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We have previously demonstrated differences in eye-position spatial maps for anterior

inferotemporal cortex (AIT) in the ventral stream and lateral intraparietal cortex (LIP)

in the dorsal stream, based on population decoding of gaze angle modulations of

neural visual responses (i.e., eye-position gain fields). Here we explore the basis of such

spatial encoding differences through modeling of gain field characteristics. We created

a population of model neurons, each having a different eye-position gain field. This

population was used to reconstruct eye-position visual space using multidimensional

scaling. As gain field shapes have never been well-established experimentally, we

examined different functions, including planar, sigmoidal, elliptical, hyperbolic, and

mixtures of those functions. All functions successfully recovered positions, indicating

weak constraints on allowable gain field shapes. We then used a genetic algorithm to

modify the characteristics of model gain field populations until the recovered spatial

maps closely matched those derived from monkey neurophysiological data in AIT and

LIP. The primary differences found between model AIT and LIP gain fields were that AIT

gain fields were more foveally dominated. That is, gain fields in AIT operated on smaller

spatial scales and smaller dispersions than in LIP. Thus, we show that the geometry

of eye-position visual space depends on the population characteristics of gain fields,

and that differences in gain field characteristics for different cortical areas may underlie

differences in the representation of space.

Keywords: macaque monkey, spatial representation, population coding, active vision, dimensionality reduction,

eye movements

INTRODUCTION

Changes in gaze angle can modulate visual responses of neurons in many brain structures and
are often summarized by eye-position (EP) gain fields. Gain fields were originally reported in
posterior parietal cortex, including areas 7a and lateral intraparietal cortex (LIP; Lynch et al.,
1977; Sakata et al., 1980; Andersen and Mountcastle, 1983). Their presence was subsequently
found to be widespread, perhaps even ubiquitous, in cortical areas related to both dorsal
and ventral visual streams. In addition to confirmations of the presence of gain fields in
LIP or area 7a (Andersen et al., 1985, 1990b; Squatrito and Maioli, 1996; Siegel et al.,
2003; Morris et al., 2013; Sereno et al., 2014), gain fields have also been found in V1
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(Weyand and Malpeli, 1993; Guo and Li, 1997; Trotter and
Celebrini, 1999; Rosenbluth and Allman, 2002; Durand et al.,
2010; Merriam et al., 2013; Strappini et al., 2015),V2 (Rosenbluth
and Allman, 2002; Merriam et al., 2013; Strappini et al., 2015),
V3 (Galletti and Battaglini, 1989; Merriam et al., 2013), V4
(Bremmer, 2000; DeSouza et al., 2002; Rosenbluth and Allman,
2002), V5 (MT; Boynton et al., 1996; Bremmer et al., 1997;
DeSouza et al., 2002; Merriam et al., 2013; Morris et al., 2013),
V6 (Galletti et al., 1995), V6A (Breveglieri et al., 2009), MST

(Squatrito and Maioli, 1996; Bremmer et al., 1997; Morris
et al., 2013), ventral intraparietal cortex (VIP; Duhamel et al.,
1997; Morris et al., 2013), anterior inferotemporal cortex (AIT;
Nowicka and Ringo, 2000; Lehky et al., 2008; Sereno et al.,
2014), frontal eye field (FEF; Cassanello and Ferrera, 2007),
supplementary eye field (SEF; Schall, 1991; Schlag et al., 1992),
dorsolateral prefrontal cortex (Takeda and Funahashi, 2002),
ventrolateral prefrontal cortex (Boussaoud et al., 1993), dorsal
premotor cortex (Boussaoud et al., 1998), ventral premotor

cortex (Boussaoud et al., 1993), and the hippocampus (Nowicka
and Ringo, 2000). Eye-position modulations also exist in some
non-cortical areas involved in visual processing, namely the
dorsal lateral geniculate nucleus (LGN; Lal and Friedlander,
1989, 1990) and the superior colliculus (Van Opstal et al., 1995;
Stuphorn et al., 2000; Campos et al., 2006).

Eye-position modulations of visual responses are generally
believed to play a key role in building spatial representations
of the world. The wide range of brain structures showing gain
fields indicate that such spatial representations are not merely
important for visuomotor control in the dorsal visual stream,
as dominates current thinking. Gain fields in the ventral stream
are likely to have other purposes, such as providing spatial
information about objects and scenes to prefrontal cortex for
working memory or cognitive control (e.g., spatial problem
solving), as well as spatial encoding of objects and scenes into
longer-term memory, necessary for recognition.

Zipser and Andersen (1988) showed through neural modeling
that gain fields could be used to compute a coordinate
transform from retinotopic space to head-centered space, thereby
constructing a head-centered spatial representation of stimulus
locations across eye movements. This has remained a common
interpretation of the function of gain fields, as has been
elaborated in various theoretical studies and reviews (Andersen
et al., 1993; Pouget and Sejnowski, 1997; Pouget and Snyder,
2000; Salinas and Thier, 2000; Snyder, 2000; Salinas and Abbott,
2001; Salinas and Sejnowski, 2001; Cassanello and Ferrera,
2007). While eye-position gain fields are sufficient to transform
space from retina- to head-centered coordinates, getting to an
allocentric spatial representation using the coordinate transform
approach would require additional transformations taking
various body postures into account (for example, head position
through neck proprioceptors, and overall body position through
vestibular input).

Pursuing a somewhat different approach, rather than (or in
addition to) using gain fields to compute a coordinate transform
of the visual field, it is also possible to compute gaze angle
directly, by applying population decoding methods to a neural
population containing a diversity of gain fields (Bremmer et al.,

1998; Boussaoud and Bremmer, 1999; Merriam et al., 2013;
Morris et al., 2013; Graf and Andersen, 2014; Sereno et al.,
2014). This alternative approach is significant because calculating
gaze angle is equivalent to determining the spatial location of a
stimulus at fixation in head-centered coordinates. Assuming a
fixed body and head position while scanning across the visual
field and holding the positions of successively fixated targets in
a memory buffer, the relative positions of targets across a scene
(i.e., an allocentric representation) can easily be determined (e.g.,
imagine here a primate sitting in a tree as opposed to a rat
rummaging through a garbage strewn alley).

The approach taken in this modeling study to decoding
populations of gain fields capitalizes on the information
inherent in these relative positions. Specifically, the approach
applies multidimensional scaling (MDS), an intrinsic method of
population decoding (Lehky et al., 2013), to extract relative eye
positions from the responses of gain field populations, keeping
stimulus retinal position constant. This modeling builds on
previous experimental work using MDS to decode and make a
first comparison of spatial encoding derived from populations of
gain fields from dorsal and ventral stream neurons (Sereno et al.,
2014).

This approach is also conceptually analogous to previous
experimental (Sereno and Lehky, 2011) and modeling (Lehky
and Sereno, 2011) studies using MDS to extract retinotopic
positions (rather than eye positions as is done here) from
populations of receptive fields (rather than gain fields), keeping
eye position constant. When measuring gain fields the stimulus
retinotopic position is held fixed while eye position changes,
while when measuring receptive fields eye position is held fixed
while stimulus retinotopic position changes.

This approach using MDS differs fundamentally from that
taken in a number of previous studies that have used extrinsic
decoding methods on gain field populations, such as Bayesian
estimation or maximum likelihood estimation (Bremmer et al.,
1998; Boussaoud and Bremmer, 1999; Merriam et al., 2013;
Morris et al., 2013; Graf and Andersen, 2014). The differences
between intrinsic and extrinsic population methods have been
discussed in Lehky et al. (2013). For present purposes, perhaps
the most noteworthy difference is that intrinsic approaches
decode space relationally in a holistic manner, constructing
global spatial maps in terms of relative positions, whereas
extrinsic methods find absolute positions in an atomistic manner,
dealing with each position in isolation from all others.

