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The arrival of modern brain imaging technologies has provided new opportunities for
examining the biological essence of human intelligence as well as the relationship
between brain size and cognition. Thanks to these advances, we can now state that
the relationship between brain size and intelligence has never been well understood.
This view is supported by findings showing that cognition is correlated more with brain
tissues than sheer brain size. The complexity of cellular and molecular organization
of neural connections actually determines the computational capacity of the brain. In
this review article, we determine that while genotypes are responsible for defining the
theoretical limits of intelligence, what is primarily responsible for determining whether
those limits are reached or exceeded is experience (environmental influence). Therefore,
we contend that the gene-environment interplay defines the intelligent quotient of an
individual.

Keywords: brain, brain network, brain tissue components, brain plasticity, cognition, MRI scan IQ, environmental
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INTRODUCTION

People have long been tempted to link brain size and intelligence (Morton, 1839; Broca, 1861;
Galton, 1889; Terman, 1926; Sorokin, 1927; Hooton, 1939). Broca (1861) stated many years ago
that brain size is directly related to intellectual achievement. ‘‘He observed that skilled workers
and individuals prominent in their fields had larger brains than those who had not achieved such
distinction’’ (Cairó, 2011). Terman (1926) further demonstrated that, on an average, individuals
with special talents had larger brains than those who did not.

In recent years, the advent of modern brain imaging technologies has provided new
opportunities for examining the biological essence of human intelligence (Luders et al., 2009),
as well as the relationship between brain size and cognition. Thanks to the advances in science
and technology, most recent studies show on the contrary that the relationship between brain
size and intelligence has never been well understood. This view is supported by findings showing
that general intellectual ability is correlated more with the density of neurons, the isocortex, the
cerebellum, the forebrain and gray matter volume (which is dense in neural cell bodies) in the
frontal lobe, parietal lobe and Broca’s area than sheer brain size (Bracke-Tolkmitt et al., 1989;
Krugger et al., 2003; Rogers, 2004; Roth and Dicke, 2005; Colom et al., 2006; Jung and Haier, 2007;
Neubauer and Fink, 2009; Langer et al., 2011). Notwithstanding these findings, ‘‘neuroscientists
now believe that the complexity of cellular and molecular organization of neural connections is
what truly determines a brain’s computational capacity’’ (Lechtenberg, 2014).

There are two categories of brain measures in the brain size literature. The first one
consists of measures of the external size of the head, such as the circumference of the head
(Gignac et al., 2003; Ivanovic et al., 2004; Luders et al., 2009; Rushton and Ankney, 2009).
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The second one is much more interesting and is related to
the brain volume, which can be assessed using techniques such
as magnetic resonance imaging (MRI), functional MRI (fMRI),
positron emission tomography (PET) and other non-invasive
measures of brain structure and activity (Willerman et al.,
1991; Andreasen et al., 1993; Wickett et al., 2000; Videbech
and Ravnkilde, 2004; McDaniel, 2005; Witelson et al., 2006;
Pietschnig et al., 2015).

The idea behind these studies can be summarized in
the following way: the larger the brain, the higher the IQ.
‘‘This assumption is substantiated by three facts: (a) an
increase in size provides an increase in function; (b) much
of the brain is occupied by cortical associations; and (c) the
cerebral cortex encompasses more than two-thirds of the
brain mass and it is responsible for thinking, perceiving,
producing and understanding language. Therefore, if the brain
is larger, then the cerebral cortex must be bigger’’ (Cairó,
2011).

Other studies suggest the same: large brains are a result of
differential increases in size of parts of the brain according to
their importance (Mace et al., 1980); brain size is proportional
to its capacity for processing information (Jerison, 1985);
larger brains have more neurons (Haug, 1987); the correlation
between brain size and number of neurons is 0.56 (Pakkenberg
and Gundersen, 1997); and an increase in brain size implies
an increase in conceptual or semantic complexity (Gibson,
2002).

All of these assumptions seem logical. However, there
are a number of substantial problems with some of the
assumptions that support the hypotheses. Some cetaceans, such
as sperm whales and elephants, have much bigger brains
than humans (their brain size can exceed 8 kg) and other
animals, but they are not smarter. There are also individuals
with large brains and low intelligence levels, such as those
with an abnormal accumulation of cerebrospinal fluid in
the ventricles (hydrocephalus). On the other hand, there are
individuals with a small brain and a tremendous intelligence
level, which somewhat contradicts the above hypothesis. The
cranial capacity of Einstein was 1230 cm3, considerably less
than the average size for an adult (Anderson and Harvey,
1996).

