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Background: There is a critical need for precision phenotyping across

neurodevelopmental disorders, especially in individuals who receive a clinical diagnosis

of autism spectrum disorder (ASD). Phelan-McDermid deletion syndrome (PMS) is

one such example, as it has a high penetrance of ASD. At present, no biometric

characterization of the behavioral phenotype within PMS exists.

Methods: We introduce a data-type and statistical framework that permits the

personalized profiling of naturalistic behaviors. Walking patterns were assessed in

30 participants (16 PMS, 3 idiopathic-ASD and 11 age- and sex-matched controls).

Each individual’s micro-movement signatures were recorded at 240Hz. We empirically

estimated the parameters of the continuous Gamma family of probability distributions

and calculated their ranges. These estimated stochastic signatures were then mapped

on the Gamma plane to obtain several statistical indexes for each child. To help visualize

complex patterns across the cohort, we introduce new tools that enable the assessment

of connectivity and modularity indexes across the peripheral network of rotational joints.

Results: Typical walking signatures are absent in all children with PMS as well as in the

children with idiopathic-ASD (iASD). Underlying these patterns are atypical leg rotational

acceleration signatures that render participants with PMS unstable with rotations that are

much faster than controls. The median values of the estimated Gamma parameters serve

as a cutoff to automatically separate children with PMS 5–7 years old from adolescents

with PMS 12–16 years old, the former displaying more randomness and larger noise.
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The fluctuations in the arm’s motions during the walking also have atypical statistics that

separate males from females in PMS and show higher rates of noise accumulation in

idiopathic ASD (iASD) children. Despite high heterogeneity, all iASD children have excess

noise, a narrow range of probability-distribution shapes across the body joints and a

distinct joint network connectivity pattern. Both PMS and iASD have systemic issues

with noise in micro-motions across the body with specific signatures for each child that,

as a cohort, selectively deviates from controls.

Conclusions: We provide a new methodology for precision behavioral phenotyping

with the potential to use micro-movement output noise as a natural classifier of

neurodevelopmental disorders of known etiology. This approach may help us better

understand idiopathic neurodevelopmental disorders and personalize the assessments

of natural movements in these populations.

Keywords: micro-movements, noise, PMS, Phelan-McDermid syndrome, stochastic signatures, gait, gamma

distribution, precision phenotyping

INTRODUCTION

Phelan–McDermid syndrome (PMS) is a complex
neurodevelopmental disorder associated with efferent and
afferent neurological abnormalities, believed to emerge from
underlying impairments in synaptic transmission and synaptic
plasticity (Phelan et al., 2001; Wilson et al., 2003). The origins of
such problems can be traced back to heterozygous deletions of
chromosome 22q13.3 (Durand et al., 2007; Moessner et al., 2007;
Bonaglia et al., 2011), which encodes for the SHANK3 gene.
SHANK3 codes for a scaffold protein located at the post-synaptic
density (PSD) of glutamatergic synapses. Specifically, they are
important for the formation and stabilization of synapses, as they
assemble glutamate receptors with their intracellular signaling
apparatus and cytoskeleton at the PSD (Roussignol et al., 2005).
Other SHANK genes in different locations of the genome also
play a role in neural development. In neurons, SHANK2 and
SHANK3 have a positive effect on the induction and maturation
of dendritic spines, whereas SHANK1 induces the enlargement
of spine heads (Roussignol et al., 2005).

Research in SHANK-related disorders has primarily focused
on neurons from the central nervous system, but we propose that
similar disruptions of synaptic transmission and plasticity exist
across the peripheral sensory and motor nerves in the nervous
system. In principle, any of the SHANK-related disruptions
could alter synaptic flow, increase synaptic noise throughout
the periphery, and consequently compromise the re-afferent
flow of peripheral sensory feedback that emerge from self-
produced movements (von Holst and Mittelstaedt, 1950; Von
Holst, 1954). Some evidence for peripheral disruption has
been reported in Shank3 mouse and rat models (Raab et al.,
2010). These disruptions paired with cerebellar deficits in 22q13
deletion syndrome (Aldinger et al., 2013) could interfere with
the formation and maturation of internal models for action

Abbreviations: PMS: Phelan-McDermid Syndrome; CNS: Central Nervous

Systems; PNS: Peripheral Nervous Systems; NPVIndex: Normalized peak velocity

index; IMA: InternalModels for Action; PDF: Probability Density Function; eCDF:

empirical Cumulative Distribution Function.

(IMA) in this population. Paired with the hypotonic issues
that the children present with at birth (Soorya et al., 2013),
these disruptions may impact motor noise, compromise their
corporeal self-awareness, and delay achievement of sensory-
motor developmental milestones.

Disruptions within the peripheral nervous system from
an early age may also impact the formation of body maps
and frames of reference for motor action. These are critical
ingredients for the central control of behaviors, as specified
within the theoretical framework of IMA (Kawato and Wolpert,
1998; Wolpert et al., 1998). In particular, this framework
indicates that, in order to compensate for synaptic transduction
and transmission delays, central planning and control require
forward estimation of impending action commands (and of
their efference copy), as well as estimation of their sensory
consequences. Evidence suggests that these processes take place
in the primate brain (Mulliken et al., 2008; Andersen and Cui,
2009; Torres et al., 2013c), where afferent projections from
the periphery are anatomically present (Prevosto et al., 2009,
2010, 2011). These afferent projections provide sensory feedback
that may also include statistical regularities emerging from the
continuous stream of self-produced movements [movements
that are generated and controlled from the central nervous
system (CNS)]. Indeed, disruptions in the peripheral afferent
signals are known to impede movement (Cole, 1995; Stenneken
et al., 2006; Balslev et al., 2007; Torres et al., 2014) (even when
efferent output flow is intact), as well as alter the conscious
recognition of one’s own actions (Fourneret et al., 2002).

Self-produced movements under CNS control contain minute
fluctuations (micro-movements) that may also serve as an
additional source of peripheral afferent feedback. This putative
source-component of afferent feedback can be statistically
estimated (non-invasively), withmillisecond time precision at the
motor output level (Torres et al., 2013a, Wu et al., 2014). Recent
research has profiled disruptions in the flow ofmicro-movements
in children with a diagnosis of idiopathic autism spectrum
disorder (iASD) (Torres et al., 2013a), thus calling for the
investigation of the signatures of micro-movements in children
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with PMS who also receive an ASD diagnosis. PMS accounts for
up to 2% of ASD cases (Leblond et al., 2014). As such, PMS may
serve as a valid model to better understand similar manifestations
in sub-groups of iASD (Betancur and Buxbaum, 2013). Indeed,
it is likely that the sensory and motor issues associated
with PMS (Battaglia, 2011; Soorya et al., 2013) interfere with
social interactions and contribute to the ASD phenotype. The
phenotype of PMS has been described using parent-report
measures and subjective observational assessments, however,
an objective profiling of sensory-motor patterns has not been
developed to date. Detailed sensory-motor phenotyping in a
single gene form of ASD may increase the likelihood of linking
deficits in social behavior to physical sensory-motor disruptions
caused by specific synaptic problems due to underlying genetic
factors.

In this paper, we offer a new type of precision-phenotyping
model of human behavior to initiate steps toward achieving
Precision Psychiatry. The proposed model is based on the
individualized statistical characterization of the stochastic
signatures of micro-movements underlying the types of overt
and covert movements that make up naturalistic behaviors in
the social environment that the person (inevitably) shares with
others. Overt movements are defined by explicit goals and are
deliberately performed, whereas covert movements are driven
by less obvious implicit goals and are highly automatic. Both
movement classes coexist within a gradient of intentionality and
contribute to the flow of motions along a continuum (Torres,
2012).

Our approach addresses the Research Domain Criteria
(RDoC), a recent initiative of the National Institutes of
Mental Health (NIMH), to “Develop, for research purposes,
new ways of classifying mental disorders based on dimensions
of observable behavior and neurobiological measures.” The aim
of RDoC is to identify core features—some yet undiscovered
or underutilized—that cut across research domains and that
use rigorous scientific method (Insel, 2014). Specifically, RDoC
addresses the lack of validity of the Diagnostic and Statistical
Manual for Mental Disorders (DSM) [and the International
Classification of Diseases (ICD)], but it is at present lacking a
motor domain (Bernard and Mittal, 2015). In this sense, the
micro-movements would enable a form of personalized precision
phenotyping as part of the broader NIH’s Precision Medicine
initiative (Hawgood et al., 2015).

