nodes [a detailed description of the parameters of this model
is provided in Dovgopoly and Mercado (2013)]. Results for each
task correspond to the averages of 20 simulations [replicating
the methods of Dovgopoly and Mercado (2013)]. In contrast to
our earlier simulations, which used unique, randomly generated
connection weights for each simulation, a “within-subjects”
designwas used in the current simulations. Specifically, randomly
generated sets of initial weights were used for simulations of HF
children with ASD, and another 20 sets were created for the
TD simulations. These same initial weights were used for each
of the training conditions, controlling for the possibility that
idiosyncratic variations in initial weights or order effects might
contribute to differences in generalization patterns across the four
conditions.

The first step of the simulations was to establish a performance
baseline comparable to the generalization pattern of the TD
group participants in the Church et al. (2010) study. After
reproducing generalization comparable to that of TD children,
a single model parameter was adjusted until the performance
of the networks approximated the overall group performance
of the HF children with ASD. In one set of simulations, a
LR parameter was reduced, thereby decreasing the magnitude
of changes in weights during each cycle of training. In a
second set of simulations, LR was maintained at the same
level as in TD simulations, but a NWD term was introduced,
degrading the models’ ability to discover an optimal way of
dividing up inputs during training by disrupting feedback-based
changes to connection weights. Dovgopoly and Mercado (2013)
argued that the reduced LR manipulation simulates diminished
synaptic plasticity, whereas adding NWD simulates diminished
synaptic stability. One of these two model parameters was
initially adjusted to emulate TD and ASD group performance
in the “Repeated” training condition. The selected parameter
values were then kept fixed across other training conditions
(i.e., no attempt was made to identify model parameters that
optimally fit the observed behavioral patterns across training
conditions). For each of the training regimens, individual
networks were trained for three epochs. The LR was 5e-
005 for TD simulations, whereas ASD group simulations in
which the LR was modified used a LR of 2.1e-005. The
ASD group simulations with NWD utilized a weight decay
of −0.0007 and the same LR as the TD model (in contrast,
the weight decay value for the TD model and the reduced
LR model was set to zero). All other model parameters
were fixed at default values. The same approach to adjusting
LR or NWD was also used in an attempt to simulate the
generalization patterns shown by the subgroup of HF children
with ASD classified as A Type II. However, no parameter
settings were found that led to comparable generalization, and
ultimately it was necessary to decrease the number of training
epochs to simulate the generalization pattern associated with
the A Type II profile. Because the generalization patterns
of children with an A Type I profile were indistinguishable
from those of TD children, no distinctions are made in the
following between simulations of performance by these two
groups.

Results

Evaluations of A Type I/II Generalization
Patterns
First, in order to assess the generally applicability of the A Type
I/II distinction to HF children with ASD in category learning
tasks, we applied the pre-established criterion (Dovgopoly and
Mercado, 2013; Church et al., 2015) for identifying children of
each type to the new sample of children with ASD (any child
who endorsed 30% or more of the random shapes during testing
was classified as fitting an A Type II profile), and compared
the generalization profiles associated with identified subgroups
(see Figure 2). We then conducted a 3 X 4 X 4 X 7 GLM with
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Child Type (A Type I, A Type II, and TD) Order of Test (1st–
4th possible), and Stimulus Set (A–D possible) as the between
participant factors and Distortion Type (prototype, L2, L3, L4,
L5, L7, and Random) as the within participant factor. There
were significant main effects of Child Type, F(2,33) = 7.595,
p = 0.002, η2

p = 0.315, and Distortion Type, F(6,198) = 6.588,
p < 0.001, η2

p = 0.116, reflecting the facts that the groups
endorsed the category to differing degrees, and stimuli closer to
the prototype were generally endorsedmore often. There was also
a significant interaction between the Child Type and Distortion
Type, F(12,198) = 4.944, p < 0.001, η2

p = 0.231, reflecting the
different pattern of endorsement seen in the A Type II children.
No other main effects or interactions approached significance,
all F’s < 2. The fact that we found no main effects of, or
interactions with, order or stimulus set suggests that the results
(and group designations) were not affected by a couple of harder
stimulus sets, or fatigue, or procedural learning/learning set
effects as the children progressed through their tasks1. Consistent
with the findings of Dovgopoly and Mercado (2013), A Type II
children endorsed fewer prototypes, t(47) = 7.115, p < 0.001,
d = 1.991, and more non-category members, t(47) = 13.682,
p < 0.001, d = −3.839, than A Type I children. The latter
should not be surprising because the categories were defined by
differences in non-member endorsements. To further determine
the independent utility of the A Type distinction, we compared

1Analyses done separately with just the 26 children from Situation A still found no
main effects of or interactions with order or stimulus set. This suggested that even
in the longest experimental sessions fatigue did not seem to play a significant role.