The volume of the human brain reached its peak up to
1600 cm3 in Homo neanderthalensis, but it has been getting
smaller over the past 28,000 years (Henneberg, 1988). Domestic
animals also have smaller brains than their wild ancestors. In
summary, most of the studies report weak correlations from
0.17 to 0.26 between external head size measures and intelligence
(van Valen, 1974; Susanne, 1979; Nguyen and McDaniel, 2000;
Vernon et al., 2000). Head dimensions clearly do not explain very
much of the variation in IQ.

Studies evaluating the correlation between brain volume and
intelligence are much more interesting, but they are scarce.
In a large meta-analysis consisting of 88 studies, Pietschnig
et al. (2015) estimated the correlation between brain volume
and intelligence to be about 0.24. McDaniel (2005) reported
this correlation in 0.33. Most studies, however, conclude that
the correlation between IQ and brain volume is consistently in

the 0.3–0.4 range (Egan et al., 1994; Nguyen and McDaniel,
2000; Vernon et al., 2000; Witelson et al., 2006; Taki et al.,
2012).

Tools for Comparing Encephalization
within Species
Brain size tends to vary according to body size. Therefore,
there is a good possibility that a power law, such as the
brain-to-body weight ratio (or brain-to-body height), exists.
This law may well become a useful tool for comparing
encephalization within species. This by one means that relative
instead of absolute brain size coincides much better with
observed cognitive abilities in animals. The human male ratio
is 1.86%, the bottle-nosed dolphin ratio is 1.25%, and the
chimpanzee ratio is 0.4%. The results tend to substantiate
to some degree the belief that the humans are the smartest
and the most evolved in the animal kingdom. However, it
has also some inconsistencies. A shrew’s brain weighs 3 g
and its total weight is 30 g, making its ratio 10%. This tiny
animal has the highest brain-to-body mass ratio of any known
creature.

Encephalization Quotient (EQ)
A sophisticated alternative to external measures of cognition
is the encephalization quotient (EQ) that takes into account
allometric effects of widely divergent body sizes. ‘‘For a larger
organism, more brain capacity is needed to perform basic
survival tasks, such as thermoregulation, breathing and motor
skills. As the brain gets larger in relation to body size, it will have
greater available capacity for performing cognitive tasks’’ (Cairó,
2011).

The EQ formula was developed for Jerison (1973) in the late
1960s and is calculated as follows:

EQ = brain-weight/(0.12 ∗ body-weight(2/3))

The constants were derived empirically for mammals and
represent an important geometric relationship between volume
and surface area. The exponential constant for primates is
0.28 (Williams, 2002). Martin (1981) and Savage et al. (2004)
estimated the power of 3/4 for some of the other vertebrate classes
based in a large set of cases. The formula may give no meaningful
results for invertebrates, because as Stephen Gould says ‘‘they do
not have spinal cords or, in some cases, central nervous systems’’.

The average EQ is defined as 1. The tiger reaches an EQ of
0.68; the whale dolphin an EQ of 5.55; and a human being an
EQ of 6.54. Russell (1983) found that the EQ of a mammal that
lived 65 million years ago was 0.30, compared to the average of
1.0 today.

The EQ formula can reasonably be seen as a good predictor
of intelligence in mammals, but it has some shortcomings. For
instance, it does not consider the fact that completely distorts
the formula and others such as density of neurons, cortical
thickness, number of cortical neurons, and brains folding that are
very important and may correlate better with human cognition
(Cairó, 2011).
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Brain Size and Intelligence: Does the Size
Matter?
The relationship between brain size and intelligence is
controversial. Many articles support one point of view, while
many others refute it. Both sides substantiate their position
with arguments and disqualify the opposing view. As opposed
to bolster either position, we underscore a third view that has
gained acknowledgment and credibility in recent years: genes
and environment cannot be assessed separately.

BRAIN PARTS, BRAIN TISSUE
COMPONENTS AND BRAIN NETWORK

Researchers have been trying to pinpoint the substrate of
human intelligence for decades. Thanks to the advances in
science and technology, most recent studies now show that the
relationship between brain size and intelligence has never been
well understood. This view is supported by findings showing
that intelligence is correlated with more subtle characteristics
such as density of neurons, the isocortex, the cerebellum, the
forebrain, white matter and gray matter volume in the frontal
lobe, parietal lobe and Broca’s area than sheer brain size (Bracke-
Tolkmitt et al., 1989; Krugger et al., 2003; Rogers, 2004; Roth
and Dicke, 2005; Colom et al., 2006; Jung and Haier, 2007;
Neubauer and Fink, 2009; Langer et al., 2011). Even the speed
at which nerve impulses travel in the brain could be linked to
intelligence. Despite these findings, recent studies conclude that
the complexity of cellular and molecular organization of neural
connections actually determines the computational capacity of
the brain (Barbey et al., 2012; Cole et al., 2012; Lechtenberg,
2014; Vakhtin et al., 2014; Bohlken et al., 2016). The consistency
of these new results across the literature has revealed that
individuals with more efficient brain networks have a higher
intelligence.