In the specific context of neurodevelopment, this new
methodology could equally benefit disorders that result in social
deficits and those that do not. We illustrate this framework using
the gait patterns of 16 children with PMS in relation to 11
age- and sex-matched controls. Together, with novel analytical
methods presented in this study, we provide new visualization
tools to examine synchronous patterns of peripheral joints’
coordination automatically detecting self-emerging synergies
of co-articulated joints across the body. Since there is high
penetrance of ASD in PMS (84%; Soorya et al., 2013), we also
include three individuals with a diagnosis of iASD for reference.
We report a pattern of foot rotations present in controls that is
systematically absent in the children with PMS, and 2/3 of the
children with iASD. We further unveil fundamental differences
in joint rotation and coordination across the body between

typically developing controls and children with PMS and iASD.
In particular, we point at stochastic signatures of upper body and
arm rotations during gait that separate all individuals by sex.
Results are discussed within the context of the Research Domain
Criteria (RDoC) framework, highlighting the ability of micro-
movements-based dynamic biometrics to provide a new type
of precision-phenotyping for human behaviors. This research
approach is amenable to connect natural behaviors, particularly
elements of body entrainment, joint attention, volitional control
and other socio-motor features critical for social exchange, to
underlying genetic information.

METHODS

This study took place at the Sensory Motor Integration
Laboratory of Rutgers University. Participants with PMS were
recruited and clinically assessed at the Seaver Autism Center
for Research and Treatment at the Icahn School of Medicine at
Mount Sinai, NYC. All participants and/or parents signed the
consent form approved by the Rutgers University Institutional
Review Board (IRB). The entire study protocol was approved
by the Rutgers University IRB. Clinical records were obtained
in compliance with the Health Insurance Portability and
Accountability Act (HIPAA). The study conforms to the
guidelines of the Helsinki Act for the use of human subjects in
research.

SUBJECTS

There were 16 participants with PMS in this study, 9 females
and 7 males, ranging from 5 to 15 years old. Eleven of the
16 children were previously described in the literature (Soorya
et al., 2013; Kolevzon et al., 2014). Supplementary Tables 1, 2
provide demographic information. We note that three children
reportedly wore ankle braces permanently to aid in walking. In
such cases the braces were not removed to minimize the risk of
falling, as per their parents’ recommendations.

Control subjects (11) and subjects with iASD (3) also
participated in the study. Controls included 5 females and 6
males, ranging from 5 to 19 years old, including one 19 year
old professional athlete. The three male participants with iASD
ranged from 10 to 12 years old. In addition to a diagnosis
of ASD, one participant also had a diagnosis of ADHD and
Tourette’s syndrome. His inclusion served as an interesting
point of comparison. Specifically, as there have been reports of
comorbid ASD and Tourette’s syndrome (Lawson-Yuen et al.,
2008), this participant provides additional characterization of
motor signatures across the broad spectrum of ASD.

INTERDISCIPLINARY ASSESSMENT

An interdisciplinary team evaluated patients using the following
clinical evaluation tools (described in Soorya et al., 2013):

1. Psychiatric evaluations using the DSM-5 were conducted by
board-certified child and adolescent psychiatrists at the first
patient visit and focused on the assessment of ASD.
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2. Clinical genetics evaluations and dysmorphology examinations
were performed by clinical geneticists to assess growth,
pubertal development, head size, craniofacial features, digits,
extremities, chest, spine, skin, organ malformations (such
as congenital heart or renal defects) and neurological
abnormalities.

3. Neurological examinations were conducted by a pediatric
neurologist to evaluate gross motor skills and gait, fine motor
coordination, cranial nerves and deep tendon reflexes.

4. Autism Diagnostic Observation Schedule-Toddler Module
(Luyster et al., 2009; Lord et al., 2012) is a direct
semi-structured assessment that was used to assess the
presence communication, reciprocal social interaction and
repetitive, restricted behaviors. The ADOS- Toddler Module,
intended for minimally verbal individuals with nonverbal age
equivalents down to 12 months, was administered by a trained
clinician to all patients in this sample.

5. ADI-R (Lord et al., 1994) is an investigator-based, semi-
structured interview used to differentiate autistic disorder
from non-autistic ID in individuals with a developmental age
greater than 18 months old. It was administered by a trained
clinician to parents or caregivers, making use of an algorithm
that incorporates the DSM-IV criteria for diagnosis.

6. Cognitive testing was conducted by licensed clinical
psychologists or doctoral students to provide estimates
of cognitive functioning. The Mullen Scales of Early
Learning (Mullen, 1995) were used on all participants,
including children with chronological ages older than the
standardization sample, to allow for flexible administration
of items. Ratio intelligence quotients (IQs) were calculated
using mental age estimates from the cognitive tests and used
to provide an estimate of nonverbal IQ.

7. The Vineland Adaptive Behavior Scale, Second Edition
(Sparrow et al., 1984) was used to evaluate independence in
daily life skills, including communication, socialization and
motor skills.

The Supplementary Table 1 lists these scores from all 16
children with PMS.

GENETIC TESTING

Chromosomal microarray analysis (CMA) or Sanger sequencing
was used to confirm SHANK3 deficiency in 16/16 patients with
PMS due to deletions or mutations respectively.

EXPERIMENTAL SETUP

Since participants with PMS were unable to follow precise
verbal instructions and perform decision-making tasks and/or
experiments with a variety of cognitive loads, this study examined
a naturalistic behavior that they were all able to perform—
natural gait. All walking took place on a raised platform to cover
the proper distances defining the weak electro-magnetic field
created by the sensing system (Polhemus Liberty, Colchester,
VT) recording at 240Hz. The platform also ensures a systematic

walking pattern, requiring turns and back-and-forth pacing,
across all subjects (see Figure 1A).

ANALYTICAL METHODS

We analyzed micro-movements underlying gait patterns for all
participants. Micro-movements are minute fluctuations in overt
and covert movements that are imperceptible to the naked eye,
but quantifiable through kinematics and dynamic analyses of the
motor output. They are present in the time-series of waveforms
registering physiological signals from various systems including
electroencephalographic activity, the various motions of the eyes,
those of the full body, as well as autonomic signals from the heart,
respiration, temperature, skin conductance, etc. In this work we
focus on themotor output of bodymovements during gait.Motor
outputs continuously flow in closed loop from the CNS to the
periphery and back. We used full-body kinematics from time-
series data of gait. A 30-min (minimum) period of walking was
recorded for each child, which was repeated across a number
of sessions, including pre- and post-treatment in a clinical trial
with Insulin-Like Growth Factor-1 (ClinicalTrials.gov Identifier:
NCT01525901). This paper focuses on the first (baseline) session.

First Layer of Data
We first analyzed the kinematics layer of raw positional and
orientation data along with their inherent variability unique to
each individual. The raw displacement and angular rotational
data are the outputs of the 15 sensors (Polhemus Liberty,
Colchester, VT), 14 attached to the body and one used
for calibration and digitization purposes (Figure 1B). Data
were collected using the Motion Monitor Interface (InnSport,
Chicago, IL). Various in-home programmed filters, as well as
filters built into this data collection system, provided ways
to remove instrumentation noise so as to focus on the data
that may be physiologically relevant. All data in this set were
treated identically before the second layer of stochastic signatures
described below was estimated.

Specific trajectory parameters of interest included the time
series of joint angular velocities (the rate of change of joint
orientations over time) and the joint angular acceleration (the
rate of change of angular velocity). Figure 1C shows sample
trajectories across the body as a child walks. We specifically
focused on the peaks of the fluctuations in angular velocity
and acceleration. Sample angular velocity peaks are marked
in Figure 2A. To avoid allometric effects due to anatomical
differences (Lleonart et al., 2000), these peaks are normalized
NmaxV =

maxV

(maxV+V)
, where V is the average angular velocity

of the segment between two valleys (two local speed minima).
The minima are automatically obtained from the time series
of the speed as a change in slope from negative to positive,
while the maxima are detected by a change in slope from
positive to negative along the peak angular velocity curve
spanned by the various motion types of the participant across the
session (Figure 2A). The normalization dictates that rotations
that are faster on average, with larger values of V in the
denominator, produce smaller NmaxV values. Lower values of
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FIGURE 1 | Experimental set up and sample parameters. (A) Gait platform where subjects paced back and forth and performed other naturalistic interactions

during walking. The acquisition system, the wearable sensors affixed across the body, and the frame of reference used to obtain the kinematics from the movement

trajectories are also shown. (B) Digitization of the full body using 15 electromagnetic sensors attached to body parts enumerated on the right and the orientation of the

frame of reference. (C) Sample kinematic trajectories in green showing the positional changes over time as the person walks in one direction.

this normalized parameter thus indicate faster angular speed on
average. Likewise joint rotations that are on average slower will
produce higher values of the normalized peak angular velocity.
Figure 2B zooms in one of the peaks. The same normalization
procedure was performed on the angular acceleration time series.
Since participants ranged between 6 and 19 years of age, all
data from all 30 participants were subject to exactly the same
normalization procedure in order to compensate for disparities
in anatomical sizes. Such disparities impact the overall movement
speed (acceleration) and add allometric-size related statistical
effects (Mosimann, 1970; Lleonart et al., 2000), thus requiring the
normalizing step.