FIGURE 2 | Average endorsement proportions of Prototype, L2, L3, L4,
L5, L7 (increasingly distorted versions of the prototype), and Random
images during generalization testing for 62 children (TD = 13; A Type
I = 24; A Type II = 25) trained using a category learning task that
replicated the A/not A training structure originally used by Church
et al. (2010). As in the earlier experiment by Church et al. (2010), A Type I
generalization patterns were comparable to those shown by TD children, and
A Type II patterns revealed much poorer generalization, with more
endorsements of low-level distortions than of the prototype shape.

TABLE 2 | Number of HF Children with ASD who switch A Types or not
across two tasks, four tasks, or 2 years.

A type variability Four tasks Two tasks Two years earlier

Total N 13 36 10

Switch A Types 6 13 5

Stay A Type I 3 5 3

Stay A Type II 4 18 2

Multiple switches 1 – –

More I 2 – –

More II 4 – –

Switch from II–I – – 4

the proportion of endorsements of just the category members
(not the criteria for typing) for different ATypes and TD children.
A Type II children endorsed fewer category members overall than
either the A Type I, t(47) = 7.724, p < 0.001, d = 2.160, or TD
children, t(36) = 4.650, p < 0.001, d = 1.545. A Type I and
TD children endorsed roughly the same proportion of category
members, t < 1.

As can be seen in Table 2, of the children from Situation A
who completed four tasks, almost all of the overlapping children
showing an A Type II pattern in the Church et al. (2010)
study showed an A Type I pattern in the Repeated condition
of the current experiment. There were two out of five A Type
I children from the previous experiment who switched to A
Type II in the Repeated condition, but four out of five of the
A Type II children switched to A Type I. This suggests that
perhaps more children switch to A Type I as they get older (the
small sample precluded any statistical analyses of these trends)
indicating that developmental maturation may improve category
learning and generalization in HF children with ASD. However,
any conclusion must be tentative since age, time, and the testing
situation all changed across the 2 year period. In addition to
these fluctuations in generalization patterns across experiments,
HF children with ASD also showed similar changes across tasks.
Sixty-two percent of the HF children with ASD that were tested
on four versions of the task (8 out 13) switched their pattern of
generalization at least once either across the different tasks (54%,
7 out 13) or across the different experiments (70%, 7 out of 10).

Of the 36 children from Situation B who completed two
versions of the basic task, 64% showed consistent generalization
patterns across tasks (5 out of 23 A Type I and 18 out of 23 A
Type II), and 36% switched performance profiles between the
two versions of the task. There were no patterns of interaction
indicating that switching was influenced by order of task or
stimulus set used, and analyses of the observational recordings
found that behavioral signs of attention, fidgeting, engagement,
and self-reports of difficulty, boredom and enjoyment did not
predict A Type designation. There were not enough recorded
signs of frustration to provide a meaningful analysis.

Comparisons of Different Types of Training
Figure 3 shows generalization patterns for the group of 13
children with HFASD and their matched TD controls, for each
of the four different versions of training; Figure 4 shows the
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FIGURE 3 | Average endorsement proportions of Prototype, L2, L3, L4, L5, L7 and Random images during testing for 13 TD children and 13 HF
children with ASD in four conditions: (A) Repeated; (B) High Distortion; (C) Blurry; and (D) Unique.