The brain contains three tissue types: gray matter, white
matter and cerebrospinal fluid. Luders et al. (2009) say that
quantifying the amount of gray matter gives an estimate of
the density and number of the brain’s neuronal cell bodies
and dendritic expansions; quantifying white matter helps
to approximate the number of axons and their degree of
myelination. That is, while the amount of gray matter might
reflect the capacity of cognition and processing, the amount
of white matter might mirror the efficiency of inter-neuronal
communication between different brain regions. ‘‘White matter
of a 20-year-old man contains a staggering 176,000 km of
myelinated axons’’ (Marner et al., 2003). ‘‘Axons ensure smooth
communication throughout the brain by conducting electrical
impulses and by transporting various molecules and organelles
from the cell body to a synapse’’ (Barry et al., 2007). Gray
matter is present in the brain, brainstem and cerebellum, and
throughout the spinal cord. On the other hand, white matter
forms the bulk of the deep parts of the brain and the superficial
parts of the spinal cord.

Recently, Bohlken et al. (2016) posit that ‘‘intelligence is
associated with a network of distributed gray matter areas
including the frontal and parietal higher association cortices

and primary processing areas of the temporal and occipital
lobes’’. Narr et al. (2007) also examined full-scale intelligence
quotient (FSIQ) associations with cortical thickness at high
spatial resolution across the cortex in 30 male (mean age: 27.9)
and 35 female (mean age: 28.5) healthy individuals. To assess
general intellectual ability, they employed the Wechsler adult
intelligence scale (Wechsler, 1981). ‘‘Positive relationships were
found between FSIQ and intracranial gray and white matter
but not cerebrospinal fluid volumes. Significant associations
with cortical thickness were evident bilaterally in prefrontal
(Brodmann’s areas [BAs] 10/1147) and posterior temporal
cortices (BA 36/37) and proximal regions’’ (Narr et al.,
2007). Haier et al. (2004) have also shown that variation in
structures throughout the brain was related to intelligence,
finding that there are significant associations between brain
variations in gray matter density across discrete areas of the
frontal, parietal, temporal and occipital lobes, and IQ scores
(Johnson et al., 2008; Colom et al., 2009). Haier et al. (2004)
also found that people with high IQ scores had significantly
more gray matter in 24 of the regions than people with
lower scores. They used voxel-based morphometry (VBM) and
a statistical conjunction approach (Price and Friston, 1997)
to show where correlations between IQ and gray or white
matter were common. ‘‘The conjunction results of two samples
(N = 47) showed robust positive correlations (P < 0.05,
corrected for multiple comparisons) between FSIQ and gray
matter volumes in BA 10, 46 and 9 in frontal lobes; BA 21,
37, 22 and 42 in temporal lobes; BA 43 and 3 in parietal
lobes; and BA 19 in the occipital lobe. These findings support
the view that individual differences in gray and white matter
volumes, in a relatively small number of areas distributed
throughout the brain, account for considerable variance in
individual differences in general intelligence’’ (Haier et al.,
2004).

Regarding the parts of the brain that are related to cognition,
Barbey et al. (2012) state that ‘‘these structures are located
primarily within the left prefrontal cortex (behind the forehead),
left temporal cortex (behind the ear) and left parietal cortex
(at the top rear of the head) and in white matter association
tracts that connect them’’. ‘‘By analyzing 182 patients with focal
brain damage using voxel-based lesion–symptom mapping and
comparing their cognitive abilities with those of patients in
whom the same structures were intact, the researchers were
able to identify brain regions essential to specific cognitive
functions, and those structures that contribute significantly to
intelligence’’, Barbey said. Patients with Alzheimer’s disease show
smaller gray matter volumes in the medial temporal lobe than
do age-matched elderly individuals (Busatto et al., 2008; Taki
et al., 2011). Decreased global cortical cortex and orbitofrontal
cortex have been associated with diminished attention and
executive function (Zimmerman et al., 2006; Kramer et al.,
2007). Narr et al. (2007) emphasize that ‘‘neuropsychological
patients with focal brain lesions provide a rare opportunity
to study the mechanisms underlying general intelligence and
executive functions, supporting the investigation of lesion-deficit
associations’’. In particular, the pattern of findings shows that
high-level cognitive processes fundamentally depend on the
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interregional communication between frontal and parietal cortex
(Barbey et al., 2012). Reinforcing the aforementioned, Damasio
(2000) points out that one way to analyze how a part of the
brain affects consciousness or in this case general intelligence
is to analyze the behavior of individuals who have specific
damage in those areas of the brain. Only when parts of the brain
cease to function may one learn and recognize one’s biological
purposes.

