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Chronic pain can result from many pain syndromes including complex regional pain
syndrome (CRPS), phantom limb pain and chronic low back pain, among others. On a
molecular level, chronic pain syndromes arise from hypersensitization within the dorsal
horn of the spinal cord, a process known as central sensitization. Central sensitization
involves an upregulation of ionotropic and metabotropic glutamate receptors (mGluRs)
similar to that of long-term potentiation (LTP). Regions of the brain in which LTP occurs,
such as the amygdala and hippocampus, are implicated in fear- and memory-related
brain circuity. Chronic pain dramatically influences patient quality of life. Individuals with
chronic pain may develop pain-related anxiety and pain-related fear. The syndrome also
alters functional connectivity in the default-mode network (DMN) and salience network.
On a cellular/molecular level, central sensitization may be reversed through degradative
glutamate receptor pathways. This, however, rarely happens. Instead, cortical brain
regions may serve in a top-down regulatory capacity for the maintenance or alleviation
of pain. Specifically, the medial prefrontal cortex (mPFC), which plays a critical role in
fear-related brain circuits, the DMN, and salience network may be the driving forces in
this process. On a cellular level, the mPFC may form new neural circuits through LTP
that may cause extinction of pre-existing pain pathways found within fear-related brain
circuits, the DMN, and salience network. In order to promote new LTP connections
between the mPFC and other key brain structures, such as the amygdala and insula,
we propose a holistic rehabilitation program including cognitive behavioral therapy
(CBT) and revolving around: (1) cognitive reappraisals; (2) mindfulness meditation;
and (3) functional rehabilitation. Unlike current medical interventions focusing upon
pain-relieving medications, we do not believe that chronic pain treatment should focus
on reversing the effects of central sensitization. Instead, we propose here that it is critical
to focus on non-invasive efforts to promote new neural circuits originating from the
mPFC.

Keywords: chronic pain, prefrontal cortex, associative learning, cognitive behavioral therapy, mindfulness
meditation, functional recovery, review of literature
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INTRODUCTION

Recent advances in brain imaging techniques have made it
possible to devise explanatory mechanisms for the development
and maintenance of chronic pain. Amongst many other
medical achievements, magnetic resonance imaging (MRI)
is used to visualize the anatomical integrity of the spine
and its associated structures. In particular, MRI has become
an imaging technique used to verify clinical presentations
for disc herniation. Despite this advance in the ability to
visualize nervous system structures with high clarity, questions
remain as to whether MRI findings coincide with clinical
pain pathology and whether MRI has value in the diagnosis
and therapeutic management of chronic pain (Davis et al.,
2017). For example, early work in asymptomatic individuals
used MRI to examine the lumbar spine (Jensen et al., 1994).
Despite having no back pain, approximately 50% of the
subjects showed bulges in at least one disc while roughly 25%
had disc protrusions. This study demonstrated that structural
abnormalities may, in fact, be present in the absence of pain
symptoms. What accounts for such discrepancies between
anatomical findings vs. clinical presentations? Why do some
individuals with similar MRI findings report pain while others
do not?

This article reviews and examines the physiological and
psychological mechanisms underlying the development of
chronic pain. We first describe neuronal alterations from
the peripheral nervous system to the central nervous system,
addressing both the spinal cord and higher cognitive brain
regions. In addition, we offer a holistic mind-body approach to
treating chronic pain, and end with a hypothesis to guide future
investigation.

CENTRAL SENSITIZATION AND
ADDITIONAL CELLULAR/MOLECULAR
MECHANISMS

The neural correlates of chronic pain are highly complex,
involving multiple structures and molecular and cellular
changes within the central and peripheral nervous system.
Prior work suggests that the neural correlates underlying
chronic pain may be explained through the mechanism of
central sensitization, referring to hyper-sensitization of the
central nervous system in response to both noxious and
innocuous stimuli that can result in pain (Latremoliere and
Woolf, 2009; Woolf, 2011). When central sensitization takes
place, prolonged peripheral nociceptive input results in the
excitatory release of chemicals, triggering a transduction
cascade. Multiple protein kinases phosphorylate the three
ionotropic glutamate receptors, N-methyl-D-aspartate receptors
(NMDAR), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid receptors (AMPAR) and kainite receptors, thereby
increasing receptor activity and density. This process results
in excitatory postsynaptic potentials reaching the dorsal horn
of the spinal cord (Ballantyne, 2006; Ultenius et al., 2006;
Latremoliere and Woolf, 2009). Phosphorylation of AMPAR