FIGURE 4 | Average endorsement proportions of Prototype, L2, L3, L4, L5, L7 and Random images during testing for 13 TD children, seven children
with A Type I generalization profiles, and six children with A Type II profiles in four conditions: (A) Repeated; (B) High Distortion; (C) Blurry; and
(D) Unique.

same data with the HFASD children divided into the A Type I
and A Type II subgroups. We conducted a 3 X (4 X 7) GLM
on category endorsement (how many times participants said
a stimulus belonged to the ghost category) using Child Type
(A Type I, A Type II, and TD) as the between and Condition
(Baseline, High Distortion, Blurry, and Unique) and Distortion
Type (Prototype, L2, L3, L4, L5, L7, and Random) as the within-
participant variables. We found a main effect of Child Type

F(2,138) = 10.04, p < 0.001, η2
p = 0.27, reflecting the fact that

the different groups generally endorse the category to different
degrees. Post hoc analyses found that A Type II participants
endorsed the category significantly less than either A Type I,
t(11) = 3.74, p = 0.001, d = 0.54, or TD children t(17) = 4.24,
p < 0.001, d = 0.92, but A Type I and TD children were
not different, t < 1. There was also a significant main effect
of Distortion Type F(6,138) = 49.99, p < 0.001, η2

p = 0.68,
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reflecting the fact that category endorsement reduced as the
stimuli got increasingly distorted from the prototype. Finally,
there was a significant interaction between child and distortion
type, F(12,138)= 6.08, p= 0.001, η2

p = 0.35, again suggesting that
the different groups showed different patterns of generalization.
There was no significant main effect of training condition or
significant interactions with training condition, all F’s < 2.

Potential Individual Difference Predictors of
Group Type, Variability, or Performance
In order to determine if factors like age, IQ, diagnosis, language
ability, or ASD scales predict who is more likely to show the
abnormal generalization patterns seen in A Type II performance,
we conducted comparisons between all the children designated A
Type I and A Type II on the most similar shared task (see Table 3
for variables and means). There were no significant differences
between A Type I and A Type II children on any of the measures
compared, all t’s < 1.5. We also conducted correlation analyses
to see if any of the variables correlated with overall proportion of
correct endorsements or proportion of endorsement of randoms
in this baseline condition. There were no significant correlations
(see Table 4).

Unstable performance profiles across tasks make it unlikely
that stable factors like IQ, diagnosis, or ASD scales can predict
A Type II performance patterns, and the comparisons and
correlations confirm this. However, it is possible that these stable
factors might predict variability in patterns of performance.

TABLE 3 | Demographic characteristics for subgroups of HF children with
ASDa.

A Type I (n = 24) A Type II (n = 25)

Characteristic Mean (SD) Mean (SD)

Age (years) 10.29 (1.68) 9.88 (1.62)

Parent education (years) 15.52 (2.02) 15.86 (1.52)

WISC-IV Short Form IQ 113.41 (15.49) 106.40 (13.44)

Verbal IQ (VCI) 110.18 (14.50) 106.11 (13.70)

Performance IQ (PRI) 110.27 (14.48) 107.38 (13.82)

CASL

Expressive language 106.83 (13.59) 104.12 (15.07)

Receptive language 110.71 (13.70) 106.40 (13.36)

ADI-R

QARSI 21.10 (4.50) 21.44 (4.58)

QAC 16.75 (3.67) 15.83 (3.73)

RRSB 6.50 (2.78) 6.30 (2.64)

n (% of total) n (% of total)

Gender Male 20 (83.3) 23 (92.0)

Female 4 (16.7) 2 (8.0)

Ethnicity Caucasian 21 (87.5) 24 (96.0)

African American 3 (12.5) 1 (4.0)

aWISC-IV, Wechsler Intelligence Scale for Children-4th Edition; CASL,
Comprehensive Assessment of Spoken Language; ADI-R, Autism Diagnostic
Interview-Revised (QARSI, Qualitative Abnormalities in Reciprocal Social
Interactions; QAC, Qualitative Abnormalities in Communication; RRSB, Restricted,
Repetitive, and Stereotyped Patterns of Behavior). CASL and ADI-R data only
collected for children in the ASD group as a screening measure for the social
treatment study.

TABLE 4 | Correlations between participant variables and percent correct
and percent of endorsements of random stimuli in the categorization task.

Participant variable % Correct % Endorsement random

Parent education1 0.12349 0.189449

Age1 0.159999 −0.09796

VCI1 0.123469 −0.129

PRI1 0.068281 −0.15688

ADIR2 0.064982 −0.06086

ADIR_SI2 0.033144 0.103619

ADIR_Com2 0.04056 −0.07982

ADIR_RRSB2 0.091041 −0.08485

CASLEXP2 0.04649 −0.07019

CASLREC2 0.070456 −0.10915

1Scores are available for all the children in the study. N = 62, a correlation >0.25 or
< −0.25 is significant. 2Scores are only available for the children with ASD. N = 49,
a correlation >0.28 or < −0.28 is significant.