Cole et al. (2012) mark that control of thought and behavior
is fundamental to human intelligence and a frontoparietal
brain network implements such cognitive control across diverse
contexts. Vakhtin et al. (2014) posit that the ‘‘refinement of
localization of intelligence in the human brain is converging
onto a distributed network that broadly conforms to the
Parieto-Frontal Integration Theory (P-FIT)’’. Colom et al. (2006)
also state that the P-FIT nominates several areas distributed
throughout the brain as relevant for intelligence. The P-FIT
model is consistent with the generalist genes hypothesis
mentioned by Kovas and Plomin (2006). Jung and Haier (2007)
posit that not all these brain areas are equally necessary in
all individuals for intelligence. They predict that discrete brain
regions of the dorsolateral prefrontal cortex (BAs 9, 45, 46
and 47) and the parietal cortex (BAs 7 and 40) may be key
for the core of general intelligence. Narr et al. (2007) state
that ‘‘variations in prefrontal and posterior temporal cortical
thickness are particularly linked with intellectual ability’’. Given
that cortical thickness generally relates with the number of
neurons, it is regularly taken as indicative of the cognitive abilities
of an individual.

Molecular Genetics and Intelligence
Studies that seek to find quantitative trait loci have been relatively
unsuccessful because of the great number of genes that may
affect brain processes (Luciano et al., 2006). A wide-scale effort
to identify genes that influence IQ was initiated by Plomin
et al. (1995). They examined the association between 100 DNA
markers in/near genes relevant to neural functioning in high and
low IQ groups (Plomin et al., 1995).

In recent years, there has been a breakthrough in the genetic
study of human intelligence because five whole-genome linkage
scans have been published and all of them converged on
several chromosomal regions that are important to intelligence.
‘‘Finding genes brings us closer to an understanding of the
neurophysiological basis of human intelligence’’ (Posthuma and
De Geus, 2006).

Two main strategies were followed to identify genes related
to variations in cognition: genetic linkage analysis (Lincoln
and Lander, 1992; O’Connell and Weeks, 1998; Posthuma and
De Geus, 2006; Plomin and Deary, 2015) and candidate-gene
association studies (Chorney et al., 1998; Kwon and Goate, 2000;
Tabor et al., 2002; Zhu and Zhao, 2007).

Linkage is the tendency for genetic markers (DNA sequences
or genes) to be inherited together because of their location near
one another on the same chromosome. The nearer two genes
are on a chromosome, the lower the chance of recombination is
between them. Linkage analysis serves as a way of gene-hunting
and genetic testing, which is both useful and used to identify

individuals with a particular trait, such as cognitive ability or
general learning disability.

The first whole-genome linkage scan for intelligence was
published by Posthuma and De Geus (2006). Results derived
from the studies of two samples (150 Dutch sibling pairs
and 475 Australian sibling pairs) show that there are two
areas of significant linkage to intelligence, chromosomes 2q
and 6p, and several areas of suggestive linkage (chromosomes
4p, 7q, 20p and 21p). ‘‘The chromosome-2 area has been
implicated in linkage scans for autism and dyslexia, while
the chromosome-6 area is the main linkage area for reading
ability and dyslexia’’ (Posthuma and De Geus, 2006). Two
other studies also confirm the link between chromosomes
2 and 6 and cognition (Luciano et al., 2006; Wainwright et al.,
2006). The findings (data from 210 families were analyzed)
suggest that the genes on chromosome 2, which have a broad
influence on a variety of cognitive abilities, influence the
variation in general academic achievement (Wainwright et al.,
2006). The CHRM2 gene could also be correlated with slight
differences in performance IQ scores. This is not a gene for
intelligence. It is a gene that is involved in some kinds of
brain processing, and specific alterations in the gene appear to
influence IQ. ‘‘But this one gene alone isn’t going to make the
difference between whether a person is a genius or has below-
average intelligence’’ (Dick et al., 2007). Finally, it is good to
point out that Posthuma and De Geus (2006) presented an
ideogram (chromosome map) of the human genome, showing
which regions of chromosomes are likely to contain genes for
intelligence. This ideogram is based on the five linkage studies
conducted to date.