At present, despite the wide range of brain structures in which
gain fields occur, the shapes of gain fields have not been well-
defined experimentally, as they have not been measured at high
resolution using a large sampling of gaze angles. Although often
described as being planar (e.g., Andersen et al., 1993; Bremmer
et al., 1998; Boussaoud and Bremmer, 1999), examination of the
published data makes it clear that a large majority have more
complicated shapes than that. A typical result is the report by
Andersen et al. (1985) in which just 39% of gain fields were
well fit by a planar regression model. Despite the popularity of
planar descriptions, reports of non-monotonic gain fields are
commonplace (Sakata et al., 1980; Lal and Friedlander, 1989;
Andersen et al., 1990a; Galletti et al., 1995; Squatrito and Maioli,

Frontiers in Integrative Neuroscience | www.frontiersin.org 2 January 2016 | Volume 9 | Article 72

http://www.frontiersin.org/Integrative_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Integrative_Neuroscience/archive


Lehky et al. Gain Fields Determine Visual Space

1996; Rosenbluth and Allman, 2002; Breveglieri et al., 2009) and
modeling using non-monotonic gain fields has been performed
by Breveglieri et al. (2009). Moreover, the gain fields developed
by the Zipser and Andersen (1988)model appear to have a variety
of complex shapes that could only be described as planar under a
very crude approximation.

Given the lack of precise knowledge about gain field shapes,
this modeling study has two major goals. The first goal is
to examine how gain field shape affects eye-position spatial
representations in general. The strategy will be to compare the
recovery of eye positions using several broad categories of gain
fields (both monotonic and non-monotonic).

The second goal is to compare model gain field parameters
that best explain eye-position spatial maps derived from monkey
data (Sereno et al., 2014) obtained from a dorsal stream structure
(LIP) and a ventral stream area (AIT). Sereno et al. (2014) found
differences between cortical areas in the accuracy with which
eye-position visual space could be decoded from populations
of gain fields. LIP represented space more accurately than AIT.
This difference may relate to functional requirements in the
encoding of space needed for guiding visuomotor behaviors vs.
object or scene recognition and memory, respectively. Through
modeling, we hope to elucidate the key differences in gain fields
in dorsal and ventral streams that may prove a crucial first step
to better understanding encoding differences in these two major
visual processing streams. When examining the LIP and AIT
data for goal 2, in addition to MDS we use a genetic algorithm
as a data-fitting procedure to help identify what particular gain
field characteristics best explain dorsal and ventral spatial maps
derived from monkey data.

Given the wide range of brain areas in which gain fields occur,
it is likely that spatial representations will differ across those
areas, particularly if structures are associated with fundamentally
different functions (e.g., dorsal and ventral visual streams).
Consequently it seems probable that gain fields in different areas
will have different characteristics. Understanding how gain field
properties affect spatial representations may provide insight into
how space is being used in different cortical regions.

METHODS

Synthetic data for modeling was generated as follows. At a
particular eye position, the gain field of a model neuron defines
the response to a stimulus. A population of model neurons, each
with a different gain field, produces a response vector for a given
eye position. The number of elements in the response vector
is equal to population size. Changing eye position, but keeping
the neural population the same, the stimulus the same, and the
retinal location of the stimulus the same produces a different
response vector, because the response of each gain field depends
on eye position. Holding everything constant except eye position
ensures that changes in response vectors were due entirely to
changes in eye position. Stimulus responses of model neurons
were deterministic, without noise.

The set of neural response vectors for different eye positions
collectively served as input to a multidimensional scaling (MDS)
analysis that recovered eye positions. For example, if population
response vectors were determined at 20 eye positions, the MDS

analysis would determine the relative locations of those 20
positions in a low dimensional space. Because of the diversity of
gain fields within the population, relative responses of neurons in
the population change for different eye positions, thus allowing
for a population decoding of eye position. This MDS analysis
was identical to that which we previously carried out on actual
neurophysiological data on gain fields (Sereno et al., 2014), but
here we apply it to synthetic data in which the properties of the
gain fields could be precisely specified to determine their effect
on spatial coding.

Multidimensional Scaling
We performed MDS using the cmdscale command in the
Matlab Statistics and Machine Learning Toolbox. For our
investigations, we used a standard set of 32 eye positions (EPs).
These were arranged in a polar coordinate bull’s eye pattern
with four concentric circles of EPs, and eight EPs in each circle
(Figure 1). Therefore, the data analyzed by MDS was a set of 32
response vectors.

The first step was to calculate themagnitude of the distances or
differences between each response vector. All vector differences
are placed in a distance matrix. For 32 response vectors, all
possible differences between them will form a 32 × 32 distance
matrix.When calculating the distances between response vectors,
a variety of distancemeasures could be used.We use a correlation
measure of distance, d = 1 − r, where r is the correlation
coefficient between the elements of two response vectors, as
previously described (Lehky and Sereno, 2007).

The distance matrix serves as the input to the MDS algorithm
itself (Shepard, 1980; Borg and Groenen, 2010). MDS is a
dimensionality reduction algorithm. It takes high-dimensional
input and produces a low-dimensional approximation in which
values of the distance matrix are kept as close as possible to the
original distance matrix.

For example, if there are 500 model neurons in the encoding
population, then each eye position is originally represented as
a point in a 500-dimensional space. With 32 eye positions, that
would be 32 points in a 500-dimensional space.We can’t visualize
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FIGURE 1 | Set of 40 eye positions used in our examination of the

representational capabilities for various kinds of gain fields.
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what is being represented in a 500-dimensional space, so MDS
reduces the dimensionality subject to the constraint that changes
in distance relationships amongst the 32 points are minimized.
Because the physical eye positions were in 2D on a flat display,
it is particularly useful to use MDS to reduce the neural model’s
representation of eye position from a high-dimensionality space
down to a 2D approximation. That way the physical space
and the neural representation of space in the model can be
readily compared. For our analysis, MDS, as a dimensionality
reduction technique, reduced the original neural representation
of 32 eye positions in some high dimensional space (equal to
model neuron population size) down to 32 eye positions in a
2D space. That allowed us to determine how accurately the eye
positions were being represented in the high-dimensional neural
space.

Procrustes Transform
It is important to be able to measure the accuracy of a neural
representation. Within extrinsic population coding (Bayesian
estimation, etc.; Lehky et al., 2013), accuracy is calculated by
comparing the difference between physical and decoded eye
positions for individual locations. Within intrinsic population
coding such as MDS, accuracy is measured as distortion in
the relative positions of multiple points, in a global or holistic
fashion. A way to measure accuracy in population decoding in
MDS is to use the Procrustes transform (Gower and Dijksterhuis,
2004; Borg and Groenen, 2010). The Procrustes transform is a
mathematical technique used to indicate how closely the relative
positions of two sets of points match each other (in this case,
physical eye positions and the neural representations of eye
positions). We used the procrustes command in the Matlab
Statistics and Machine Learning Toolbox. Since we are interested
in relative positions, we don’t care if one set of points has
been linearly scaled, translated, rotated, or reflected relative to
the other, since none of those linear transforms affects relative
positions. On the other hand, we are interested if one set of
points is a non-linear distortion of the other set (for example,
comparing a circle of points with a slightly kidney-shaped set
of points). The Procrustes transform is a linear transform that
minimizes the difference between two sets of points. After the
Procrustes transform finds the best linear fit between two sets
of points, then the residual difference between the two sets can
be quantified to give a global measure of error between physical
eye positions and their neural representation. The global error
measure we use is called the stress between the two sets of points,
defined as:

Stress =

√

√

√

√

√

√

√

∑

i

∑

j

(

dij − d̂ij

)2

∑

i

∑

j

(

dij −
〈

dij
〉)2

(1)

In the equation, dij is the physical Euclidean distance between

eye positions i and j, d̂ij is the distance recovered by MDS
from the neural population representation, and 〈·〉 is the mean
value operator. Small stress values indicate small error in the
representation, or a high degree of accuracy.