Second Layer of Data
The parameters of interest are gathered into a frequency
histogram. Here we chose the normalized peak angular velocities
and peak angular accelerations to extract the micro-movements
waveform. Unimodality of the resulting histogram of micro-
movements’ peaks is assessed using the Hartigan’s dip test
(Hartigan and Hartigan, 1985). In the case of failing the
unimodality test, the p-value is p < 0.01. Maximum likelihood
estimation (MLE) is used to estimate the shape and the scale
parameters of the continuous Gamma family of probability
distributions with 95% confidence intervals for the motions of
each joint. The empirically estimated stochastic signatures of the
whole body motions can then be examined as they distribute by
individual body segments or as they integrate across the body
(e.g., upper body vs. lower body, specific limbs, etc.), to unveil
patterns of the peripheral network of rotational joints.

Building on recent work that empirically parameterized
human movements across the spectrum of ages for normal and
pathological states (Torres et al., 2016), the continuous Gamma
family of probability distributions are used for the distributional
analyses and estimation procedures. Previously, linear velocity
was shown to be a kinematic parameter that revealed features of
various populations in relation to cases of known etiology (Torres
et al., 2013a, 2014). Here we focus on the joint angle rotations and

their rates of change underlying the displacements of the various
body joints. This layer of kinematics provides new insights into
the statistics of parameters in the internal configuration space of
human rotational joint motions.

The estimated values defining the probability distribution
are then plotted for each individual in the Gamma parameter
plane, in which typical controls are unambiguously different
from pathological cases Figure 2C). Figure 2D shows samples of
Gamma probability density functions (PDFs) estimated from the
shape and scale parameters across various ranges of kinematics
data. We plot in Figure 2E each point (the empirically estimated
shape and scale values) from the frequency distributions in
Figure 2C to localize the person with 95% confidence intervals,
also plotted for each dimension. Note here that each point is a
PDF indicating two different probability distributions, a feature
that prevents the use of an ideal single theoretical distribution to
assess the statistical significance of differences (as is traditionally
done). Figure 2F shows that these estimated parameters are non-
stationary—rather they shift as a function of context and other
extraneous parameters (Torres, 2013; Torres et al., 2013d). In
this sense they span a family of probability distributions for each
person. The rate of change of these PDFs with context, treatment
or mere neurodevelopment of a coping system are possible to
evaluate when using these newmethods. Utilizing one single PDF
theoretically assumed for the population at large is inappropriate
when considering kinematics data in general, but in particular it
is inappropriate in ASD, a heterogeneous disorder by definition,
whereby each person has a unique developmental trajectory.

Using the non-stationary feature of these signatures as
the person moves in a naturalistic way, we can obtain new
estimates for different conditions within a session (e.g., every
N measurements, where N depends on the sampling resolution
of the sensors) and quantify the magnitude of the shift on the
Gamma parameter plane, i.e., the changes in the PDF that arise
as a function of context, treatment, etc. These shifts build a
stochastic trajectory that is unique to each person under the
conditions of choice. These statistical rates of change constitute

Frontiers in Integrative Neuroscience | www.frontiersin.org 5 June 2016 | Volume 10 | Article 22

http://www.frontiersin.org/Integrative_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Integrative_Neuroscience/archive


Torres et al. Atypical Gait in SHANK3-ASD

FIGURE 2 | Steps to harness and analyze kinematics data. (A) Samples of smaller and larger angular velocity values (rate of change of rotation at the joints,

deg/sec) continuously registered and shown for 7200 frames (30 s)-segments. (B) Zooming into the time series of angular speed data to obtain the normalized peak

velocity index (described in the text) and trace a time series of a normalized waveform. (C–F) Steps to obtain statistical estimates from empirical data. (C) Step1

measure the parameters continuously in naturalistic movements. Gather the parameter of interest (e.g., peak linear velocity or peak angular velocity, etc. obtained from

the first order change of position over time for each sensor position across the body) into a frequency histogram with appropriate binning (Shimazaki and Shinomoto,

2007; Omi and Shinomoto, 2011). For example, in (C), two cases of control and iASD frequency histograms are illustrated. (D) Step 2 is to estimate the parameters of

the probability distribution function best characterizing the frequency histograms. For example, in this case, we use the continuous Gamma family of probability

distributions to characterize the spectrum of cases from typical to pathological. (E) Step 3 uses the Gamma parameter plane spanned by the shape (a) and the scale

(b) parameters estimated using maximum likelihood estimation (MLE) in this case, with 95% confidence intervals, which we also plot for each estimated pair. (F) Step

4 we obtain new readings every 100 measurements and repeat steps 1–3 to build a stochastic trajectory on the Gamma plane. This trajectory tells us the rate of

change of this non-stationary process as the person learns, adapts, or simply performs the same task under different conditions. The stars identify the largest step

toward the Gaussian range of the Gamma parameter plane, away from the Exponential range (a = 1) along the shape axis and down toward the regime of lower

noise-to-signal levels. Those larger steps can identify the context that will most likely accelerate change in the stochastic signatures toward more symmetric PDFs with

lower dispersion.

yet another layer of analyses that provides useful information
about the evolution of the statistical patterns of the person and
their unique individualized rates of change across the body.

Third Layer of Data (Indexes of Statistical
Performance)
Along the shape and scale axes of the Gamma parameter plane,
we have previously obtained measures linked to the levels of
predictability and reliability (respectively) of the motor output
signals (Torres, 2013). These levels were previously empirically
estimated using stochastic rules to model anticipatory behavior
(Torres, 2013) so as to provide a range of values for each
individual along the shape axis spanning from random regimes
(a = 1, the memoryless exponential distribution) to values of a
> 10 ranging from skewed to symmetric distributions. In this

previous work, shifts to the right of the Gamma parameter plane
move the patterns away from randomness (Ross, 2009), toward
the Gaussian range. These changes denoted higher certainty
in the prediction of impending speeds from past speed and
acceleration, taken from trial to trial (Torres, 2013). These rules
have served to characterize the statistical signatures of expert
athletes with exquisite control and timing of the bodymovements
(Torres, 2011, 2013). The Gamma parameter plane thus serves
here to localize each person’s signatures of motor performance.

To that end, the moments of the Gamma PDFs were
empirically obtained from the estimated shape (a) and estimated
scale (b) parameters whereby the mean µ̂ = a · b and variance
σ̂ = a · b2. The noise-to-signal ratio, the Fano Factor (FF) (Fano,
1947), was also obtained from the Gamma statistics to provide
information on the stochastic signatures of the normalized peak
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angular velocity and the peak angular acceleration as a function
of other elements (e.g., sex, age, etc.) Substituting the estimated
Gamma statistics in FF =

σ̂

µ̂
shows that FF is the empirically

estimated scale parameter b. Therefore, along the scale axis,
higher values of b denote higher noise-to-signal ratio, and lower
values of b denote shifts toward more reliable regimes of the
continuous random process under study. It should be noted that
the term “noise” here has a very precise statistical meaning, in
contrast to the negative connotation implied in the motor control
literature (Faisal et al., 2008). Noise-to-signal transitions are
important markers of adaptive learning. As such, the frequency
and amplitude of these transitions on the Gamma parameter
plane (phase transitions) are of interest in this framework. In
this sense, noise is adaptive when it serves transitions from
spontaneous and random to well-structured and systematic or
periodic states, but it is detrimental when it stagnates at the
spontaneous random levels detectable through our analyses.

Fourth Layer of Data (Peripheral Network
Visualization)
Across the joints of the body, we examine the time series of joint
angular velocities and obtain the phase locking values (PLV). PLV
is a statistic used to quantify the phase coupling between two
biological nonlinear signals in time-series, such as time-series
of electroencephalographic signals (Gentili et al., 2009; Aydore
et al., 2013). In the present study, PLV was employed to quantify
the level of coupling (phase synchrony) in the time series of
angular velocity values between each one of the 14 joints and
all the others. Specifically, the PLV nears 1 in cases where the
instantaneous phases of the two joints’ angular velocities time
series are synchronized. Conversely, if they are unsynchronized
the PLV tends to 0. Greater detail regarding the procedure for
computing PLV can be found elsewhere [9, 28]. Here we obtained
the 14 joints x 14 joints PLV matrix every 240 frames (240Hz
sampling resolution of the sensors). We used a high threshold of
synchronization value (0.85) to create a binary matrix. Entries in
the original PLV frame that were above or equal to the threshold
were set to 1 and those below the threshold were set to 0 (see
Figure 3A).

Once we gather the network dynamically evolving frame
by frame, we apply tools from the brain connectivity toolbox
(Sporns, 2011, 2012) to visualize the temporal profiles of
emerging modules and connectivity patterns across this
peripheral network of rotational joints. Below are some indexes
that we use in these plots.

The connectivity index is given by the degree of each node
(joint), that is, the number of links connecting the node to other
nodes in the network. In this case (an undirected, unweighted
binary graph), we provide a simplified representation to illustrate
densely vs. sparsely interconnected nodes across the network so
as to identify critical differences between controls and PMS-ASD
cases.