To examine this possibility, we conducted another series
of comparisons between the individual difference factors for
children who switched same day tasks versus those who stayed
constant (see Table 5). There were no significant differences,
though the children who switched seemed to have a somewhat
larger performance IQ (PRI), t(47) = 1.985, p = 0.053,
d = −0.565, all other t’s < 1.4.

TABLE 5 | Demographic characteristics of HF children with ASD who
Switched A Type or Nota.

Switched (n = 20) Did Not Switch (n = 29)

Characteristic Mean (SD) Mean (SD)

Age (years) 10.40 (1.54) 9.86 (1.71)

Parent education (years) 15.87 (1.99) 15.57 (1.62)

WISC-IV Short Form IQ 112.08 (13.58) 108.37 (13.29)

Verbal IQ (VCI) 109.19 (14.35) 107.39 (14.16)

Performance IQ (PRI) 113.46 (13.19) 105.58 (13.90)

CASL

Expressive language 105.90 (13.90) 105.14 (14.77)

Receptive language 108.63 (14.29) 108.71 (13.29)

ADI-R

QARSI 20.13 (4.76) 21.96 (4.24)

QAC 16.06 (4.69) 16.37 (3.05)

RRSB 5.88 (3.28) 6.70 (2.25)

n (% of total) n (% of total)

Gender

Male 17 (85.0) 26 (89.7)

Female 3 (15.0) 3 (10.3)

Ethnicity

Caucasian 18 (90.0) 27 (93.1)

African American 2 (10.0) 2 (6.9)

aWISC-IV, Wechsler Intelligence Scale for Children-4th Edition; CASL,
Comprehensive Assessment of Spoken Language; ADI-R, Autism Diagnostic
Interview-Revised (QARSI, Qualitative Abnormalities in Reciprocal Social
Interactions; QAC, Qualitative Abnormalities in Communication; RRSB, Restricted,
Repetitive, and Stereotyped Patterns of Behavior). CASL and ADI-R data only
collected for children in the ASD group as a screening measure for the social
treatment study.
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FIGURE 5 | Average endorsement proportions of Prototype, L2, L3, L4,
L5, L7 and Random images during testing for 20 simulations of TD
children, 20 simulations in which the overall performance of HF children
with ASD was modeled using a reduced learning rate (LR) and 20

simulations in which ASD performance was modeled using negative
weight decay (NWD) in four conditions: (A) Repeated; (B) High
Distortion; (C) Blurry; and (D) Unique. Note that model parameter settings
were selected only for the Repeated condition and fixed for all other conditions.

Neural Network Simulations
In the Repeated condition, TD model endorsement rates
were slightly higher than the rates produced by models
with a reduced LR or NWD (Figure 5A). The difference
between TD and ASD endorsement rates decreased as
distortion level increased. False positive endorsements were
approximately the same for all simulations. Note that for this
training regimen, the LR or NWD parameter was chosen to
qualitatively match the patterns of generalization observed
behaviorally.

In the High Distortion (Figure 5B) and Blurry (Figure 5C)
training conditions, endorsement rates for the TD model
were also slightly higher than ASD endorsement rates, with
the exception of L7 and Random endorsement rates, which
were comparable between groups. Interestingly, the simulations
predicted that the Blurry condition should lead to the smallest
between-group differences, a prediction that was qualitatively
consistent with the behavioral results (compare Figure 5 with
Figure 3).

Both reduced LR and NWD models produced lower
endorsement rates than the TD model in the Unique
training condition (Figure 5D), as in the Repeated
condition. Again, the discrepancy between TD and ASD
endorsements decreased with increasing distortion levels.
Increasing the number or variability of training trials did not
significantly affect generalization by models, as was observed
behaviorally.