Gain Fields
We tested several general categories of gain field shapes: planar,
sigmoidal, elliptical, hyperbolic, and complex. Complex gain
fields were mixtures of other gain field categories.

Planar Gain Fields
The equation for a planar gain field was:

rp =

(

1

σ

(

−x sin (θ) + y cos (θ) − δa
)

+ 1

)/

2 (2)

This defined a tilted 3D plane, with x and y specifying eye
position, and the response firing rate rp forming the third (color-
coded) dimension (Figure 2A).

The space constant of the gain field was given by σ , the
reciprocal slope of the plane. It is a measure of how rapidly
responses change within the gain field. We parameterize planar
gain fields in terms of space constant rather than slope in order
to keep terminology and mathematical notation the same as with
other classes of gain fields, such as elliptical paraboloids, which
cannot be simply parameterized in terms of a slope parameter.
Gain field orientation was given by θ in degrees. Orientation was
defined by the gain field axis within the x-y plane showing the
slowest rate of change. For planar gain fields, orientation was the
orientation of the iso-response contours. The parameters σ and
θ are equivalent to specifying the elevation and azimuth of the
gain field in spherical coordinates. The third parameter δa was the
absolute translation of the gain field in degrees, in the direction
orthogonal to the orientation θ (the subscript a indicates absolute
translation). Translation defines the position where the midpoint
of the firing range occurs, which is 0.5, with firing range defined
over the population rather than individual neurons. When δa is
zero, the gain field response has a value of 0.5 at central fixation
(eye position x = 0, y = 0). In Equation (2), adding 1 and
dividing by 2 sets the value of 0.5 at central fixation for the
untranslated gain field. Several example planar gain fields with
various parameter values are shown in Figure 2B.

A variant of the planar gain field with relative translation
rather than absolute translation was specified by the following
equation:

rp =

(

1

σ

(

−x sin (θ) + y cos (θ)
)

− δr + 1

)/

2 (3)

Here the translation parameter δr (with subscript r to specify
relative) was not specified in degrees, but rather relative to the
value of the space constant parameter σ . For example, δr = 0.5
means that the translation was 0.5 times the value of σ . Thus,
this enforced a correlation between the space constant of the
gain field and its translation: within a population, gain fields with
small space constants had small translations while gain fields with
large space constants had large translations. We found for planar
gain fields that the version with relative (correlated) translations
(Equation 3) was able to reconstruct eye-position visual space
slightly more accurately than absolute translations (Equation 2).

We created a diverse population of 10,000 gain fields by
generating random values for the parameters. The space constant
parameter σ was uniformly distributed over the range 4–40 (i.e.,
slope values of 0.25–0.025). The orientation parameter θ was
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FIGURE 2 | Example planar gain fields. (A) Three dimensional view.

Response is a function of x and y coordinates of eye position, and is indicated

by a color code along the z-axis. (B) Additional examples of planar gain fields,

for different values of three parameters space constant, orientation, and

translation, denoted by σ , θ , and δ, respectively in Equation (3). Relative

translations are being used. Here the viewpoint is looking straight down the

response axis, with the response level indicated by a color code. The dashed

line indicates response values equal to 0.5. The translation parameter δ

translates the position where the r = 0.5 line occurs. The array of small circles

indicates set of eye positions at which the gain field was sampled for

computing multidimensional scaling population decoding of eye position,

corresponding to the positions shown in Figure 1.

uniformly distributed on a linear scale over the range 0–360.
The translation parameter δr set in relative terms, was uniformly
distributed on a linear scale over the range −1.0 to 1.0 using
Equation (3).

Sigmoidal Gain Fields
Sigmoidal gain fields had a sigmoidal cross section, but were
otherwise similar to planar gain fields (compare Figures 2A, 3).
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FIGURE 3 | Example of a sigmoidal gain field, in three-dimensional

view.

The equation for a sigmoidal gain field was:

rs =

(

erf

[

1

σ

(

−x sin (θ) + y cos (θ) − δa
)

]

+ 1

)/

2 (4)

where translation δa was in absolute terms (in degrees). This is
the same as that for a planar one, except for the addition of an
error function erf transform (which is the integral of a Gaussian
function) to provide the sigmoidal shape. When translation was
in relative terms (relative to σ ), the equation was:

rs =

(

erf

[

1

σ

(

−x sin (θ) + y cos (θ)
)

]

− δr + 1

)/

2 (5)

Parameter values for the sigmoidal gain field population were
randomly distributed in the same manner described above for
planar gain fields, with the population size again being 10,000.

Elliptical Paraboloid Gain Fields
Gain fields with an elliptical paraboloid shape were given by:

re = 1− erf

[

(

1

σ

(

x cos (θ) + y sin (θ) − cos (θ − φ) δa
)

)2

+ ρ

(

1

σ

(

−x sin (θ) + y cos (θ) + sin (θ − φ) δa
)

)2
]

(6)

with absolute translations δa and:

re = 1− erf

[

(

1

σ

(

x cos (θ) + y sin (θ)
)

− cos (θ − φ) δr

)2

+ ρ

(

1

σ

(

−x sin (θ) + y cos (θ)
)

+ sin (θ − φ) δr

)2
]

(7)
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with relative translations δr . These equations have the general
elliptical form r = Ax2+By2, elaborated to include rotations and
translations. The elliptical paraboloids were defined to be convex
(peaks) rather than concave (valleys).

Elliptical paraboloid gain fields included the same parameters
σ , θ , and δ as the planar and sigmoidal gain fields. They also
had two additional parameters. The first was translation direction
φ in degrees. (Planar and sigmoidal gain fields can’t have a
variable translation direction because one axis is constant and a
translation component along that axis causes no change, forcing
the translation direction to always be orthogonal to the constant
axis.) The second additional parameter was the ratio ρ of the
major axis to minor axis.

For elliptical paraboloid gain fields, the space constant σ was
set with a uniform random distribution over the range 20–60, and
orientation θ (orientation of the major axis) was set uniformly
over the range 0–360. Translation was defined in absolute terms
(Equation 6), with δa uniformly distributed over the range −15
to 15. Using relative translation (Equation 7) rather than absolute
translation gave better results for elliptical paraboloid gain fields.
Translation direction φ was set orthogonal to the orientation of
the major axis (i.e., φ = θ + 90). The axis ratio parameter ρ was
uniformly distributed over the range 1–5.

Elliptical paraboloids were transformed by a sigmoidal
error function in order that its values were bounded in the
range [0 1], which distorts the shape slightly from a pure
paraboloid. Figure 4A shows example elliptical paraboloid gain
fields.

Hyperbolic Paraboloid Gain Fields
Hyperbolic paraboloid gain fields were given by:

rh =

(

erf

[

(

1

σ

(

x cos (θ) + y sin (θ) − cos (θ − φ) δa
)

)2

− ρ

(

1

σ

(

−x sin (θ) + y cos (θ) + sin (θ − φ) δa
)

)2
]

+ 1

)/

2 (8)

with absolute translations δa and:

rh =

(

erf

[

(

1

σ

(

x cos (θ) + y sin (θ)
)

− cos (θ − φ) δr

)2

− ρ

(

1

σ

(

−x sin (θ) + y cos (θ)
)

+ sin (θ − φ) δr

)2
]

+ 1

)/

2 (9)

with relative translations δr . These equations have the general
hyperbolic form r = Ax2 − By2, again elaborated to
include rotations and translations. The parameters for hyperbolic
paraboloids have the same meanings as for elliptical paraboloids,
and the hyperbolic population had the same range of parameter
values as the elliptical one. Figure 4B shows example hyperbolic
paraboloid gain fields.