facilitates AMPAR insertion in the synapse (Esteban et al.,
2003; Galan et al., 2004). In addition to the contribution
of the three ionotropic glutamate receptors, metabotropic
glutamate receptors (mGluRs) contribute to both presynaptic
and postsynaptic neuronal excitability (Anwyl, 2009; Niswender
and Conn, 2010), often through the activation of second
messenger pathways. Recent evidence also indicates that
increased neuronal excitability in the dorsal horn is attributed
to GABA disinhibition through the potassium-chloride
cotransporter type 2, KCC2 (Kahle et al., 2014). In this
process, decreased KCC2 function leads to an increase in
intracellular Cl− concentration, shifting the reversal potential
of Cl− channels in GABAA receptors beyond the threshold for
action potential generation. Postsynaptic neurons thus become
depolarized (rather than hyperpolarized) and the resulting
decrease in the overall inhibitory function of GABAA receptors
facilitates central sensitization (Price et al., 2009; Kahle et al.,
2014).

Another mechanism for neuronal excitability is through the
action of G protein-coupled receptors (GPCRs), a diverse family
of cell receptor proteins that are dispersed throughout the
peripheral and central nervous system. GPCRs are located on
the plasma membranes and nerve terminals of sensory neurons
along nociceptive pain pathways (Pan et al., 2008). Nociceptor
hyperexcitability, which is believed to contribute to the transition
from acute to chronic pain, is associated with a change in
GPCR signaling (Dina et al., 2009).Moreover, long-term synaptic
remodeling results from the dynamic processes of protein
synthesis and degradation (Alvarez-Castelao and Schuman,
2015). Theoretically, maladaptive nociceptive input mediated
by GPCR signaling could normalize over time as a result of
protein degradation and synthesis, thereby providing hope that
chronic pain symptoms may abate. Currently, however, it is
difficult to quantify GPCR turnover rate (Ross, 2014), and
thus, the possibility that rapid turnover of sensory receptors
could potentially reverse chronic pain symptoms requires further
investigation.

Persistent pain sensations are not only modulated by
neurons but also by glial cells, specifically astrocytes and
microglia. Increased astroglial activity increases the release of
excitatory neurochemicals, such as proinflammatory cytokines
and precursors to glutamate (Broer et al., 2004; Guo et al.,
2007; Milligan and Watkins, 2009; Chiang et al., 2011), and
can affect chronic pain by its influence on nociceptive input
and the recycling of glutamate (Guo et al., 2007; Milligan
and Watkins, 2009). By converting extracellular glutamate into
glutamine, astroglial cells provide presynaptic neurons with the
raw ingredients to continue producing glutamate, an excitatory
neurotransmitter (Broer et al., 2004; Chiang et al., 2011). In
addition, astroglial activity produces pro-inflammatory cytokines
which, in turn, increase nociceptor activity (Zhang and An, 2007;
Uçeyler et al., 2009). Microglial cell activation also mediates
neuronal excitability by the reversal of the inhibitory effect of
GABA. Following neuronal injury, activated microglia release
brain-derived neurotrophic factor which downregulates KCC2 in
the dorsal horn, thereby facilitating the process of central
sensitization through GABA excitation, as described above
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FIGURE 1 | Mechanism for central sensitization. Central sensitization (central nervous system hypersensitivity) is initiated from the upregulation of ionotropic
glutamate receptors (NMDAR, AMPAR, kainite receptors) and metabotropic glutamate receptors (mGluRs) in the presence of peripheral nociceptive input. As a
result, neurons in the dorsal horn of the spinal cord and central nervous system respond to nociceptive input at lower thresholds, with new enlarged receptor fields,
and undergo increased rates of spontaneous firing. Glial activation can further maintain the mechanisms underlying central sensitization by increasing NMDAR and
AMPAR insertion in postsynaptic membranes. Glial cells release pro-inflammatory cytokines, serving as further nociceptive input. Astroglial cells also help to maintain
glutamate levels via the glutamate-glutamine shuttle, which can influence both ionotropic and mGluR activity. As shown in red, ionotropic, metabotropic receptors
and nociceptors are capable of being degraded. Given that degradative pathways exist, the process of central sensitization can be reversed. Activity by astroglial
cells, however, may mitigate the effects of receptor degradation by upregulating and facilitating the process of central sensitization. Given that central sensitization
does not reverse itself with time, it seems that astroglial activity overpowers the existence of degradative receptor pathways.