The candidate-gene association approach, on the other hand,
is based on studies focused on associations between genetic
variation within pre-specified genes of interest and phenotypes
or disease states. Variation in the alleles is measured and tested
for association with intelligence. The candidate gene is largely
limited by its reliance on the priori knowledge about biological,
physiological, or functional relevance of possible candidates.
While the identification of candidate genes involved in genetic
traits continues to be a challenge, significant progress in this
subject has been achieved during the last few years (Zhu and
Zhao, 2007).

Chorney et al. (1998) published the first candidate-gene
association study in children. The conjunction results of
two samples of Caucasians (N = 51, average IQ = 136136;
N = 52 average IQ = 156) showed robust positive correlations
between the gene insulin-like growth factor-2 receptor (IGF2R)
on chromosome 6, region 6q26 and cognitive results. In the first
study, ‘‘a DNA marker in the gene for IGF2R on Chromosome 6
yielded a significantly greater frequency of a particular form of
the gene (allele) in a high-g group (0.303; average IQ = 136,
N = 51) than in a control group (0.156; average IQ = 103,N = 51).
This association was replicated in an extremely-high-g group (all
estimated IQs > 160, N = 52) as compared with an independent
control group (average IQ = 101,N = 50), with allelic frequencies
of 0.340 and 0.169, respectively’’ (Chorney et al., 1998). They
concluded that the IGF2R gene is associated with high g. Four
years later, however, they conducted a replication analysis for
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a new sample that was bigger than the two previously reported
samples combined. They concluded that the IGF2R gene is not
associated with high g (Hill et al., 2002). ‘‘This finding is part of a
long list of reported associations that have failed to be replicated
(Cardon and Bell, 2001), and those associations that have shown
some replication, such as dopamine gene associations with
hyperactivity (Thapar, 2003), have not done so consistently’’ (Hill
et al., 2002).

Genes associated with mental retardation (MR) are another
source of candidates. Inlow and Restifo (2004) identified
282 genes related to MR in a sample of 1010 Online Mendelian
Inheritance in Man (OMIM) database entries. They estimate that
hundreds more MR genes remain to be identified.

More recently, Desrivières et al. (2015) conducted a
large-scale association study of 1583 adolescents to identify
genes affecting cortical thickness. They analyzed more than
54,000 genetic variants possibly involved in brain development
and found that, on average, teenagers with a particular
gene variant, rs7171755, associated with a thinner cortex in
the left hemisphere (P = 1.12 × 10−7), particularly in the
frontal and temporal lobes, were the ones who did not
perform as well on tests of intellectual ability. Localized
effects of these single-nucleotide polymorphisms on cortical
thickness affected verbal and nonverbal intellectual abilities
differently.

Desrivières says that the genetic variation they found is
‘‘linked to synaptic plasticity and affects a gene known as
NPTN, which encodes a protein acting on neuronal synapses
and therefore affects how brain cells communicate. This may
help neuroscientists understand what happens at a neuronal
level in certain forms of intellectual impairments, where the
ability of the neurons to communicate effectively is somehow
compromised’’. Desrivières suggests the left hemisphere may
be more sensitive to the effects of NPTN mutations, and
that some differences in intellectual ability are due to
decreased NPTN function in particular regions of the left-brain
hemisphere.

Finally, it is good to point out that the candidate-gene
approach has been criticized due to the lack of replication
of results as well as its limited ability to include all possible
causative genes (Tabor et al., 2002). Until now, only one
association is known between genes and intelligence. This
is the gene CHRM2, cholinergic receptor muscarinic 2,
located in chromosome 7, region 7q33, replicated in different
candidate-gene studies (Comings et al., 2003; Jones et al., 2004;
Dick et al., 2007). The gene contributes 1%–2% of the variance in
full-scale IQ.

THE CO-ACTION BETWEEN GENETIC
FACTORS, ENVIRONMENT AND
COGNITION

Genetic factors have a significant contribution in defining
brain structure and cognition. In particular, some studies
show that cortical thickness is heritable and closely correlates
with intellectual ability in normally developing children and
adolescents (Hulshoff Pol et al., 2006; Panizzon et al., 2009;

Haworth et al., 2010; Blokland et al., 2012; Chen et al., 2012;
Eyler et al., 2012; van Soelen et al., 2012; Trzaskowski et al., 2014;
Desrivières et al., 2015). Other studies report high heritability
of gray-matter volume in several cortical regions using voxel-
based MRI techniques (Thompson et al., 2001; Posthuma et al.,
2002; Bohlken et al., 2016). In addition, Thompson et al.
(2001) published ‘‘three-dimensional maps revealing how brain
structure is influenced by individual genetic differences. A
genetic continuum was detected in which brain structure was
increasingly similar in subjects with increasing genetic affinity.
Genetic factors significantly influenced cortical structure in
Broca’s and Wernicke’s language areas, as well as frontal brain
regions (r2MZ > 0.8, p < 0.05)’’. Bohlken et al. (2016) also
state that genetic factors implicated in intelligence and gray
matter are found in specific regions, pertaining primarily to the
medial/superior frontal, occipital and parahippocampal cortices
and the thalamus.