Complex Gain Fields
We created complex gain fields by combining sigmoidal (rs),
elliptical (re), and hyperbolic (rh) gain fields:
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FIGURE 4 | Example gain fields. (A) Elliptical paraboloid gain fields. (B) Hyperbolic gain fields.
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rc =
1

3
(rs + re + rh) (10)

Combining three gain field categories in this manner means
that each complex gain field had 13 parameters. For all three
components, the space constant parameter σ was uniformly
distributed over the range 4–60, and the orientation parameter
θ was uniformly distributed over the range 0–360. We used
the absolute translation parameter δa for all three components,
which was uniformly distributed over the range −15 to
15. For the additional two parameters in the elliptical and
hyperbolic components, the translation direction parameter φ

was orthogonal to the orientation of the major axis (φ = θ +

90), and the axis ratio parameter ρ had a uniform random
distribution over the range 1–5. Figure 5 shows example complex
gain fields.

Using a Genetic Algorithm to Create
Specified Spatial Maps
We have shown that eye-position spatial maps differ depending
on whether they were derived from data in LIP or AIT (Sereno
et al., 2014; Figures 13A,B). Briefly, those experimental results
involved a task that required the monkeys to fixate the same
stimulus at different eye positions while neurons were recorded
using microelectrodes. That allowed population response vectors
to be determined for different eye positions. The response vectors
were analyzed using MDS in a manner identical to that described
here, producing eye-position spatial maps for the two brain areas.

We wished to quantify the differences between AIT and LIP
gain fields underlying those different spatial maps. Whereas
before we were using MDS and the Procrustes transform to
generate a spatial map from a population of gain fields, here
we invert the process and use a genetic algorithm to create a
population of model gain fields from a spatial map. We used a
genetic algorithm to create two populations of model complex
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FIGURE 5 | Example complex gain fields.

gain fields that reproduced the characteristics of LIP or AIT
spatial maps, and then examined the manner in which gain field
parameters differed for those two populations.

Each complex gain field in the model population was defined
by 13 parameters (three for the sigmoidal component, five for
the elliptical component, and five for the hyperbolic component).
Therefore, for a large population there were toomany parameters
to set by hand, and we turned to using a genetic algorithm
(Mitchell, 1996) to automate the fitting process. The genetic
algorithm was used purely as a mathematical method for
producing model gain field populations that corresponded to
specified eye-position spatial maps, and was not intended to
mimic a biological process or the development of gain field
populations.

We used the genetic algorithm software included in theMatlab
Global Optimization Toolbox. All the parameters for all the gain
fields in a population were listed in a single long sequence to
form a chromosome (Figure 6A). With 13 parameters per gain
field, and 100 gain fields in the population during preliminary
studies, that led to a string of 1300 parameters in a chromosome.
There were 200 chromosomes in the genetic population for
the preliminary studies, with each chromosome carrying a
complete representation of a gain field population. The gain
field parameters within each chromosome were initialized to
random values. Therefore, with 200 chromosomes there were
200 different random populations of gain fields attempting to
produce the specified spatial map.

Starting from this initialization state, each generation of
the genetic algorithm involved a two-step process. The first
step evaluated the fitness of each chromosome (each string
of parameters defining a gain field population) by how well
the spatial map produced by the population matched the
target spatial map. The second step selectively reproduced the
chromosomes with highest fitness (smallest error), and then
performedmutations and crossovers on the new chromosome set
to introduce novelty (Figure 6B). Going to the next generation,
the new set of chromosomes was again evaluated for fitness, and
so forth. The loop terminated when the spatial map generated
by the best chromosome matched the target spatial map within a
specified error tolerance. If the genetic algorithm failed to reach
that tolerance within 600 generations the run was aborted and a
new run started.

To evaluate the fitness of each chromosome, all the gain field
parameters contained within the chromosome were decoded to
produce a gain field population. This gain field population was
then used to create a spatial map, using multidimensional scaling
and the Procrustes transform in the manner described above.
Then an error measure between this computed spatial map and
the target spatial map was calculated as the vector norm of all the
distances between corresponding points in the two maps. This
Euclidean errormeasure indicated the fitness of the chromosome,
with small error corresponding to high fitness.

Various other parameters governing operation of the genetic
algorithm were set to the default values for the software, as
described in Matlab documentation or as listed by the command
gaoptimset(@ga) if the Global Optimization Toolbox is
installed. Some of the more important default parameters used
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A

FIGURE 6 | Organization of chromosomes within the genetic algorithm used to generate populations of gain fields that produce eye-position spatial

maps with particular desired characteristics. (A) Each chromosome consisted of a string of parameter values defining gain fields, with parameters for all gain

fields in the population concatenated. Each square represents one parameter value, with six parameter values per gain field in this diagram. Different colors represent

different numerical values for the parameters. There were 500 gain fields represented on each chromosome (population), and 200–400 chromosomes depending on

the run. (B) Novel gain field populations were generated through crossover between existing chromosomes and through mutation. Chromosomes with high fitness

(those corresponding to gain field populations that generated spatial maps with small errors from the target spatial map) were preferentially reproduced for the next

generation. The genetic algorithm was used as a mathematical formalism for creating eye-position spatial maps with particular characteristics, and was not intended

to literally represent a biological process.

were amutation rate of 0.01, a crossover rate of 0.80, and selection
of chromosomes within the top 5% of fitness for reproduction to
the next generation.

For initial modeling with the genetic algorithm we used
idealized versions of the eye-position spatial maps from the
monkey data, with a different target map used for modeling LIP
and AIT. In later runs, the actual spatial maps from the data were
modeled. The idealized LIP target map was spatially veridical,
consisting of a polar grid as shown in Figure 1. There were four
rings of points at eccentricity radius r = [2 4 6 8] degrees.
The idealized AIT target map was spatially distorted through the
transformation r′ = 0.143r1.8. This transform compressed the
spatial map toward the center (Figure 13D illustrates what this
compressed spatial map looks like). Given that the actual LIP and
AIT spatial maps derived from data were based on a small and
noisy data sample, we created these LIP and AIT target maps as
idealizations of what we viewed as the essential characteristics of
the LIP and AIT maps.

Following preliminary studies using the genetic algorithm,
we found that only six of the 13 parameters defining
a complex gain field were important in explaining the
difference between LIP and AIT spatial maps. These were
the space constant σ and translation δ parameters for each
of the three components included in a complex gain field
(sigmoidal, elliptical, and hyperbolic components). The other
seven parameters (orientation θ for all three components, as
well as translation direction φ and axis ratio ρ for elliptical
and hyperbolic components), after application of the genetic
algorithm, were found to follow an approximately uniform
distribution that did not differ in a notable manner between AIT
and LIP. We therefore decided to simplify the model by holding
those parameters fixed with uniform distributions specified in
advance rather than having them trained by the algorithm.
This led to a new set of genetic algorithm runs using only six
parameters per gain field rather than thirteen, allowing them to
run more quickly.

For this second set of runs the gain field population size
was increased to 500, and the number of chromosomes within
each generation was increased to 300. Results from the second
set of runs are reported below. The gain field population size
of 500 was determined by computer speed, allowing a run to
finish in a reasonable amount of time. Results from multiple
500-unit populations were pooled when examining the statistical
distributions of parameter values that had been created by the
genetic algorithm.

In addition to using a genetic algorithm to create a model
gain field population that generated idealized spatial maps for
AIT and LIP, we also used the algorithm to create a population
that could generate the actual AIT and LIP spatial maps from the
monkey data. Because the actual spatial maps showed orientation
anisotropy (i.e., were not circularly symmetric), perhaps due to
noise in a small data sample or the fact that recordings were
made from a single hemisphere, we included the orientation
parameter θ for all three complex gain field components amongst
the parameters set by the genetic algorithm. That increased
the number of parameters per complex gain field from six, for
idealized spatial maps, to nine for actual spatial maps. Because
actual spatial maps were more irregular than idealized spatial
maps, they were more difficult for the genetic algorithm to learn.
We therefore increased the number of chromosomes in the
algorithm from 300 to 400 to provide a richer sampling of the
parameter space when working with actual spatial maps.