Endorsements associated with A Type II generalization were
so low (Figure 4) that untrained NNs produced a generalization
pattern that roughly approximated the pattern seen behaviorally.
However, the overall endorsement rates of these networks were
consistently lower than those associated with the A Type II

profile. Training networks for a single epoch at a LR of 6.00E-
04 produced endorsement rates comparable to the A Type II
profile at all stimulus levels (although the combination of low
LR and little training led to high variability in generalization
across networks). Using a single epoch of training, a reasonable
approximation to A Type I/TD generalization was produced with
a LR of 0.1. Combining the two NN generalization profiles using
a weighted average in which there were slightly fewer A Type II
models (N = 6) than A Type I models (N = 7) produced a group-
level generalization pattern similar to that observed in the current
behavioral experiment in which the prototype was endorsed at
levels comparable to (or slightly less than) distorted prototypes.
Thus, the two-subgroup instantiation of the connectionist model
provided a better approximation of the atypical generalization
patterns observed in HF children with ASD than was possible
with models that assumed a uniform performance pattern across
these children (replicating the results of Dovgopoly andMercado,
2013).

Discussion

The current results confirm the findings of Church et al. (2010,
2015) that subsets of HF children with ASD show degraded
learning and generalization when trained to categorize novel
abstract shapes. When children with ASD ran into difficulties,
they showed much less generalization than was shown by TD
children. The “subgroups” of children with ASD who showed
category-learning deficits did not differ systematically in terms of
IQ measures, diagnostic classifications, or language abilities from
those who performed like TD children. In fact, when required to
perform the same category-learning task using slightly different
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shapes, many children with ASD switched from being atypical
performers to typical performers or vice versa. Such fluctuations
in performance may partly account for the mixed findings
regarding category-learning deficits in individuals with ASD.

Heterogeneity in Visual Category Learning and
Generalization
The current data show that HF children with ASD who are
faced with identical visual category learning tasks can differ
dramatically in what they learn (see also Molesworth et al.,
2008; Church et al., 2010, 2015; Charman et al., 2011; Froehlich
et al., 2012; Schipul, 2012). What distinguishes the child with
ASD who easily learns a perceptual category from one who
runs into problems? To date, no specific cognitive correlate
has been identified that reliably predicts which individuals with
ASD will have problems learning perceptual categories (Church
et al., 2010; Vladusich et al., 2010; Soulières et al., 2011).
Perhaps the simplest explanation for the observed variations
in performance is that some children with ASD were less
engaged during training or testing (i.e., children with ASD who
were not engaged by the task performed poorly). Although
this interpretation is difficult to rule out based on behavioral
observations alone, it fails to explain why so many children
and adults with ASD across multiple studies are not engaged by
category-learning tasks when TD individuals have no problems
performing those same tasks. Nor does it explain why when
HF children with ASD are showing abnormal learning, they
are not showing more behavioral manifestations of inattention,
distraction, or lack of engagement than when their learning is
comparable to TD children. Furthermore, to account for the
dichotomous generalization profiles shown here and in earlier
work (Church et al., 2010, 2015), one would have to assume that
HF children with ASD rarely show intermediate levels of task
engagement when learning to categorize abstract shapes, because
these children did not show intermediate performance levels.

Various factors might lead a child to perform poorly in
a computer-based category-learning task. A child’s attention
might wander during the training session. Some children might
misunderstand the instructions or might fixate on features of
shapes that are irrelevant to task performance. Others might
have specific cognitive deficits, such as executive dysfunction,
that interfere with task learning. Such factors provide plausible
post hoc accounts of why subsets of children (and adults) with
ASDmight have difficulty learning visual categories. Importantly,
however, such accounts fail to explain why subsets of individuals
with ASD are intermittently more prone to such problems than
are TD individuals. If a child with ASD has impaired executive
functions or perceptual abilities, then it is unclear why those
dysfunctions would negatively affect category learning for some
shapes, but not others. Similarly, if a child is able to successfully
learn to categorize shapes in one task, it seems unlikely that any
confusion about instructions would arise when they are later
asked to perform the same task with different shapes. Given
the similarity of atypical generalization profiles across multiple
category learning tasks and participant samples, it seems likely
that common issues are leading to difficulties in many children
with ASD. What those specific issues are remains unknown,

but the current evidence suggests that they are not omnipresent
differences in executive control, task understanding, social skills,
or perceptual biases.