Gray matter correlated substantially with general intelligence,
or ‘‘g’’. Deary et al. (2009) state that the heritability of g
is substantial. ‘‘It increases from a low value of about 30%
in early childhood, to well over 50% in adulthood, which
continues into old age. Despite this, there is still almost no
replicated evidence concerning the individual genes, which have
variants that contribute to intelligence differences’’. As Maher
(2008) says, intelligence is not unusual in the difficulties it has
found in trying to identify the genes responsible for its high
heritability.

A highly connected brain network is surely the key to the
neural processes that give rise to intelligence. But, the extent to
which brain networks linked to intelligence are shaped through
genes and environment is not known (Bohlken et al., 2016).

Epigenetic and Brain Development
Epigenetic mechanisms typically involve heritable changes in
chromatin structure, which, in turn, influence gene expression
without modifying actual DNA sequence. ‘‘The expansion of the
brain after birth is caused by the growth of synapses and cortical
interconnections that are dependent on nutritional conditions
and the environment’’ (Cairó, 2011). It is clear that the process
of brain development is vulnerable to adverse environmental
conditions (Gittleman, 1986; Leonard and Robertson, 1994;
Rao and Jacobson, 2005; Lister et al., 2013; Bale, 2015).
For instance, the inhabitants of sub-Saharan Africa, the area
of the continent of Africa that lies south of the Sahara
desert, have a small cranial capacity, but undoubtedly poor
environmental conditions, minimal health care, bad nutrition
of most individuals and poor government policy influence
normal brain growth. In this case the poor environmental
conditions are the ones that mainly determine the IQ of an
individual.

Significantly, diet is linked to brain size in primates. A diet
rich in meat lead to bigger brains (Foley et al., 1991) and human
evolution (Mann, 2000). Beals et al. (1984) also state that cranial
morphology is a reflection of thermoregulation, and changes in
head shape may increase or decrease cranial volume. ‘‘It is much
easier to keep a small head cooler than a large one’’ (Cairó, 2011).
From this perspective, a small head is convenient in hot regions
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(south) while in geographic areas with cold environments (north)
a large head is an advantage. The same seems to happen with the
volume of the eyes. This does not necessarily means that people
from the north is smarter than people from the south. Beals et al.
(1984) reported a correlation of 0.62 between cranial capacity
and distance from the equator. Pearce and Dunbar (2012) say:
‘‘As you move away from the equator, there’s less and less light
available, so humans have had to evolve bigger and bigger eyes.
Their brains also need to be bigger to deal with the extra visual
input’’. Jensen (1998) reasoned that ‘‘natural selection would
favor a smaller head with a less spherical shape because of better
heat dissipation in hot climates’’.

Brain Plasticity
The brain has amazing plasticity and it is particularly
important during adolescence, when both hormonal and social
environments change dramatically (Dahl, 2004; Desrivières et al.,
2015). The growth of white matter during human adolescence
increases linearly, but follows a strikingly different trajectory in
girls and boys. It increases with age, slightly in girls and steeply
in boys (De Bellis et al., 2001; Lenroot et al., 2007; Perrin et al.,
2008).

Research now shows that when a new cognitive or motor
skill is learned the structure of the human brain, as well as
its functional organization, changes (Draganski et al., 2004;
Driemeyer et al., 2008). Particularly, an increase of gray matter
is observed, what is known as neuroplasticity or cortical
re-mapping. ‘‘While functional changes can be observed and
studied with non-invasive techniques structural changes require
the use of invasive histological methods’’ (Cairó, 2011).

Fluid intelligence is considered one of the most important
factors in learning. With more training, our fluid intelligence
improves. ‘‘An increase in fluid intelligence is directly related to
the changes in the structure of the human brain and its functional
organization’’ (Cairó, 2011). Jaeggi et al. (2008) points out that
‘‘the gain in fluid intelligence is strictly related to training, not
to pre-existing individual differences in intelligence or working
memory’’.