RESULTS

Accurate Representation of Space with a
Broad Diversity of Shapes in the Gain Field
Population
The results of theMDS analysis for all five gain field categories are
shown in Figure 7. The figure contains twomeasures of accuracy.
The first is stress as defined in Equation (1), with smaller stress
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physical eye positionsA

FIGURE 7 | Recovery of eye positions for different categories of gain fields. (A) Physical eye positions. (B) Planar gain fields. (C) Sigmoidal gain fields. (D)

Elliptical gain fields. (E) Hyperbolic gain fields. (F) Complex gain fields. In all cases accuracy is excellent (low stress), indicating weak constraints on what shapes gain

fields may assume and still perform successfully. Population size is indicated by n. Normalized eigenvalues of the MDS transform are displayed. Points are color coded

according to eccentricity to aid visualization.

indicating a more accurate representation. By convention, stress
values below 0.1 are considered indicative of a satisfactory level
of accuracy. The second is normalized eigenvalues of the MDS
transform (normalized to sum to 1.0), which indicate the fraction
of variance in the data accounted for by each MDS dimension.
Ideally the normalized eigenvalues should be 0.5 for the first
two dimensions and zero for all other dimensions. The points
in Figure 7 are color coded for eccentricity. In this figure, which
shows accurate representations of space, the color coding is not
necessary, but for highly distorted and folded representations as
occur in some of the subsequent figures the color coding helps to
better identify points.

Both measures of accuracy, stress and eigenvalues, indicate
that all categories of gain fields, namely planar, sigmoidal,
elliptical paraboloid, hyperbolic paraboloid, and complex,
were capable of accurate representations of eye positions.
The accuracy of the spatial representations is clear from
simple visual inspection of the figure, comparing physical
eye positions (Figure 7A) with recovered eye positions in all
other panels, as well as from stress values and eigenvalues.
Accurate representations occurred when a population of
model neurons contained a broad diversity of gain fields,
the result of having gain field parameters distributed over
a wide range of values across the population. We shall see

Frontiers in Integrative Neuroscience | www.frontiersin.org 9 January 2016 | Volume 9 | Article 72

http://www.frontiersin.org/Integrative_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Integrative_Neuroscience/archive


Lehky et al. Gain Fields Determine Visual Space

below that results deteriorate if gain field parameters in
the population were restricted to falling within a narrow
range.

Results varied slightly depending on the details of how the
random parameters were set for the gain field population, but
these were small effects not of great importance. Some of these
effects are described below.

Parameters had a uniform random distribution over some
specified interval. The uniform distribution was generally
generated with the parameter expressed on a linear scale.
However, for the space constant σ , having that parameter
expressed either on a linear or logarithmic scale when generating
the uniform distribution both seemed as reasonable biological
possibilities and we examined both, finding small differences
in the resulting accuracy of the spatial maps. For planar
gain fields, recovery of eye-position space was slightly more
accurate using a logarithmic scale (stress = 0.002, as shown
in Figure 7B) compared to a linear scale (stress = 0.011).
Sigmoidal gain fields produced similar results. These changes
are small enough not to be noticeable when comparing plots
of recovered eye position, and both stress values are small
relative to the convention that stress values below 0.1 reflect
a good reconstruction of the underlying physical relationships.
This difference between linear and logarithmic scales almost
entirely disappeared when planar or sigmoidal components were
embedded within complex gain fields. In contrast to planar and
sigmoidal gain fields, for elliptical and hyperbolic gain fields it
made no difference (to three significant figures) whether the scale
parameter was uniformly distributed on a linear or logarithmic
scale.

Another variation in setting parameter values was to change
whether the translation magnitude δ was given in absolute
terms (in degrees; Equation 2), or if it was given relative to
(and perfectly correlated with) the value of the space constant
parameter σ (Equation 3). For planar gain fields, specifying
relative offsets produced more accurate results (stress = 0.002)
than absolute offsets (stress = 0.015), again with similar results
for sigmoidal gain fields. For elliptical and hyperbolic gain
fields, the opposite held true. Absolute translations produced
better decoding results (stress = 0.003) than relative translations
(stress = 0.019). Again, these differences were quite minor.
All these effects were substantially diminished for components
embedded in complex gain fields.

A third variation in setting parameter values was to change
whether translation direction φ was set with a uniform random
distribution, or if it was set orthogonal to the major axis of
elliptical and hyperbolic gain fields (that is, perfectly correlated
with the orientation parameter θ , such that φ = θ + 90).
(The translation direction parameter does not exist for planar
and sigmoidal gain fields, as explained in the Methods Section).
Reconstruction of visual space was better when orthogonal
translation directions were used. With orthogonal translation
directions, stress = 0.003 for both elliptical and hyperbolic
paraboloid gain fields (Figures 7D,E). Using uniform random
translation directions, stress increased to 0.008 for elliptic
paraboloid gain fields, and 0.015 for hyperbolic paraboloid gain
fields. These relatively inconsequential effects remained when

elliptical and hyperbolic components were embedded in complex
gain fields.

Variability in Recovered Eye Positions
Although firing rates for these gain field populations were
noise-free, there was still stochastic uncertainty in the recovery
of eye positions because the parameters describing gain field
characteristics were randomly set. Different random populations
of gain fields led to slightly different estimates of eye positions.

Larger gain field populations produced more accurate
estimates of eye position. The global error in reconstructing eye-
position spatial maps, measured by stress, decreased with gain
field population size (Figure 8). For large population sizes (≥
10, 000) differences in stress for different gain field categories
were statistically significant (for this noise-free system). However,
stress for all categories were all so small (range: 0.0016–0.0035)
that the differences were probably not functionally significant,
and any gain field category could plausibly be used biologically.
Larger population sizes also produced more precise estimates
of eye position, as measured locally for each eye position by
the circular error probability (CEP; Figure 9). CEP indicates the
radius within which 50% of eye position estimates will fall.

These results show the variability of eye-position decoding for
different random samplings of gain field populations. Accurate
and precise recovery could be achieved with substantially smaller
populations that were carefully selected rather than random.
This could occur, for example, by using plastic changes in gain
fields properties coupled with an error correction process, in
order to homogenously span the gain field parameter space when
recovering spatial maps.

Distorted Representations of Space when
Gain Field Population Diversity was
Reduced
When the diversity of gain fields in a population was reduced by
restricting the range of parameter values, the representation of
eye-position space in most cases became heavily distorted. The
nature of the spatial distortion depended onwhich parameter was
restricted, and also could depend on the general category of the
gain fields included in the population (planar, elliptical, etc.).

If gain field orientations θ in the population were restricted to
a small range of values, the resulting eye-position space showed
orientation specific distortions (Figure 10, using planar gain
fields). While the usual populations (such as those illustrated
in the different panels of Figure 7) had gain field orientations
covering a full 360◦, the population underlying Figure 10 had
its orientations restricted to a range one tenth that value, or
36◦. The mean orientation in this restricted range for was −45◦.
Therefore, the contracted portion of the eye-position space was
orthogonal to the missing orientations in the population (under
our convention that defines 0◦ orientation as the direction of the
iso-response contours in a plane or the direction of the major
axis in elliptical and hyperbolic paraboloids). Essentially the same
result was observed for all gain field categories, and not just for
planar ones as used in this illustration.