The modularity index provides a sense of the subdivision
of the network into non-overlapping groups of nodes that
work together within a “community.” This metric assesses
self-emerging structuring of the network by maximizing the

number of within-group edges, and minimizing the number
of between-group edges. Thus, modularity is a statistic that
quantifies the degree to which the network may be subdivided
into such clearly delineated groups. For example, Figure 3B
shows the contrast in modularity (green vs. cyan node colors) as
the connectivity differs between the upper and lower body and
changes frame by frame. This is better appreciated in Figure 4

unfolding the walking session over time, frame by frame within
the 30min walk period, as well as helping us identify synergies
(see explanation on synergies below).

The clustering coefficient another metric that we can use is
the clustering coefficient, i.e., the fraction of triangles around a
node, or equivalently, the fraction of node’s neighbors that are
neighbors of each other. For example, in Figure 3B the size of
the circles at each node is given by the clustering coefficient
value. Large circles indicate nodes whose neighbors are neighbors
to each other. Figure 3B shows snapshots of the evolution of
the network for different frames. In summary, lines represent
links between nodes. Circles at the node track modularity (color
coded) and clustering coefficient values (size of the circle).

This is an arbitrary choice of metrics for visualization and
analytical purposes. They are tools that we have adapted (for the
first time) from the analyses of central networks of brain nodes
(e.g., from electroencephalography) to the peripheral network
of joints from bodily rhythms. These modified methods help
examine the self-structuring of highly complex motions spanned
by the many degrees of freedom (DoF) of the body. They
complement our previous work on detection of synergies and co-
articulation in goal directed behavior (Torres and Zipser, 2002,
2004; Torres and Andersen, 2006; Torres et al., 2011) and provide
new tools for examination of highly automated behaviors such as
walking.

For more formal explanations on the mathematical
foundations of network analyses we invite the reader to
consult various networks books (Newman, 2003; Newman et al.,
2006) and network references with more traditional applications
to brain networks (Sporns, 2011). Notice here that the peripheral
sensory and motor nerves which we “listen” to with the sensors
are an extension of the brain networks. The motions they
register are controlled by the brain both under volition, as
well as spontaneously (Torres, 2011; Torres et al., 2011). Thus
the extension of network analyses from the brain nodes to the
peripheral nodes is not only justified, it is actually strikingly
informative and simplifying of an otherwise intractable DoF
redundancy problem (Bernstein, 1967; Torres and Zipser, 2002).

Fifth Layer of Data: Identification of
Synergies in the Network
The unfolding information on connectivity/modularity could be
important in tracking efficient distribution of activity across the
network and proper recruitment of the body’s DoF to boost
automatic coordination across body parts (e.g., between upper-
and lower-body). By examining synchronous sub-networks we
can uncover self-emerging synergies and co-articulation patterns
at the joint angles level that may inform individual self-regulatory
motor control strategies. Themotivation here is that examination
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FIGURE 3 | Visualization of dynamic states of the peripheral network connectivity across 14 joints of the body. (A) PLV and binary matrices (at 0.85

threshold) showing individual frames from a representative PMS participant. (B) Network representation of peripheral joints (nodes) and links (edges) between highly

synchronized joints. Circles represent joints and lines are active links within a frame corresponding to highly synchronized joints within a ½h period taken in frames of

240Hz each. The size of the circle represents a measure of node neighbor-clustering (see text for details). The color of the circle is based on the modularity metric (see

text for details). Circles with the same color represent modules of nodes that maximize the number of within-group edges, and minimize the number of between-group

edges, i.e., a modular community structure within the network.

of a coping neurobiological system -such as that of PMS children-
may reveal self-emerging / self-discovered over-compensatory
strategies by the nervous systems of some of the children that
could help us guide treatment in others with iASD. More
importantly the personalized treatment of the problem can
help us tailor interventions involving sensory substitution and
sensory augmentation therapies well suited to the unique bodily
characteristics of each child as the brain tries to control its
peripheral joint network dynamics.

We refer the reader to Figure 4 for further details on the
connectivity metrics illustrated by contrasting two representative
subjects from the control and the PMS groups.

In Figure 4B the modularity index is tracked for each frame
and represented in matrix form as well (14 joints × time). Each
entry contains the module number where the joint participated
in a given frame. The color bar indicates the maximal number of
modules emerging in the network across the 30min walk. In this

case up to 7 modules self-emerge throughout the session. The
modularity distribution is also obtained by counting across the
session the participation of each node (joint) in eachmodule. The
joints color coded are identified in the legend. These distributions
reveal distinct self-emerging synergies of the joints in the upper
body and the lower body. The module with the maximum count
of joint participation is obtained for each joint. The joints are
gathered per module so as to define the synergies (the set of joints
maximally participating in a given module). Take for instance
the Figure 4B. The first two modules comprise joints from the
upper (1–7) and lower body (8–14), but those of the upper
body define a synergy because they have maximal count. Thus
the first two modules identify a synergy with maximal joint
participation from the upper-body. The third module defines
another synergy as per maximal participation of joints from the
lower extremities. Clearly, walking patterns are not as complex
as those of a sports routine or a ballet routine (for example).
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FIGURE 4 | Network of 14 joints dynamically unfolding in time with self-emerging synergies. (A) Connectivity matrix 14 joints × 16 s (4000 frames at 240Hz)

from representative control. One frame of the full and the corresponding binary PLV (determined at a 0.85 threshold) are shown as insets. Color bar represents the

connectivity. The network has 14 nodes (the 14 joints in the legend of Figure 3 where the center of mass is estimated from thorax and lumbar sensors located as 2

and 3 in the trunk of the avatar in Figure 1) for two representative subjects, one from the typical control group (A,B) and one from the PMS group (C,D). The degree

distributions of the network and the modularity distributions are obtained from a 30min walk registering fluctuations at 240Hz. Notice the contrast between the two

representative participants. (A) also shows on the left the full and binary PLV matrices of one frame at a 0.85 threshold (high synchronicity). In the 14 joints × time

(frames) matrix each entry provides the degree for each node (joint) as reflected in the color bar. There is higher connectivity in the upper body (numbers 1–14 are as in

legend of Figure 3) than in the lower body for this typical participant. The degree distribution of the network for a segment of the 30min walk is also shown on the

right-top panel. Notice that the curves represent the degree distribution of the joints and that a pattern emerges corresponding to the upper and lower body as well.

Specifically the upper body has distributions centered farther to the right, with higher number of links than the lower body. The lower body has more nodes with fewer

links and fewer “hub” nodes (in the tail of the distribution). Notice that the upper body has higher connectivity than the lower body in this participant (joints are as in the

legend of Figure 3). Degree distribution identifies two distinct groups of nodes. Corresponding modularity matrix identifies up to 7 modules (color bar). Frequency

histogram of maximal modularity is also shown. (B) Matrix quantifying the joint participation per module (color bar shows the counts). Inset shows the module

distribution with identification of modules with maximal count per joint participation. Two modules self-emerge (1 and 3) as the ones with maximal joint participation

denoting two main synergies summarizing the complex 14 joint patterns of the gait in this participant. Colors in the legend identify the joints participating in the two

synergies. Notice that one contains the upper body joints and the other the lower-body joints, consistent with the degree distribution in (A). (C,D) The same

information as in (A,B) is shown for a PMS participant. Notice the striking differences with the control and the lack of synergies in the PMS case.

In the latter more synergies would typically emerge across the
performance. Yet in all cases the self-emerging synergies can
be automatically detected using the present biometrics to define
a set of articulated motions with the potential to reduce the
complexity of the body’s DoF to a well-defined vocabulary of
actions.

Notice the marked contrast captured by these personalized
metrics between the representative control and the representative

PMS participant who shows very low connectivity, and very
homogeneous modularity distributions. This outcome suggests
that the body of the child with PMS does not coordinate
synergies as the typical control does. Instead a larger number of
independent modules emerge with homogeneous distributions
of joint participation across all modules and no synergistic
patterns efficiently co-articulating the joints. This is a sign of
very atypical motor control requiring far more physical energy

Frontiers in Integrative Neuroscience | www.frontiersin.org 9 June 2016 | Volume 10 | Article 22

http://www.frontiersin.org/Integrative_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Integrative_Neuroscience/archive


Torres et al. Atypical Gait in SHANK3-ASD

to manage many independent modules than to manage a few
synergies.

Roadmap and Motivation for the Order of
Analyses
We examined the statistical patterns of fluctuations in motor
performance (micro-movements) across the body. First we
characterized the normative patterns of angular velocity in
the feet and identified fundamental statistical differences in
the PMS and iASD children with respect to the normative
data from controls of various age groups. We then examined
the underlying patterns of angular acceleration of the lower
body, specifically the legs, and characterized the noise levels of
their micro-motions. We then moved up to the upper limbs
and examined patterns of the arms’ micro-motions during
their overall body movements when walking back and forth
in the platform of Figure 1. This analysis revealed statistical
differences (different probability distributions) between typical
males and females that were even greater in the PMS children,
suggesting a possible way to differentiate the PMS male and
female phenotype. Lastly, we examined synchronization patterns
of angular velocity across the body and uncovered striking
differences in the network’s connectivity metrics. Despite their
heterogeneity, the connectivity patterns were unique across the
three iASD individuals. The patterns of modularity revealed
differential synergistic and coordination patterns between the
upper and the lower body extremities in PMS and iASD in
relation to controls.