Gaser and Schlaug (2003) ‘‘found more gray matter in some
motor, auditory, visual-spatial brain regions when comparing
professional musicians with a matched group of amateur
musicians and non-musicians’’. Different experiments show that
brain plasticity on a structural level in human beings has been
detected even after a week of training, although changes over a
longer period of time are still a subject for debate (Maguire et al.,
2000; May et al., 2006; Vestergaard-Poulsen et al., 2009). Even
playing a commercial video game like Super Mario induces gray
matter changes (Kühn et al., 2014).

Even though it is thought that all areas of the brain are plastic,
results show that areas of the brain, such as hippocampus, dentate
gyrus and cerebellum, are actually highly plastic. This means that
new neurons can be produced even in adulthood.

Gene-Environment Interplay
‘‘Cognitive development and functioning can be significantly
affected by the following factors: environmental influences,
including geographic area (iodine deficiency, lead exposure,

climate, logographic writing systems); nutrition (insufficient
iron, insufficient meat); socioeconomic status (poverty); physical
and psychological disorder (violence, extreme aggression,
societal disruption); education (lack of motivation, lack of
confidence that learning certain skills will bring about a change in
one’s life); culture, insufficient intellectual stimulation (children
living in orphanages); or the combination of any of the above-
mentioned factors’’ (Cairó, 2011). Even variations in parental
care can lead to individual differences in the expression of
genes. Moffitt (2005) also states that ‘‘emerging evidence about
gene-environment interactions suggests that environmental risks
can have a stronger effect on people within genetically vulnerable
segments of the population than previously thought’’. These
factors can also alter the effects of genes and be considered
the primary reason for the difference of IQ among ethnic
groups.

People differ of course not only in dress, habits, types of
occupations, moral and political attitudes, but also in their
abilities and achievements (Vernon, 2014). The question could be
why? And the answer could be because brains are different, they
develop in a different environment, and therefore, people think
and reason in different ways. We have always been interested
in knowing why some brains are more efficient than others,
and now the answers are beginning to see the light with the
recent advances in neuroscience and cognitive science. Most
parts and tissues of the brain have a large genetic load. But the
environmental factors can significantly affect the development
of the brain-connected network, which is the key for the neural
processes that give rise to intelligence. In short, cognition is a
combination of internal and external factors, both of which can
vary greatly from person to person. It is estimated that genes
contribute about 20%–40% in the discrepancy of intelligence in
childhood and about 80% in old age when the environment is no
longer an important factor.

As babies, our neuronal associations are totally
undifferentiated. ‘‘In order for persons to develop certain
intellectual abilities, they need to have the appropriate
environmental stimuli during childhood, before the critical
period for adapting their neuronal connections ends (at the
age of 16)’’ (Garlick, 2002). He states that the critical period
effect is a result of the manner by which intellectual abilities
are acquired—that changes in neuronal connections inhibit or
prevent possible future changes.

There are different types of experiments demonstrating the
above. Skeels et al. (1938) conducted an interesting study of
early intellectual stimulation in the state of Iowa in the US,
with 25 underprivileged children living in an overcrowded
(600 children were in residence at the beginning of the
project) and understaffed orphanage. Thirteen babies, who were
19 months old and with an average IQ of 64, were transferred
to the Glenwood State School for adult woman with learning
disabilities, while the other 12 who remained in the orphanage
had an average IQ of 87. ‘‘After 18 months, the babies who
received the finest care, love and attention from their teachers
were tested again and the average IQ jumped to 93’’ (Cairó, 2011).
Eleven of the 13 girls were given up for adoption. Thirty months
later, when the IQ of these 11 girls was evaluated again, it jumped
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to an average of 101 points. On the other hand, the children
who remained now had an average IQ of 66. The research
studies demonstrated the remarkable effect of the environment
on intelligence. An enhanced learning environment, where
children are stimulated and motivated, can significantly expand
IQ whereas a deprived learning environment can lead to a
decrease in IQ.

Hart and Risley (2003) conducted a longitudinal study with
children who were 4 years old (42 families, 42 children) and were
growing up in poor families in Kansas City, in the US. They
found that these children typically heard a total of 32 million
fewer spoken words than those whose parents are professionals.
‘‘The average child on welfare heard half as many words per
hour (616 words per hour) as the average working-class child
(1251 words per hour) and less than one-third that of the average
child in a professional family (2153 words per hour)’’ (Hart and
Risley, 2003). That language gap translates directly into stunted
academic trajectories. At the same time, they found that they
could easily increase the size of the children’s vocabularies by
teaching them new words.