Past investigations of visual category learning by individuals
with ASD have focused on determining how well these
individuals learn to perform various categorization tasks relative
to TD individuals (Klinger and Dawson, 2001; Bott et al., 2006;
Molesworth et al., 2008; Gastgeb et al., 2009, 2012; Church et al.,
2010; Vladusich et al., 2010; Soulières et al., 2011; Froehlich et al.,
2012). Results from the current study show that for HF children
with ASD, within-individual variations in category learning
performance can be as large as those observed between children
with and without ASD. Essentially what this means is that a child
with ASD might show considerable learning and generalization
after training with one set of abstract shapes, little generalization
when subsequently trained to categorize different abstract shapes,
and typical learning and generalization when trained with a
third or fourth set of shapes. Consequently, the A Type I and A
Type II classifications apparently do not distinguish subgroups of
children with ASD, but instead correspond to two characteristic
performance profiles, both of which could potentially be shown
by a single child with ASD within a single experimental session.
The factors that might lead a child with ASD to switch from
atypical learning and generalization to more typical learning
(or vice versa) are unknown. Future studies examining within-
individual variations in category learning for both children and
adults with ASD are needed to better understand when and why
difficulties in category learning and generalization arise.

Within-individual variations in category learning and
generalization by children with ASD might reflect a particular
stage or mode of cognitive development. For example, when TD
children learn new mathematical skills, their performance can
fluctuate dramatically across problems that differ only slightly
(Siegler, 1987, 1996). It is not known when category-learning
abilities are fully developed in either TD children or in children
with ASD, making it difficult to determine when such variability
might be present in either group. There have been no studies
of category learning in younger children diagnosed with ASD.
Longitudinal studies involving repeated training and testing of
multiple category learning tasks by children with ASD beginning
during the pre-school years are critical to assessing the prevalence
and consistency of category learning deficits. Experiments on
adults may underestimate the prevalence of category learning
deficits in children with ASD, because adults are familiar with a
larger number and variety of categories that can potentially help
them to learn new categories.

To our knowledge, no existing models of category learning by
children with ASD can predict or explain the dramatic within-
individual fluctuations in performance observed in the current
study. One could question whether it is the category learning
performances of the children that are varying, or whether
the methods used to measure their performance are simply
unreliable. The category learning tasks used in the current study
were selected because other researchers have used these tasks
extensively over several decades. If these methods give reliable
results for TD individuals, but not for individuals with ASD,
then this would still indicate that category learning processes
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differ between these two groups in some way that has yet to be
explained. In the following, we evaluate possible explanations
for these findings in the context of current theories of category
learning as well as neural mechanisms that might give rise to
atypical learning, perception, and generalization in individuals
with ASD.

Implications for Current Neurally Based
Theories of ASD
Neurally based accounts of perceptual processing deficits in ASD
have pointed to effects of atypical cortical connectivity (Just
et al., 2004, 2012; Kana et al., 2011), degraded functioning of the
dorsal/magnocellular system (Spencer et al., 2000), minicolumn
pathology (Casanova et al., 2002, 2006), and disrupted neural
excitation and inhibition (Rubenstein and Merzenich, 2003;
Yizhar et al., 2011), as likely sources of dysfunction. More
generally, neuroscientists have proposed that many of the
behavioral symptoms associated with ASD result from cortical
dysfunction (Rubenstein and Merzenich, 2003; Markram and
Markram, 2010; LeBlanc and Fagiolini, 2011), and abnormal
synaptic function (Ramocki and Zoghbi, 2008; Bourgeron, 2009;
Auerbach et al., 2011; Schmeisser et al., 2012). None of these
theories predicts or explains why subsets of children with ASD
might differ dramatically in their ability to learn perceptual
categories, and all implicitly predict that if a child with ASD
shows deficits in learning to categorize abstract shapes, then
training the child with different shapes or training regimens is
unlikely to overcome this deficit.