RESULTS

Atypical Foot-Turning Angular Velocity
Patterns in PMS-ASD
Examination of the frequency histograms of the normalized
peak angular velocity of the feet revealed that children in the
typical control group all failed the Hartigan’s dip unimodality test
(p < 0.01) as all children manifested multimodal distributions
(Supplementary Figures 1, 2). Representative control children
of 6, 8, and 13 years old (the ages of PMS children) are
displayed in Figures 5D,E,G. Representative controls of college
age are shown in Figures 5H,I. This result indicates that the
walking of typically developing children produced distributions
with multiple “bumps.” The densest bump accounted for slower
rotations, while the smaller bumps could contain slower or faster
rotations relative to the largest (densest) bump. In stark contrast,
the children in the PMS group did not show the faster rotations’
bump. Closer inspection of the peaks in the multiple bumps
revealed that several of the faster rotations that were absent from
the PMS but present in the controls, occurred during the turns,
while the other rotations in the densest bump were part of the
walking patterns.

Figure 5 also shows sample frequency histograms from
representative subjects in the PMS group, one male (Figure 5A)
and one female (Figure 5B) PMS contrasting with the
Figures 5D,E control children of same or comparable
ages.Figures 5C,F depict two of the children with iASD.

Not surprisingly, the iASD features for this parameter were
heterogeneous (2/3 had similar unimodal distribution patterns
as those of the PMS but we will see later that overall body patterns
are unique in these three very heterogeneous children). Figure 5I
shows a teen control who is also a martial arts expert. The martial
arts expert is a black belt second-degree karate expert who has
competed and trained since approximately 4 years of age. This
subject’s data provides a reference for the ideal case scenario of
fine motor control and head-trunk-limbs coordination.

All PMS children display unimodal patterns (non-
significantly multimodal patterns) according to the Hartigan’s
dip test of unimodality, (p > 0.1) for one foot or for both feet
(see Figure 6A). There is an asymmetry in the results of some
of the PMS children whereby one foot reaches p-values close to
significance (the signature of multimodality found in controls)
but the other does not. In subsequent analysis of whole body
connectivity patterns, it is evident that these are children whose
upper body joint network patterns approach those of typical
controls. Figure 6B shows results from the 3 children with iASD.
Figure 6C shows the results from the controls. The PMS patterns
(Hartigan’s dip test of unimodality p > 0.1) stand in marked
contrast with the neurotypical controls (Hartigan’s dip test of
unimodality p < 0.01).

Legs Patterns Are Random and Noisy in
PMS Children
Building on the results from the foot patterns, the patterns
of variability in the micro-movements of the legs’ angular
velocity were assessed individually (Figure 7). The results for
each child are plotted on the Gamma parameter plane with
95% confidence intervals for each estimated shape and scale
dimensions. The median of each Gamma parameter across the
cohort was obtained to identify the different quadrants of the
scatter (as divided by the two lines). Note that values in the
upper left quadrant of the noise-to-signal ratio (the Fano Factor
which is also the scale parameter) are higher and the values
of the shape parameter are closer to a = 1, the memoryless
Exponential distribution (Figure 7A). All children with PMS
between 5 and 9 years old fell on or close to this noisy and
random quadrant, as well as 2/3 of the children with iASD (those
with the unimodal distribution of feet’s normalized peak angular
velocity index similar to the PMS). This localization of the micro-
movements signatures suggests leg patterns that are harder to
predict from moment to moment, as they have higher noise and
higher uncertainty than those in the lowest-rightmost quadrant
where the older controls with mature gait patterns fell.

The lowest-rightmost quadrant contains all the controls above
13 years old and three of the PMS adolescents (Figure 7A).
The lowest-rightmost quadrant is also the region of the lowest
noise-to-signal ratio. At the extreme lowest-right most corner
of the quadrant (marked by an arrow) is the athlete with the
ideal statistical patterns of micro-motions, with a Gaussian-like
probability distribution function, and the lowest levels of noise.

The three control females that fell on the boundary (median
shape value and above the median scale value), with higher noise
to signal ratio than other controls are 5–6 years old. At this age
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FIGURE 5 | Frequency histograms of the normalized peak angular velocity for the footsteps. (A,B) Representative patterns from PMS participants (6 years

old) show a unimodal distribution of the normalized joint angular velocity index. (D,E,G,H,I) Representative controls of a broad range of ages including ages and sex of

the PMS participants show multimodal distributions with a systematic bump of smaller values of this index indicating a density of faster rotations on average (the

denominator of the index containing the average angular velocity between the two local minima is higher). (C,F) Participants with idiopathic autism spectrum show

both a lack of faster rotations in the turns (C) quantified in the PMS and the presence of them (F) quantified in controls. (I) This panel shows the participant with ideal

patterns, a martial arts expert with fine control, timing, and joint coordination in his movements.

the gait patterns are still maturing in the typically developing
children (Sutherland et al., 1980; Berger et al., 1984; Stolze et al.,
1997). Not surprisingly, the stochastic signatures of walking
patterns in these younger children are not yet localized with the
older controls above 8 years of age. The latter have developed
a mature gait pattern, so their overall walking patterns have
statistically more controllable and predictable features.

Figure 7B shows the estimated Gamma statistics
corresponding to the estimated Gamma parameters in
Figure 7A. The three young control females have high variability,
yet their joints rotate slower than those of the PMS children.
Their higher mean values of the normalized peak angular
velocity index indicate that the average rates of joint rotations
(in the denominator of this index) is lower, which provides more
capacity to control the joints. In contrast, the PMS children with
lower mean values indicate faster rates of joint rotations, a feature
that may impede controllability of the legs. Figures 7C,D show
the empirically estimated probability density functions (PDF’s)
for the children with PMS. Panel C contains all the children
who did not fall in the lower-right quadrant delineated by the

median values of the Gamma parameters. These happened to be
the younger group (5–7 years old). We also plot in this graph
the PDF’s of the neurotypical control children of comparable
ages and the ideal athlete with Gaussian PDF, highlighted with
an arrow. Notice that these PDF’s are the most skewed of the
group, toward the exponential shape. The iASD patterns are also
plotted for reference. In addition to the skewed shapes they have
the highest dispersion.

The older PMS (9–16 years old) in Figure 7D fell in the
rightmost lower quadrant. They have a notable shift in patterns
with respect to the younger PMS. Notice as well that the iASD
are all 11–12 years old and also differ from controls in that
age range. Figure 7E shows the broad distribution ranges of
PDF’s across the typical controls 5–19 years of age for both
sexes, with the ideal pattern of the athlete highlighted as well.
This figure underscores the striking differences in statistical
patterns across typical development as well as their evolution
from distributions with highly skewed shapes to those tending
to the Gaussian shape, accompanied by a decrease with age in the
dispersion (noise to signal). It also shows the range of values of
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FIGURE 6 | Outcome of the Hartigan’s unimodality dip test. (A) The p-values > 0.05 from the Hartigan’s dip test of unimodality from the distributions of the

normalized peak angular velocity index in 16 PMS children ranging between 5 and 16 years old show systematic lack of multimodal distributions in one or both feet.

(B) Patterns of iASD children show consistent p > 0.05 patterns for one or both feet. Representative histograms for right and left foot are also shown. (C) Patterns

from control participants (ages 5–19 years old) had p < 0.01 thus failing the unimodality dip test for both feet. Representative histograms for both feet of one

participant are shown.

the parameter of interest, the normalized peak angular velocity
index. Younger children have a faster rate of rotation on average
(smaller values of the index) than older controls. This indicates
that on average the joints of the older participants rotate at a
slower rate, possibly enabling better controllability.

Lower and Upper Body Connectivity
Patterns Differ Between PMS, IASD, and
Controls
Finally, we examined connectivity and modularity patterns of
the peripheral network of joints. A controllable system must
have a good balance between highly interconnected nodes
and independence in self-emerging modules that appropriately
exploit the abundant degrees of freedom of the body through
efficient synergies and patterns of co-articulation. We tested
several indexes related to coordination.

Figure 8 shows the overall connectivity patterns encountered
in the typical controls from 5 to 19 years old as well as
those from the 3 iASD children. Notice that the patterns of
the latter resemble those of the typical representative 5 year
old child, even though the iASD children are 10–12 years of
age. The controls have a highly interconnected network in
the upper body and the hips with certain independence with

the legs and feet (Figure 8A). In stark contrast, the patterns
of the PMS children are notably different as demonstrated in
Figure 8C, with low to none connectivity across the upper
body and some interdependences with the legs that are absent
in the controls. The modularity indexes also revealed striking
differences between controls and PMS. These are shown in
Figures 8B,D respectively. From the hips down the controls show
modularity of variable degrees that contrast with 2 modules at
most in the upper body. These must result in very different
coordination patterns in relation to the PMS patterns. It suggests
that the recruitment and release of degrees of freedom across the
body is highly atypical in PMS. We further explore this point
by dynamically unfolding the above averaged patterns across the
30min walk session.