Another study was conducted in France with a group of
children between 4 and 6 years of age who were adopted. ‘‘Those
children had little going for them. Their I.Q.’s averaged 77,
putting them near retardation. Most were abused or neglected
as infants, then shunted from one foster home or institution to
another’’ (Kirp, 2006). After 9 years these same youngsters were
tested again. Those children adopted by farmers or laborers had
an IQ of 85.5; children who were placed in middle-class families
had an IQ of 92; and those in more affluent families reached
an IQ of 98. A home environment that provides easy access
to intellectual knowledge ‘‘can provide the mental stimulation
needed for genes to build the brain circuitry for intelligence’’, as
Turkheimer says. Again, the experience and quality of life of these
three groups are what made the main difference.

More recently, Caspi et al. (2003) explored the roles of a
variation in a gene that alters serotonin levels and exposure
to stressful life events across a 20-year period in determining
the risk of depression (Champagne and Mashoodh, 2009).
‘‘Individuals with one or two copies of the short allele of the 5-HT
T promoter polymorphism exhibitedmore depressive symptoms,
diagnosable depression, and suicidality in relation to stressful
life events than individuals homozygous for the long allele.
This epidemiological study thus provides evidence of a gene-
by-environment interaction, in which an individual’s response
to environmental challenges is moderated by his or her genetic
makeup’’ (Caspi et al., 2003).

Monozygotic twins’ studies also provide important
comprehension into epigenetic effects in humans. Monozygotic
twins do not differ genetically, but they have the potential to
differ in terms of how, when, and where genes are expressed
(Kramer, 2005). Fraga et al. (2005) found in a sample of
80 Caucasian twins from Spain (30 male, 50 female, mean age
30.6, range 3–74 years) that, ‘‘although twins are epigenetically
indistinguishable during the early years of life, older monozygous
twins exhibited striking differences in their overall content and
genomic distribution of 5-methylcytosine DNA and histone
acetylation, affecting their gene-expression portrait’’. Their

study reveals that the patterns of epigenetic modifications
in monozygotic twins diverge as they become older. DNA
methylation and histone modifications (which can be dependent
on one another) store epigenetic information that controls
heritable states of gene expressions, protein function and
RNA processing. DNA methylation can also keep inactive a
chromosome and produce different disorders including cancer
(Ehrlich, 2002; Das and Singal, 2004).

These examples show that genetics and environment cannot
be evaluated as two separated spheres. ‘‘Genetic instructions
are not translated directly into phenotypic traits, rather they
are modified potentially at two levels: the transcription process
wherein the messenger RNA is produced, and translation
when protein synthesis occurs. The interplay of genetic and
environmental factors determines the final product of gene
expressions’’ (Kramer, 2005). In a chaotic environment, a child’s
genetic potential does not have a chance to be expressed
(Turkheimer et al., 2003). ‘‘On the other hand, properly
stimulated and motivated children may be able to change the
brain structure and its functional organization and surpass
the genetic potential’’ (Cairó, 2011). ‘‘Results demonstrate that
the proportions of IQ variance attributable to genes and
environment vary nonlinearly with socioeconomic status. The
models suggest that in impoverished families, 60% of the variance
in IQ is accounted for by the shared environment, and the
influence of genes is close to zero; in affluent families, the
result is almost exactly the opposite’’ (Turkheimer et al., 2003).
The appropriate environment not only leads to increasing the
complexity of the brain connection but also to increasing the
brainmass and volume (Kolb andWhishaw, 1998; Garlick, 2002).
All these studies show that: ‘‘it is no longer a matter of whether
the environment matters but when and how it matters. And
poverty, quite clearly, is an important part of the answer’’ (Kirp,
2006).

Finally, Rutter (2010) outlines well the different forms
of co-action between genes and environment. He says that
‘‘environments cannot alter gene sequences, but genetic effects
are dependent on the expression of genes. Both environmental
influences and chance variations have been shown to influence
this process’’.

CONCLUSION

The results of this review show that the complexity of
cellular and molecular organization of neural connections
actually determines the computational capacity of the
brain. The consistency of new results across the literature
has revealed that individuals with more efficient brain
networks have a higher intelligence. Intelligence is genetically
represented in a spatially distributed, but densely connected
network of gray matter regions, allowing the high capacity
infrastructure thought necessary for this complex trait to
emerge (Bohlken et al., 2016). Research also clearly notes
that experience plays an indisputable role in the intellect of
individuals.

The research key findings show that while genotypes are
responsible for defining the theoretical limits of intelligence,
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what is primarily responsible for determining whether those
limits are reached or exceeded is experience (environmental
influence). Everything indicates that experience makes the great
difference, and therefore, we contend that the gene-environment
interplay defines the intelligent quotient of an individual.

How are brain structure and genes mapped on behavior and
intelligence? We don’t know yet. Many questions have yet to be

answered, and numerous issues obviously require much further
research.
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