The effects of restricting the space constant parameter σ to
small values (4.0–8.0) are shown in Figure 11A, for three classes

Frontiers in Integrative Neuroscience | www.frontiersin.org 10 January 2016 | Volume 9 | Article 72

http://www.frontiersin.org/Integrative_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Integrative_Neuroscience/archive


Lehky et al. Gain Fields Determine Visual Space

10 100 1000 10000 100000
0.001

0.01

0.1

1

population size

s
tr

e
s
s

planar
sigmoidal
elliptical
hyperbolic
complex

C

-12 -8 -4 0 4 8 12
-12

-8

-4

0

4

8

12

x eye position (deg)

0.000
0.000
0.000
0.489
0.511
Eigen.

stress=0.002

n=10000

B large population

-12 -8 -4 0 4 8 12
-12

-8

-4

0

4

8

12

y
 e

y
e

 p
o

s
it
io

n
 (

d
e

g
)

x eye position (deg)

0.000

0.000

0.000

0.437

0.563

Eigen.

stress=0.016

A

n=100

small population
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FIGURE 9 | Precision of recovered eye positions, as measured by circular error probability (CEP). CEP indicates the radius within which 50% of estimated

eye positions will fall for different random gain field populations. (A) CEP for small population, n = 100. (B) CEP for large population, n = 10.000. Both these examples

used sigmoidal gain fields.

of gain fields. (Sigmoidal gain fields are not included because
they don’t differ significantly from planar ones). The spatial
representation produced by planar gain fields was modestly

degraded under this condition, while the spatial representations
produced by elliptical and hyperbolic gain fields were severely
disrupted. Note that the spatial representations for elliptical and
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FIGURE 10 | Distorted recovery of eye positions when the range of

orientations θ within the gain field population was restricted. This

example was from a population of planar gain fields, but all categories of gain

fields behaved similarly. Physical eye positions were as shown in Figure 1.

hyperbolic gain fields are so severely distorted that they no longer
preserve topological relationships of the underlying physical
positions. The positions in the outermost ring (lightest green)
have contracted to such a great extent that they are now located
inside some of the inner rings, as is apparent from inspection of
the coloring of the dots representing eye-positions. In contrast
to the severe degradation that occurs when space constant values
σ in the population were restricted to a narrow range of small
values, there were minor effects in all gain field categories when
σ was restricted to a narrow range of large values.

The effects of restricting the translation magnitude parameter
δ to a narrow range of small values are shown in Figure 11B. This
manipulation caused spatial representations to become severely
disrupted primarily with respect to eccentricity. Restricting gain
fields to small translation values is equivalent to saying the
gain field population had a small dispersion [using terminology
introduced in Lehky and Sereno (2011)]. The distorted spatial
maps for planar gain fields are shown in Figure 11Bi, where
relative translation δr was uniformly distributed over the narrow
range −0.1 to 0.1 (small dispersion), compared to accurate
decoding in Figure 7B where δr was over the broad range −1.0
to 1.0 (large dispersion). Similar results occurred if there was
a restricted range of small absolute translations rather than
small relative values. Distorted spatial maps for elliptical and
hyperbolic gain fields are shown in Figures 11Bii,iii, using
absolute translations δa uniformly distributed over a narrow
range of small values −1.5 to 1.5 (small dispersion). These
distorted maps can be compared to the accurate decoding shown
in Figures 7D,E, where δa extended over a broad range of
values−15 to 15 (large dispersion).

If translation δ was set to zero for the entire population
rather than a narrow range of small values, then the spatial map
for planar and sigmoidal gain fields collapsed to a single ring,
with points at all eccentricities exactly superimposed. The spatial
maps for elliptical and hyperbolic paraboloids collapse to a single
location at the center. When translation was set to zero for the
entire population, this means the population had zero dispersion,
and the resulting severe disruption to spatial maps emphasizes
the importance of population dispersion in decoding space.

When translation values were restricted to a narrow range of
large values rather than a narrow range of small values, spatial
decoding for planar gain fields was still severely distorted, looking
essentially the same as shown in Figure 11Bi. The results were
dramatically different for elliptical and hyperbolic gain fields, for
which recovered spatial maps showed little distortion and looked
similar to those in Figure 7.

Restricting the translation direction parameter φ to a narrow
range of values in elliptical and hyperbolic gain fields caused
strong orientation-specific distortions in the recovered spatial
map. The results were very similar to Figure 10, which was
produced when the orientation parameter θ was restricted.
Finally, restricting the parameter ρ, the ratio of the major axis
to minor axis in elliptical and hyperbolic gain fields, to a narrow
range of values had virtually no effect. The recovered visual space
remained highly accurate.

Complex gain fields were less sensitive to restricting parameter
values than their three gain field components. If restricting a
parameter, for example orientation θ , caused severe distortion
for sigmoidal, elliptical, and hyperbolic gain fields when each was
examined individually, combining those three components into
a complex gain field led to a lower level of distortion.

Another way of inducing strong distortions in the recovered
spatial map was to make all gain fields in the population have
the same mean value. In general, each gain field will have a
different mean value for its responses when averaged over all
eye positions. However, the gain fields in a population can all
be normalized to have the same mean value, even though the
spatial pattern for each gain field remains different, and even
though the population retains a broad range of values for all
parameters. When that was done, the eccentricity of the spatial
representationwas completely disrupted. Comparing Figure 12A
(un-normalized) and Figure 12B (normalized) shows an example
of this, in which the normalized population of complex gain
fields all have the same mean response, while retaining various
orientations, spatial scales, translations, etc.

Note that Figure 12B (equalized mean responses for a
population of complex gain fields) looks almost the same as
Figure 11Bi (restricted translations for a population of planar
gain fields). It happens that setting the translation parameter δ

to be the same for all members in a population of planar gain
fields has the effect of making all gain fields have the same mean
value. On the other hand, setting the translation parameter to be
the same for all members of elliptical paraboloid or hyperbolic
paraboloid gain fields does not make them have the same mean
value.

AIT and LIP Model Gain Field Populations
Produced by a Genetic Algorithm
We have previously computed eye-position spatial maps based
on monkey data from LIP and AIT (Sereno et al., 2014). This
was accomplished by applying identical MDS and Procrustes
methods as described here to data from populations of neurons
showing eye-position modulations in their responses. The spatial
map for LIP corresponded to a fairly accurate representation of
physical space (Figure 13A), keeping in mind the noisiness of
the small population sample, while the spatial map for AIT was
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FIGURE 11 | Distorted recovery of eye positions when the ranges of spatial scale or translation within the gain field population were restricted. (A)

Recovery of eye positions when the space constant parameter σ was restricted to a narrow range of small values across the gain field population. (i). Planar gain

fields. (ii). elliptical paraboloid gain fields. (iii). Hyperbolic paraboloid gain fields. σ = 4− 8 in all cases. (B) Recovery of eye positions when the translation parameter δ

was restricted to a narrow range of small values across the gain field population, centered on zero translation. This is equivalent to saying the gain field populations

had small dispersions. (i). Planar gain fields (δr = −0.1 to 0.1). (ii). elliptical paraboloid gain fields (δa = −1.5 to 1.5). (iii). Hyperbolic paraboloid gain fields (δa = −1.5

to 1.5). Eye-position visual space is severely disrupted for gain field populations with small dispersions. Physical eye positions were as shown in Figure 1.

much more heavily distorted and appeared contracted toward
the center (Figure 13B; compare with physical eye positions in
Figure 1).

When applying the genetic algorithm to AIT and LIP data,
we fit models to two versions of the data. One version was an
idealization of the data, as described below. The other version was
the original data shown in Figures 13A,B.

In the idealized version, the LIP spatial representation
was portrayed as completely veridical, matching the physical
eye positions (Figure 1), while the AIT spatial representation
was contracted toward the central fixation point, with the
contraction given by the function r′ = 0.143r1.8 where r is
spatial eccentricity. These idealizations reflected our qualitative
judgment of what constituted the essential features of the actual
data. In creating the idealizations, we ignored orientational

anisotropies as small-sample noise, as we don’t currently have
grounds to expect AIT and LIP to have different orientation
properties. That may change in the future with additional data.
The idealization focused on aspects of the data that appeared
to account for much of the remaining variation and that was
consistent with the general view that spatial response properties
are different in dorsal and ventral visual streams in ways that may
be functionally significant.