Figure 9 further expands the results on connectivity and
modularity across the 30min walk session. Figure 9A shows the
degree distribution for all controls. This figure shows two distinct
peaks in the distribution whereby there is a large proportion of
nodes with 3 to 4 links and another large proportion of nodes
with 7–11 links, suggesting -for each subject- a main hub in
the network and also a number of nodes potentially working
more independently. By contrast the PMS show more variable
connectivity patterns across the cohort divided into those which
show a synergy and those who do not. They either have a single
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FIGURE 7 | Stochastic signatures of micro-movements in peak angular acceleration from the legs during gait. (A) The empirically estimated shape and

scale Gamma parameters from the normalized peak angular velocity index of the legs are plotted for each child with 95% confidence intervals. The lines denote the

median shape and scale values automatically dividing the Gamma parameter plane into four quadrants. All but one younger PMS children (PMS-Y) 5–7 years old fall in

the left-upward quadrant with highest noise and shape values close to 1 (especial case of the Exponential distribution). The farthest to the right (symmetric distribution)

and lowest scale value (lowest noise to signal ratio) is a professional male athlete (19 years old) marked by the arrow. Green dots are older 9, 12, 14, and 16 year old

PMS (PMS-O). (B) Empirically estimated Gamma mean and variance with similar color scheme as (A). Higher values of the mean normalized peak velocity index

indicate slower angular velocity on average. (C–E) Empirically estimated Gamma PDFs for each participant using the same color code scheme as in (A,B) according

to age for the PMS and sex for the controls. ASD participants are plotted as reference. In each panel (C,D) with the PDFs from PMS children, we plot the PDFs of

age- and sex-matched controls. Red (FC) and blue (MC) are typical female and male controls respectively. (E) All controls and ASD participants are plotted and the

PDF of the professional athlete stands out as the Gaussian shape with lowest dispersion in the cohort [see his shape and scale parameter range in (A)].

peak corresponding to a large proportion of nodes with a high
number of links but an absence of nodes with low connectivity,
or they may have the opposite pattern. The iASD have similar
patterns of connectivity consisting of a high proportion of nodes
with low number of edges (Figures 9B,C). This implies that
the nodes do not form modules putatively leading to efficient
co-articulation and synergies required for good coordination.
Instead, for all three iASD children, the joints seem to be working
independently with poor coordination. Figure 9D shows the
patterns of synergies identified in controls (as per methods
Figure 4) and contrast them with those in PMS. The latter
broke down into two groups that corresponded as well to the

Figures 9B,C with different underlying connectivity patterns.
One group has no synergies of the upper or lower body so the
center of mass, arms and legs are not well coordinated. The other
has some upper body synergy but also an absence of synergies
in the lower body. These patterns are also shown in panels
Figure 9E for the controls and Figures 9F,G for the PMS and
iASD (see also Supplementary Figure 3). The bar plot counting
the proportion of joints involved in the synergies show higher
count in controls with a break down into 4 synergies across the
body. The lower count and different distribution of synergies is
evident in the PMS and iASD. In both cases the coordination
patterns across bodily joints are bound to be very poor or absent.
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FIGURE 8 | Indexes of peripheral network connectivity and modularity across subjects. (A) Summary patterns for controls and the 3 iASD participants. Each

column represents a participant’s pattern of network connectivity from low (blue) to high (red) degree of connectivity. The last three columns separated by the vertical

white line are the 3 iASD (9–12 years old with connectivity patterns close to the 5 year old in the first column). Labels in the column axis are sex-age (e.g., F5 means

female 5 years old). Each row represents 1 of 14 joints across the body as in Figure 4 legend. Above the white line are head, center of mass, right shoulder, left

shoulder, right elbow, left elbow, right wrist, left wrist, right hip, and left hip. Below the white line are right knee, left knee, right ankle, left ankle. (B) Average modularity

index taken across the 30min walk for control subjects (last 3 columns are the iASD). Horizontal line divides the upper body from the lower body. (C) Summary

connectivity matrix for PMS children. (D) Summary modularity matrix for the PMS children.

Systemic Noise and Randomness Separate
PMS from Controls
Notice that in Figure 7E the controls span a broad range of
shape values, from left highly skewed to the rightmost Gaussian.
In contrast, the ASD and PMS groups have narrower sets of
PDF shapes. The PMS group is the closest to the exponential,
while the ASD group has the narrowest range. This lack of
diversification across the joints (14×3) in ASD children with very
different clinical phenotypes (one non-verbal extremely violent,
one non-verbal visibly hypotonic and one extremely verbal
with additional features of Tourette’s and ADHD), indicates
that despite the heterogeneity of idiopathic-ASD, there are two
emerging common features from this study that coincide with
previous findings (Torres et al., 2013a): (1) the narrow bandwidth
of shapes from the empirically estimated probability distributions

of the continuous Gamma family, and (2) the high levels of
sensory-motor noise extracted from the micro-movements.

The distributions of the noise-to-signal ratio (the scale
parameter) empirically estimated from the angular acceleration
across all body joints were also found to differ across subjects
(significant differences from non-parametric Friedman Test, p <

0.01). The PMS group hasmean noise values comparable tomean
noise found in controls (due to pooling across the different ages)
but has an overall broader range, particularly in the higher-noise
end (contributed to by the younger children in the group, multi-
compare test upon non-parametric ANOVA Kruskal-Wallis test,
with significant differences between young and older PMS, Chi-
square, p < 0.01).

Supplementary Figures 4A,B show the empirically estimated
Gamma statistics (first and second moments) obtained from the

Frontiers in Integrative Neuroscience | www.frontiersin.org 14 June 2016 | Volume 10 | Article 22

http://www.frontiersin.org/Integrative_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Integrative_Neuroscience/archive


Torres et al. Atypical Gait in SHANK3-ASD

FIGURE 9 | Connectivity and modularity indexes dynamically obtained from all frames. (A) Degree distribution over all frames for each control participant (red

represent college, green represent children matching the age and sex of PMS). (B) Degree distributions of PMS participants with synergies of the upper body. Patterns

of iASD are shown for reference (notice their homogeneity in this metric despite their heterogeneous clinical phenotype). (C) Degree distributions across all frames

from PMS with no synergies superimposed on the three iASD. (D) All distributions of node (joint) participation in modules. Black dot represents the modules with

maximal node participation (a synergy is a module with maximal participation from multiple joints). PMS (11/16) with no synergies (see also Supplementary Figure 1). In

these cases all joints participate homogenously in the module. They are contrasted with PMS with synergies (5/16) recruiting upper body joints but none in the lower

body. (E) Number of synergies vs. proportion of joints participating in module for college and children controls. (F) Same as (E) for PMS with upper body synergies.

(G) iASD with similar patterns as PMS with synergies and PMS with no synergies.

estimated shape and scale Gamma parameters. Here the PMS
patterns show the lowest mean value in the normalized peak
angular acceleration index. This indicates that the underlying
average rate of change of angular rotation across the joints is high
(denominator term), thus confirming (1) the highly accelerated
state of their joint rotations; (2) the possible lack of controllability
found in the legs’ actual rotational acceleration patterns. This
result implies a systemic lack of controllability in PMS that is
not present in the joints of the iASD children under study here.
These iASD children span mean values comparable to controls,
but have higher variance than age and sex-matched controls
and the PMS group. To test for differences in variance we used
the 3 control male children in the range of 8–13 years old and
the 3 iASD males of comparable ages (3 children × 14 joints

× 1000 randomly chosen measurements of normalized peak
angular acceleration index to estimate the Gammamoments) and
tested the differences in estimated variances between controls and
iASD in a non-parametric one-way ANOVA Kruskal-Wallis test
(p < 0.01).

While the PMS group suffers from the systemic excess
rotational acceleration issue, the iASD group suffers from
systemically higher noise levels in their micro-movements. This
is consistent with the faster rate of accumulation in the iASD
empirically estimated cumulative distribution functions (eCDF),
see Figures 10C,D. This extends previous results on hand micro-
movements in ASD to full-body, systemic levels (Torres et al.,
2013a). Peripheral noise, which is absent in mature controls
of comparable age, is indeed present in iASD and in PMS,
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particularly at the younger 5–7 years of age. Note that the
iASD participants are older than 7 years of age (10–12 years of
age). A possible interpretation is that excess noise may prevent
proper maturation of other aspects of walking; because such
processes require statistical estimation and prediction of bodily
biomechanical states, a very challenging thing to do under
persistent noise and uncertainty.