Proponents of neurally based theories of ASD-related deficits
generally focus on explaining how abnormalities in various brain
regions contribute to core symptoms, providing only broad
suggestions about why children with ASD are so behaviorally
heterogeneous (Rubenstein and Merzenich, 2003; Grossberg
and Seidman, 2006; Markram and Markram, 2010; Just et al.,
2012). Past attempts to link dysfunction in specific brain
regions to specific cognitive deficits seen in ASD have led
to mixed results, with some investigators reporting structural
abnormalities in various regions, and others reporting that
those same regions do not differ from what is seen in TD
individuals (Waterhouse et al., 1996; Penn, 2006; Markram
and Markram, 2010; Schroeder et al., 2010; Lenroot and
Yeung, 2013; Waterhouse, 2013). Grossberg and Seidman (2006)
argued that the involvement of multiple, abnormally functioning
brain regions during development leads to the behavioral
heterogeneity associated with ASD (see also Lee et al., 2003).
Just et al. (2012) similarly suggested that the heterogeneity
of atypical neural connections accounted for symptomatic
heterogeneity. Rubenstein and Merzenich (2003) attributed
ASD-related behavioral heterogeneity to the heterogeneity of
underlying genetic factors (see also Folstein and Rosen-Sheidley,
2001; Jeste and Geschwind, 2014). Individuals with ASD do
show heterogeneous patterns of neural connectivity and activity
(Salmond et al., 2007; Byrge et al., 2015; Hahamy et al., 2015),
consistent with these proposals. Such neural variability likely
contributes to individual differences in symptoms and might also
lead to differences in category learning abilities. However, neither
genetic nor neural heterogeneity adequately accounts for why a

child with ASD might show typical category learning capacities
for some shapes but not others.

Simulations using an existing NN model of visual object
recognition (Henderson and McClelland, 2011) suggest that
atypical category learning and generalization may reflect
dysfunctional neural plasticity or homeostasis (Dovgopoly and
Mercado, 2013). Several other computational models have
been developed to simulate the effects of ASD-related neural
abnormalities on behavior (O’Laughlin and Thagard, 2000;
Bjorne and Balkenius, 2005; Grossberg and Seidman, 2006;
Noriega, 2007; Thomas et al., 2011; Just et al., 2012), but no
other model predicts the quantitative outcomes of particular
category learning tasks. Dovgopoly and Mercado’s (2013) NN
model successfully predicted how children with ASD would
generalize when trained to categorize specific sets of abstract
shapes (Church et al., 2015), as well as how children would
generalize when trained using different regimens (current study).
Despite these successes, the NN model can only account for
within-individual fluctuations in category-learning capacity by
introducing the auxiliary assumption that neural plasticity varies
greatly over relatively short periods in HF children with ASD.
This assumption is consistent with past findings of dysfunctional
cholinergic modulatory systems in the basal forebrains of
individuals with ASD (Perry et al., 2001; Riva et al., 2011; Suzuki
et al., 2011). However, given the dearth of data on the dynamics
of basal forebrain activity in children with or without ASD,
such an assumption must be viewed as a highly speculative
prediction/hypothesis.

Conclusion

The current findings suggest an alternative explanation for
why past studies of category learning by individuals with ASD
have produced such mixed results. Namely, individuals with
ASD may be much more sensitive to the specific experimental
conditions used in category learning experiments than are
TD individuals, and the conditions that disrupt or facilitate
category learning may vary idiosyncratically across individuals
with ASD. Heterogeneity in the capacities and sensitivities of
individuals with ASD is not specific to category learning and
can be observed in social impairment (Waterhouse, 2013), as
well as in physiological responses (e.g., Hirstein et al., 2001).
Although such heterogeneities in deficits within and across
individuals with ASD are widely recognized by researchers, the
possibility that comparable performance variations might also
be present within particular cognitive capacities does not appear
to have been examined or discussed in past work. Refinements
in experimental design that take into account possibly large,
systematic variations in performance by children with ASD are
needed to better understand how neural abnormalities contribute
to the development of heterogeneous symptoms (Georgiades
et al., 2013).

Our results highlight the importance of theoretical guidance
when developing interventions that aim to facilitate learning
and generalization in children with ASD. The current findings
indicate that it may be quite difficult to predict when a particular
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child with ASD will run into difficulties forming categories
from repeated experiences, and that events that a typical child
might readily perceive as being similar to or different from
past experiences might not be perceived similarly by a child
with ASD. Conversely, a child with ASD might be acutely
aware of differences between stimuli or events that a TD
child or adult would not notice, which might significantly
affect what that child learns about the world. Given that
many fundamental perceptual and conceptual categories are
formed during early development, understanding how, when,
and why category learning and generalization processes fail
in children with ASD may prove crucial to understanding
how the negative effects of ASD might best be circumvented.
An important lesson from the current study is that children
with ASD who run into difficulties in a particular learning
context may show unsuspected capacities when given the

opportunity to learn the same skill under slightly different
circumstances.
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