We consider the model fits to the idealized data first. We used
a genetic algorithm to create a population of model complex gain
fields (n = 500) that generated the idealized LIP eye-position
spatial map, and also a second population of gain fields that
generated the idealized AIT spatial map These spatial maps are
shown in Figures 13C,D Then we compared parameter values
for the gain field populations that generated the two spatial maps
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FIGURE 12 | Effect of normalizing all gain fields in a population to have

same mean value. (A) Recovery of eye positions from a population of

unnormalized complex gain fields. (B) Recovery of eye positions from a

population of complex gain fields in which each gain field was normalized to

have the same mean value, averaging across all eye positions. Performance of

normalized population was poor, despite the population still retaining a great

diversity of gain field shapes reflecting the broad range of parameter values

across the population. Physical eye positions were as shown in Figure 1.

(AIT and LIP), looking for differences in the gain fields that could
account for differences in the resulting spatial maps.

Each model gain field in the model populations was defined
by 13 parameters, three for the sigmoidal component, and five
each for the elliptical paraboloid and hyperbolic paraboloid
components. Preliminary runs with the genetic algorithm
identified six of those parameters as being important for
differentiating idealized LIP and AIT spatial maps: the space
constant parameter σ and the translation parameter δ for each
of the three components (sigmoidal, elliptical, and hyperbolic) of
complex gain fields, which were used in subsequent runs.

The model gain field parameters found using the genetic
algorithm for the idealized AIT and LIP spatial maps
(Figures 13C,D) are shown in Figure 14. The histograms
in Figure 14 indicate that the distribution of the space constant
parameter σ across the population was strongly skewed to
smaller values in AIT compared to LIP (p < 10−116 under
all conditions, using a rank sum test.). Essentially there was a
subpopulation of gain fields in AIT that had very small σ values.
Space constant values clustered around the lower bound enforced
by the model, σ = 4, and even smaller values would likely have
occurred if allowed. The translation parameter δ was also skewed
to smaller values in AIT compared to LIP, producing a smaller
gain field dispersion in AIT. Despite the σ and δ parameters

being skewed to small values in AIT, the AIT distributions
broadly overlapped with the LIP distributions over their entire
ranges. There was no tendency for AIT and LIP parameters to
clump into two disjoint regions of the parameter space.

In a similar manner, we also used the genetic algorithm
to generate gain field parameters that produced spatial
maps corresponding to actual LIP and AIT spatial maps
(Figures 13E,F) rather than the idealized spatial maps
(Figures 13C,D). The distributions of parameters for the
actual maps (Figure 15) closely resemble the parameters for
the idealized maps (Figure 14). This suggests that the idealized
spatial maps (veridical for LIP, contracted for AIT) captured
what we viewed as the essential differences between the actual
LIP and AIT spatial maps.

DISCUSSION

We found that all gain field shapes tried, including both
purely planar and those with no planar component (elliptical
and hyperbolic paraboloids), were capable of performing an
accurate recovery of eye-position space. This accurate recovery
of space depended on a broad diversity of gain fields within
the population. Recovery failed when gain field parameters
were restricted to a narrow range (e.g., restricted orientations
or space constants), with the nature of the failure depending
on both the gain field category as well as the particular
parameter being restricted. Finally, using a genetic algorithm to
produce populations of gain fields that could mimic spatial maps
recovered from monkey neurophysiological data, we found that
AIT gain fields tended to be more foveally dominated than LIP
gain fields, having smaller dispersions from the fixation point and
smaller space constants.

Although the literature tends to emphasize gain fields as
having a prominent planar aspect, in reality most gain fields
have more complex shapes than that, as was outlined in the
introductory section. Our finding that gain fields with no planar
component (elliptical and hyperbolic paraboloids) work just as
well as pure planes suggests that attempts to squeeze gain field
data into the category of “planar” may be misplaced, although
perhaps convenient for certain types of modeling. If a biological
gain field happens to have a strong planar component, it is
because the presence or absence of a planar component doesn’t
matter, not because a planar component is necessary for gain field
function.

Moreover, from an evolutionary or developmental
perspective, creating planar gain fields from nonlinear neural
components may be a more difficult task than creating more
random-like complex gain fields. If linearity is not required for
gain field populations to function effectively, then biologically it
would seem there would be little drive to create planar gain fields.

On the other hand, in contrast to the view that gain fields
are planar is a theoretical perspective contending that gain fields
cannot be purely planar but must have a nonlinearity of some
sort in their shape (for example, distorting a plane into a sigmoid;
Pouget and Sejnowski, 1997; Pouget and Snyder, 2000). For
our purposes and methods, it made no significant difference
if the gain field was linear or nonlinear. Linear (planar) and
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FIGURE 13 | Recovered eye-position spatial maps based on monkey data (A,B) or models of monkey data (C–F). (A) Recovered spatial map from data

recorded in monkey lateral intraparietal cortex (LIP). (B) Recovered spatial map from data recorded in monkey anterior inferotemporal cortex (AIT). Compared to the LIP

spatial map, the AIT map appears contracted toward the origin. (C) Recovered eye positions from a population of model complex gain fields whose parameters were

selected using a genetic algorithm to produce an idealized version of the LIP monkey data in (A; veridical visual space). (D) Recovered eye positions from a population

of model complex gain fields whose parameters were selected using a genetic algorithm to produce an idealized version of the AIT monkey data in (B; visual space

contracted toward the origin). (E) Recovered eye positions from a population of model complex gain fields whose parameters were selected using a genetic algorithm

to reproduce actual LIP monkey results in (A). (F) Recovered eye positions from a population of model complex gain fields whose parameters were selected using a

genetic algorithm to reproduce actual AIT monkey results in (B). (A,B) Adapted from Sereno et al. (2014). Stress values are relative to physical eye positions.

nonlinear (sigmoidal) gain fields worked essentially equally well
in reconstructing eye-position spatial maps, as did gain fields
with stronger nonlinearities than sigmoidal (Figures 7, 8). Our
modeling suggests that while gain fields aren’t required to be
planar, there is no reason in principle why they couldn’t be
planar.

Characteristics of a gain field population defined the nature
of the visual space derived from it. For example, restricting

the range of gain field orientations, gain field spatial space
constants, or gain field translations in the population disrupted
spatial representations in different ways (Figures 10, 11). In a
similar manner, one would expect that differences in gain field
properties for different brain areas would be reflected in different
characteristics for eye-position visual space in those brain areas.

Eye-position spatial maps are substantially different in LIP,
a dorsal visual area, and AIT, a ventral visual area (Sereno
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FIGURE 14 | Distributions of parameter values for model gain field populations that generated the spatial maps in Figures 13C,D, which are idealized

versions of the monkey data (veridical for LIP, contracted toward the origin for AIT). The six panels show distributions for the following six parameters

defining gain field shape for complex gain fields. (A) Sigmoidal space constant. (B) Sigmoidal translation constant. (C) Elliptical space constant. (D) Elliptical

translation constant. (E) Hyperbolic space constant. (F) Hyperbolic translation constant. Histogram bars have been scaled so that their heights sum to 1.0, so bar

heights indicate probabilities. These six parameters were found to be important for creating the difference between LIP and AIT eye-position spatial maps. AIT

parameters are statistically biased toward smaller spatial space constant values, and smaller translation values (smaller dispersion), relative to LIP parameters. These

histograms pool results from 10 runs of 500 gain fields each.

et al., 2014). While the LIP spatial map (Figure 13A) is an
approximately veridical representation of physical visual space
(shown in Figure 1), the AIT map (Figure 13B) is more
distorted, appearing contracted toward the center. While that
previous work established that eye-position spatial maps differ
in LIP and AIT, this study extends that by exploring the effects
of different gain field shapes and parameters on spatial maps
and using a genetic algorithm to determine how gain fields
may differ in AIT and LIP to produce those different spatial
maps.

Differences in eye-position spatial maps in different brain
areas may reflect differences in processing goals for those areas.