Arm Patterns Differentiate Sex in PMS
Building on the differences in upper- and lower- body synergies
between controls and children with PMS and iASD, we
investigated variations in upper body extremities during the
walking. To this end we empirically estimated the Gamma
parameters from the data of each of the female and male subjects
and generated 1000 points per group by randomly choosing
from the empirical parameter values of the normalized peak
acceleration index.

Figures 10A–C shows the results of examining the normalized
peak angular acceleration index. In Figure 10A the data is pooled
across all males and all females PMS and the eCDF is obtained.
The results of the corresponding pairwise individualized
comparisons using the Kolmogorov-Smirnov test for two eCDFs
are shown in matrix form in Figure 10D. Each entry represents
the log of the p-value color coded according to significance level
(see color bar). Notice that all p-values are extremely small.
Even the non-significant entries are very close to 0.05. The most
striking feature of the pooled data is the clear separation between
males and females in PMS. The differences are also appreciated
in the individual eCDFs shown in Figures 10B,C for females
and males with PMS respectively, with corresponding p-value
matrices shown in Figures 10E,F respectively. In each plot the
three iASD were also plotted for reference. Notice that two iASD
align with the PMS males and one iASD aligns within typical
ranges. As a group, the fluctuations in arm motions in PMS
children during walking unambiguously distinguish males from
females. When unfolding the data individually the females with
PMS show a broader range of variability in eCDF patterns than
the males. Further comparison between PMS females and control
females (or PMS males and control males) show differences in
the empirically estimated distributions as well. Such differences
are not captured by criteria from DSM or ADOS-G (Autism
Diagnostic Observation Schedule—Generic, Lord et al., 2000).
These clinical rating systems used to diagnose ASD based on
observation and interpretation of behaviors in a social setting do
not include gait, general walking, or any objectively reproducible
motormeasure from the physical body. Thus there are no existing
scores at all to capture such important differences permeating all
aspects of social and non-social motor behaviors.

DISCUSSION

This work characterizes the stochastic signatures of the patterns
of micro-movements across the body in children of different
ages with PMS. This statistical characterization was performed in
relation to controls and also compared to three male individuals
with iASD. The latter small group was used to illustrate a highly
heterogeneous disorder with three very different individuals

with similar clinical diagnoses with the prospect of identifying
some statistical pattern common to all three. The results of
this characterization underscore the need for individualized
assessments of various layers of data to provide a comprehensive
phenotype of the person affected by a neurodevelopmental
disorder (in this particular case PMS) and better integrate the
knowledge from various layers of basic research and clinical
practice (Figure 11A).

In all atypical cases, we found excess noise and randomness
according to the Fano Factor and other statistical indexes. By
examining the stochastic signatures of the moment-by-moment
fluctuations in motor performance during walking, we were able
to separate levels of spontaneous random noise present in most
PMS and iASD participants from well-structured, systematic
noise with predictive power in neurotypical controls. In addition
to the characterization of signatures of motor noise, we found
excess rotational acceleration in PMS. Our interpretation of
this feature is that it most likely interferes with their volitional
motor control. Excessively accelerated rotations were particularly
prevalent in the young 5–7 year old subgroup, and in the
adolescents, albeit to a lesser extent. In the iASD individuals,
the common hallmark was excess noise and the narrow range
of shapes of probability distributions across all 14 joints (14x3
individuals, 42 different distributions with similar shape and high
dispersion).

Another result came from network analyses. According to the
metrics of synchronization that were applied, both iASD and
PMS have poor connectivity patterns across the body. These
patterns in the older iASD and PMS children and adolescents are
comparable to those of a 5-year-old typically developing child.
Furthermore, the recruitment/release of degrees of freedom
across the upper and lower extremities of the children with
neurodevelopmental delays lacked the synergies quantified in
controls. The lack of synergies indicates that unlike controls, the
nervous systems of the children with PMS and iASD studied here
tend to not differentiate the joints of the upper body from those of
the lower body in an efficiently articulated manner. Instead, their
systems tend to homogeneously recruit all joints across the body.
This atypical way of controlling DoF across the body during
complex motions is bound to require excess energy; far from
the more efficient well-coordinated control strategies detected
in all controls. In some of the PMS children, synergies were
detected but they did not amount to those quantified in controls.
In this sense we were able to statistically characterize the type
of poor coordination that is often reported in these populations
by observation alone. Moreover, we provide visualization tools to
capture the dynamic evolution of the complex network patterns
during natural walk, a tool that can serve to track longitudinal
performance with great precision.

Analysis of the arm signatures of fluctuations during the
walking revealed sex differences in the PMS group, an interesting
finding when viewed in the broader context of the ASD
diagnosis. As mentioned, all children with PMS also received
a formal diagnosis of ASD according to the DSM criteria and
the ADOS (see Supplementary Table 1). Perhaps the types of
objective analyses introduced here could aid in the clinical
phenotyping of ASD in general. One of the advantages of
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FIGURE 10 | Fluctuations in arms’ angular acceleration distinguish sex in PMS. (A) Empirical cumulative distribution function (eCDF) estimated from the

fluctuations in normalized peak angular acceleration index obtained from arm motions during walking Data are pooled across all males and all females with PMS vs. all

male and all female controls. (B) eCDF from each PMS female in relation to the three iASD (dashed curves fall near female control signatures). (C) eCDF from each

PMS male in relation to the three iASD (dashed curves fall near male control signatures). Notice the contrast with (B). (D–F) Pairwise comparison matrices drawn

using Kolmogorov-Smirnov test of two eCDFs. Entries are the log of the p-value from the test. Color bar indicates the log p-values. Entries colored in green are

0.05–0.07, thus failing to reject the null hypothesis that the differences in eCDFs are statistically significant at the 0.01 level. Blue entries mark near zero p-values,

significant at the 0.01 level. Notice that 2 iASD fall with the larger number of PMS males and one iASD falls with the smaller number of PMS males.

the present methods is that they can be used in the context
of any continuous stream of naturalistic motions. Even if
the child has communication impairments and cannot follow
precise instructions, one could extract the micro-movement
patterns from natural motions embedded in bodily rhythms and
characterize their statistical signatures as they evolve in time.
Using these objective assessments and visualization tools, without
constraining the body, it is possible to begin the path of precision
phenotyping, thus increasing the likelihood of detecting specific
sex features to identify possible ASD subtypes.

Toward Precision Psychiatry with Proper
Objective Dynamic Outcome Measures
The results of this work indicate that the proposed biometrics
of fluctuations in motor performance may serve as dynamic
outcome measures to track bodily rhythms and their evolution

over time. The use of these metrics, paired with the advent
of high-resolution wearable sensors that register physiological
signals, has the potential to accelerate the path toward Precision
Psychiatry.

The methods presented are part of a broader statistical
platform that aims at an individualized approach to the
assessment, tracking, and treatment of disorders of the nervous
system in general. In particular, those disorders that result in
an atypical neurodevelopmental course would benefit from the
use of such dynamic biometrics. We underscore that the current
conceptualization of diagnoses and classification of disorders
based on observation and coarse clinical ratings has been difficult
to connect with the dynamic, non-linear and stochastic nature
of neurodevelopment. Any given diagnosis that is treated as a
static, deterministic process is bound to become obsolete as soon
as the child leaves the clinician’s office because the coping nervous
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FIGURE 11 | New proposed methodology to accelerate progress in medicine and science: Schematic to situate the proposed dynamic outcome

measures in the network of knowledge for Precision Psychiatry. (A) Higher layers of outcome data drive basic science and patient care at the bottom layers,

but the “evidence-based” outcome of current behavioral analyses prevents personalized medical practices, possibly misinforming bottom layers and negatively

impacting decision-making in basic research and patient care. (B) The proposed statistical platform to transform current practices into personalized behavioral

analyses targeting specific levels of precision involving signatures of motor-sensory based noise with higher likelihood of connecting with genetic factors by

exhaustively characterizing different statistical classes of synaptic noise. The layer of behavioral analyses is targeted.

system of that child is adapting at a unique rate. This dynamic,
non-linear, stochastic process cannot be captured by the “one size
fits all” statistical approach currently in use (Torres et al., 2016).

In addition to the methodological statistical issues that
traditional methods have, the shifting criteria of the clinical
ratings confound the research. Take for example the most recent
National Health Interview Survey reported by the CDC on
November 13th 2015. By changing the order of the questions
asked, among other subjective factors, the estimated annualized
prevalence of ASD significantly jumped from 1.25% in the
2011–2013 data to 2.24% in the 2014 data. Unfortunately, at
present, scientific research in the areas of neuropsychiatric and
neurological disorders is driven by clinical ratings that are
just as unreliable. Unlike other areas of medicine, like cancer
research, where science leads clinical treatments and patient care,
the medical areas addressing disorders of the nervous systems
have not made progress toward Precision Medicine (Insel, 2014;
Hawgood et al., 2015). Consequently, treatments are symptom-
based with no identification of core biological features with the
potential to lead toward the discovery of targeted drugs tailored
to the person’s physiology.

The stochastic signatures of fluctuations on motor
performance, as they flow moment by moment, may tap into
core biological features of neurodevelopmental disorders such as
ASD, and be amenable to constitute one of the dimensions of the

RDoC that cuts across research domains (Bernard and Mittal,
2015). Their statistical sensitivity to the subtle rates of change of
stochastic signatures, unique to each person, may help us blindly
and automatically identify self-emerging clusters across the
general iASD population and express them as a function of ASD
of known etiology. Conceivably, other groups with a clinical
diagnosis of ASD of a known etiology could be studied and
similarly characterized. We could then provide a physiologically-
relevant statistical map of PDFs (Torres et al., 2016; Figure 7A)
with the potential to localize within the general ASD population
each self-emerging cluster with a given etiology. This mapping
would enable identification of the empirically estimated ranges
of sensory-motor noise and randomness levels characteristic
of a given group (independent of the clinical phenotype). This
is important because muscles across the body serve as natural
amplifiers of the underlying synaptic signal flowing across
sensory and motor nerves (Kuiken et al., 2009; Hebert et al.,
2014). In principle, motor noise depends on synaptic noise
(Faisal et al., 2008). In other areas of research, this connection
has been successfully exploited at the motor output level to
close the sensory motor loops and redirect the information
flow of targeted nerves in the periphery so as to implement
co-adaptive interfaces for sensory substitution and sensory
augmentation (Hebert et al., 2014; Yao et al., 2015). But because
ASD is defined exclusively based on behavior, those important
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fields of neural control of movements and sensory-motor
neuroscience that focus on closed-loop neurorehabilitation and
sensory-substitution have yet to make contact with the field of
autism research at large.

Besides the above mentioned general issues impacting areas
of clinical treatments and patient care, there are important
methodological considerations for basic research in ASD. The
present results from this cohort (Figure 7) and those from
other ASD participants in recent work (Torres et al., 2016)
point out at the non-Gaussian nature of the distributions of
the movement parameters. This indicates that despite their
objectivity, typical analytic approaches that average movement
parameters across a handful of trials, assume normality, or
“detrend” nuisance patterns in the time series of kinematics data
of ASD groups, may instead discard biologically relevant signals
and provide a mischaracterization of the underlying sensory-
motor phenomena. If, in addition to those inadequate statistical
practices to asses continuous physiological data, such data are
correlated with discrete observational scores (as is common
practice today) there is little chance to advance basic research
toward Precision Psychiatry.

Besides advantages in research involving human subjects,
the use of the proposed biometrics in animal research would
be beneficial. At present the phenotype of transgenic models
of disorders of the nervous systems (e.g., SHANK3 deletion
syndrome or PMS) are descriptive, based on observation,
interpretation of the observed behaviors and at best using
computerized assessments from hand coded descriptions that are
then built into the heuristics of a computer program.Whether by
hand or computerized, human heuristics defines discrete aspects
of behavior a priori, thus skewing the research to focus on
issues that are unambiguous to the naked eye, at the expense of
leaving out important spontaneous aspects of behavior that occur
largely beneath awareness. Automatic biometric assessment
from high grade instrumentation combined with analytics that
spontaneously uncover self-emerging patterns from the inherent
variability of the data have a chance to accelerate progress
toward target treatments and the longitudinal tracking of their
effectiveness or risks over different time scales.

Advancing Basic Social-Science Questions
in Neurodevelopmental Disorders with
Social Deficits
The present results speak of a systemic noise problem in disorders
that result in a diagnosis of ASD. They extend our previous
results in iASD (Torres et al., 2013a,b) to another form of ASD,
suggesting a general systemic micro-movement problem in this
population, quantifiable in non-invasive and systematic ways.We
have proposed that, paired with this excess sensory-motor noise
problem, are issues of sensory-motor integration and sensory-
motor transformations that can have a direct impact on socio-
motor behavior, deficits that may define the phenotype. For
example, lack of proper synergies across the body, such as those
revealed here in PMS and iASD, would impede efficient body
entrainment during dyadic interactions that take place in social
exchange during clinical testing. This could be misinterpreted

as lack of joint attention. Yet, in reality, under persistent and
systemic random noise across the body, it would be challenging
to entrain with any external biological rhythms, such as those
present in the social scene during clinical testing. Furthermore,
the continuous presence of systemic random noise would
prevent any type of proper integration of kinesthetic reafferent
(movement-based) feedback with external inputs from biological
and non-biological motions coexisting in the environment. In
this regard, previous work indicates that typical controls are
capable of unambiguously differentiating their own stochastic
patterns of walking movements from those of others (Johnson
et al., 2012a,b; Mistry et al., 2015). An open question that we
can address using the present methods is whether individuals
with iASD could also do that, given their reported limitations
in understanding biological motions in general (Klin and Jones,
2008; Klin et al., 2009, 2015) and generally preferring non-
biological (robotics) motions instead (Giannopulu and Pradel,
2010; Chaminade et al., 2015).

Further investigations into motor sensing patterns may be
important in general to advance our understanding of sensory
issues in iASD and other neurodevelopmental disorders. Sensory
issues have been previously reported (Dinstein et al., 2012) along
with various lines of research suggesting synaptic dysfunction
(Zoghbi and Bear, 2012; Shcheglovitov et al., 2013) and
inhibition/excitation imbalance (Tabuchi et al., 2007; Yizhar et al.,
2011; Cochoy et al., 2015) in ASD. We posit that these synaptic
disruptions may directly impact synaptic noise, which will be
amplified and present within the signatures of motor noise.
The structure of motor noise can then be refined to separate
spontaneous-random from systematic-predictive patterns using
analyses ofmicro-movements, so as to reveal specific information
linked to a genetic condition.

As these minute fluctuations or signatures of motor noise
are invisible to the naked eye, the ASD phenomena have been
conceptualized as devoid of sensory-motor issues (Lord et al.,
2000). Indeed, within the context of Precision Psychiatry, motor
issues are not currently considered in the RDoC (Bernard and
Mittal, 2015). By conceiving fluctuations in motor performance
as a signal embedded in the returning afferent inputs that
those self-produced movements themselves cause (von Holst
and Mittelstaedt, 1950), we can begin a path of utilizing
the body of knowledge from the fields of neural control of
movement and applying it to the study of neurodevelopment.
This would be particularly useful in the context of IMA
(Wolpert and Miall, 1996; Wolpert et al., 1998), the peripheral
movement signal informs the central controllers the moment-by-
moment accumulation of sensory evidence to predict the sensory
consequences of impending decisions and actions (von Holst and
Mittelstaedt, 1950; Von Holst, 1954).

Central structures participating in the brain networks for
forward prediction, such as those in the cerebellum, are likely
to be compromised in PMS (Aldinger et al., 2013; Soorya et al.,
2013). Likewise, IMA in iASD are impeded (Gidley Larson et al.,
2008; Haswell et al., 2009; Mostofsky and Ewen, 2011), perhaps
because important pathways projecting sensory afferents from
the body to cerebellar nodes (Mostofsky et al., 2009) and critical
nodes in cortical networks (Prevosto et al., 2009, 2010, 2011),

Frontiers in Integrative Neuroscience | www.frontiersin.org 19 June 2016 | Volume 10 | Article 22

http://www.frontiersin.org/Integrative_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Integrative_Neuroscience/archive


Torres et al. Atypical Gait in SHANK3-ASD

relevant in forward prediction (Mulliken et al., 2008; Torres et al.,
2013c), are reportedly disrupted in iASD (Gidley Larson et al.,
2008; Haswell et al., 2009; Mostofsky et al., 2009; Nebel et al.,
2014). Under such brain-body network disruptions it is very
unlikely to develop efficient synergies for the volitional control
of movement. Even though individuals with ASD move, the
moment-by-moment returning motor signal may have narrow
bandwidth, and be corrupted by noise and randomness at the
periphery (Brincker and Torres, 2013).

We propose that the persistently corrupted kinesthetic
motor reafference may have origins at the synapse, with
different sub-classes of molecular pathways selectively outputting
different motor-noise patterns characterized by specific statistical
signatures. This is a testable hypothesis that paired with the tools
provided here would guide a new type of precision phenotyping
in neurodevelopmental research.

CONCLUSIONS

This study offers a new unifying statistical framework for
the personalized analyses of naturalistic behaviors with
unprecedented level of detail. We were able to capture and
characterize motor phenotypic features of PMS relative to
normative data, identify areas of commonality and differences
with iASD, and propose a new general statistical platform with
the potential to eventually establish a bridge between behavior
and genetics at an individualized level (Figures 11A,B). There
is a critical need for such a unifying framework and for the type
of precision phenotyping introduced here. As such, this work
could accelerate the path toward Precision Psychiatry with broad
implications across multiple disciplines, including among others
behavioral neuroscience, genetics and clinical areas.
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