The spatial map in LIP may provide a coordinate representation
of physical space in order to carry out accurate visuomotor
control of movements within the physical world, such as
grasping. The more distorted spatial map in AIT may provide
a more abstract, categorical representation of space (i.e., to
the left of, on top of, etc.), perhaps a useful representation
for encoding relations of objects within scenes into memory,
or part/whole relationships in the representations of objects.
The coordinate/categorical terminology derives from studies by
Kosslyn and colleagues (Kosslyn et al., 1989, 1992; Kosslyn,
2006). Eye position is just one spatial cue, and there may be
many different concurrent spatial representations across cortical
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FIGURE 15 | Distributions of parameter values for model gain field populations that produced the spatial maps for LIP and AIT in Figures 13E,F,

closely matching monkey data spatial maps (Figures 13A,B). The six panels show distributions for the following six parameters defining gain field shape for

complex gain fields. (A) Sigmoidal space constant. (B) Sigmoidal translation constant. (C) Elliptical space constant. (D) Elliptical translation constant. (E) Hyperbolic

space constant. (F) Hyperbolic translation constant. Parameter values were found using a genetic algorithm trained on the monkey data. These parameter values

closely resemble parameter values producing spatial maps fitted to idealized monkey data (Figure 14). Again, AIT parameters are statistically biased toward smaller

spatial space constant values and smaller translation values (smaller dispersion), relative to LIP parameters. The similarity between gain field parameters for idealized

and actual spatial maps for LIP and AIT suggests that the idealizations capture essential differences between LIP and AIT spatial maps. These histograms pool results

from 4 runs of 500 gain fields each.

regions, dependent on the availability or input of different cues
or combinations of cues.

In this study, we found it surprisingly easy to generate model
gain field populations that yielded accurate representations of
eye-position space, as occurs in LIP, simply by using gain
field parameters that followed a uniform random distribution.
In contrast, it was much harder to create the more distorted
spatial map similar to that found in AIT, to the extent that
it was not possible to do so by setting gain field parameters
manually and we had to resort to using a genetic algorithm.
This suggests that the distorted spatial map in AIT is not some
random epiphenomenon in an area where spatial representation
isn’t important. Rather the distorted spatial map in the ventral

stream likely reflects some specific spatial representation(s) with
particular constraints perhaps driven by a particular function(s),
which we don’t fully understand yet.

We used a genetic algorithm to develop two populations
of model complex gain fields that could generate spatial maps
matching those derived from LIP and AIT data. The statistical
distributions of parameters for the two gain field populations
are dramatically different (Figure 15). These modeling results
constitute a prediction of statistical differences between the
shapes of LIP and AIT gain fields across their respective
populations. Unfortunately, within the current data, gain fields
have not been measured at high resolution (using a large
number of gaze angles) and sampled over a large population, to
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enable empirically well-defined measures of gain field population
characteristics. The demonstration that (1) gain field populations
can be used to generate eye-position spatial maps, (2) eye-
position spatial maps differ in different cortical areas, and (3)
differences in spatial maps in different areas may be explained by
differences in gain field characteristics, may serve as a motivation
in future studies to better quantify properties of gain fields, as well
as provide a guide as to which parameters may be most useful to
measure.

Differences between spatial characteristics of AIT and LIP gain
fields found here are analogous to previously reported differences
between AIT and LIP receptive fields.We have previously studied
retinotopic spatial maps in LIP and AIT based on receptive fields
in those areas, both experimentally (Sereno and Lehky, 2011)
and theoretically (Lehky and Sereno, 2011). Similar to what was
found here for eye-position spatial maps, we found that the
retinotopic spatial map for AIT neural populations was more
distorted than the LIP retinotopicmap. Further, we demonstrated
with modeling that this difference could be explained if AIT
receptive fields had smaller translations (smaller RF dispersion)
and smaller spatial scale (smaller RF diameter) than LIP gain
fields. Through modeling in this study, we provide here the
first evidence that analogous differences between AIT and LIP
gain fields (smaller dispersion and smaller spatial scale) can
account for differences in the eye-position spatial maps for those
areas. Thus, it appears that both receptive field and gain field
populations are more foveally dominated in the ventral stream
compared to the dorsal stream.

It is not surprising that the spatial scale of receptive fields
or of gain fields is an important parameter determining the
characteristics of spatial maps derived from those fields. What
is counterintuitive here is that space is encoded more accurately
with large fields than small ones. LIP encodes more accurate
representations of eye-position space than AIT (Figure 13),
corresponding to larger mean values for the space constants
in the underlying gain fields of LIP (Figures 14, 15). Similarly,
in previous modeling we found that larger values for scale
in receptive fields (larger RF diameters) led to more accurate
reconstruction of retinotopic space (Lehky and Sereno, 2011).
This is opposite to the traditional systems neuroscience view
that large diameter fields lose spatial information (i.e., are
involved in producing positional invariance), and that small
fields produce the most accurate representation of space (see
e.g., Serre et al., 2007). Our perspective on the superiority
of large fields for encoding space has been discussed in
Lehky and Sereno (2011), Sereno and Lehky (2011), and
Lehky et al. (2013).

Less obvious is another parameter we have identified as critical
for determining spatial maps, namely the dispersion of the RF
population or of the gain field population, which is a measure
of translation rather than scale. Restricting the dispersion of
gain fields (Figure 11B) severely distorts the eye-position spatial
map, and analogously restricting the dispersion of RFs distorts
retinotopicmaps (Lehky and Sereno, 2011).While RF dispersions
have been shown to differ in different cortical areas [for example
AIT dispersion (Tovée et al., 1994; Op de Beeck andVogels, 2000)
is smaller than LIP dispersion (Ben Hamed et al., 2001)], we are
not aware of any characterizations of gain field dispersions. Our

modeling of the differences between LIP and AIT suggests that
gain field dispersion in AIT will be more restricted than LIP.

A common interpretation for eye-position gain fields is
that they are used to perform a coordinate transform from
retinotopic coordinates to head-centered coordinates (Zipser
and Andersen, 1988; Pouget and Snyder, 2000; Salinas and
Abbott, 2001). A consequence of this idea is that getting to an
allocentric visual reference frame requires multiple coordinate
transforms, whether arranged in a series (retina-centered to
head-centered, head-centered to body-centered, body-centered
to world-centered) as suggested by Andersen et al. (1993), or
multiplexed concurrently within a single network (Blohm et al.,
2009; Blohm, 2012).

However, given that activity in a gain field population by
itself can directly decode eye position in both dorsal and
ventral streams independent of any retinotopic information, a
different perspective from the traditional coordinate-transform
approach can be developed. This may provide an alternative to
the coordinate-transform approach under certain conditions but
does not necessarily replace it. We suggest that an allocentric
spatial map might be built up in primates over time by
successively fixating different locations using a population of
cells that are modulated by angle of gaze. That is consistent
with our previous finding (Sereno et al., 2014) that a single
spatial cue in itself, eye position, provides sufficient information
to recover space. Recent psychophysical evidence is supportive
of the existence of a memory store that over time builds up a
representation of the current scene, or integrates parts of complex
objects, during multiple fixations [see Zimmermann et al. (2014);
also see Larochelle and Hinton (2010) for an example of neural
modeling that integrates information over multiple fixations].
It should be noted that an intrinsic approach to decoding gain
fields (Lehky et al., 2013), exemplified by this model, inherently
represents positions in a relational manner (i.e., positions are
encoded with respect to each other), which is the essence of an
allocentric representation.

In conclusion, we have shown that accurate encoding of
eye-position space can be carried out by populations of gain
fields largely independently of the shapes of the gain fields.
In particular, gain fields do not need to be planar or any
other simple geometric shape. Further, we demonstrated that
the characteristics of gain fields determine the geometry of eye-
position space, so that different gain field properties in different
brain areas will lead to different representations of space. We
have predicted specific quantitative differences between gain
fields for two brain areas, AIT and LIP, associated with different
spatial maps. These findings identify and clarify characteristics of
gain fields that influence spatial encoding. They provide insight
into the functional consequences of having different eye-position
modulations in different brain areas, and give motivation to
experimentally quantify gain field properties more extensively.
Overall, these findings give indications as to how gain field
characteristics may influence behavior through the construction
of our many senses of space.
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