(Coull et al., 2005; Latremoliere and Woolf, 2009; Price et al.,
2009; Taves et al., 2013). Further research into the excitatory
role of glial cells may provide very useful information for
the treatment of chronic pain syndromes. Unfortunately, glial
cells are distributed throughout the central nervous system
and serve many functions. As a result, treatment targeting
glial cells has a high probability of causing adverse side
effects.

Regardless of glial cell activation and recycling of glutamate
via the glutamate-glutamine shuttle, ionotropic and mGluRs
undergo degradative pathways. Research has shown that
degradative pathways exist for NMDAR (Scott et al., 2004;
Piguel et al., 2014), AMPAR (Ehlers, 2000; Barry and Ziff,
2002), kainate receptors (Martin and Henley, 2004; Lerma
and Marques, 2013) and mGluRs (Latremoliere and Woolf,
2009; Klein et al., 2015). Hence, critical receptors involved
in central sensitization undergo degradation (see Figure 1).
Theoretically, then, biological mechanisms already exist that can
reverse central sensitization via glutamate receptor degradation.
If receptor degradation were the primary mechanism by
which central sensitization were reversed, chronic pain should
abate with time. Yet this is not always the case. One
can argue, though, that increased astroglial activity can
upregulate ionotropic or mGluRs and nociceptors (see Figure 1),
canceling out any putative effect of glutamate receptor

degradation. This is a valid point that will require further
research in the future. Given that central sensitization does
not simply reverse with time, it appears that astroglial
activity facilitates central sensitization at a greater rate than
receptor degradation reverses the process of central sensitization
(Figure 1).

Evidence suggests that central sensitization is characterized
by heterosynaptic facilitation (Ji et al., 2003; Malenka and
Bear, 2004; Rygh et al., 2005; Latremoliere and Woolf,
2009; Galvan et al., 2011). Central sensitization is distinct
from the phenomenon known as windup, which involves
homosynaptic facilitation (Latremoliere andWoolf, 2009;Woolf,
2011). Windup refers to the increased magnitude of incoming
C-fiber signals at the dorsal neurons due to the increased
frequency of C-fiber activation (Li et al., 1999; Campbell and
Meyer, 2006), and is associated with primary hyperalgesia
(increased pain at the site of injury; Ikeda et al., 2006;
Sandkühler, 2007; Latremoliere and Woolf, 2009). When
central sensitization has taken place, neurons at the dorsal
horn respond at a lower threshold to peripheral inputs,
have increased receptive fields, and have increased rates of
spontaneous firing. These structural and functional alterations
help to explain why patients with chronic pain experience
allodynia (pain response in the absence of a painful stimulus)
and secondary hyperalgesia (pain outside the site of injury;
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Campbell and Meyer, 2006; Latremoliere and Woolf, 2009;
Woolf, 2011).

This process appears very similar to themolecular and cellular
changes that occur during long-term potentiation (LTP) in
cortical and subcortical brain regions (Ji et al., 2003; Latremoliere
and Woolf, 2009). Considering the strong parallels between
central sensitization and LTP, it is reasonable to infer that
similar (although perhaps not identical) processes are occurring
in spinal structures and in cortical/subcortical regions that drive
the move from acute to chronic pain. Interestingly, LTP in
both the amygdala (Dityatev and Bolshakov, 2005; Sigurdsson
et al., 2007) and hippocampus (Whitlock et al., 2006) has
long been associated with fear conditioning. Moreover, chronic
pain and fear conditioning are intricately connected (Turk and
Wilson, 2010; Elsenbruch and Wolf, 2015), suggesting that
spinal pain-related circuits and cortical/subcortical fear circuits
may undergo some of the same neural alterations (or at the
very least, similar parallel processes) during the transition from
acute to chronic pain. Thus, we will now describe some of
the cellular and behavioral mechanisms in fear conditioning,
which will assist with understanding how to better treat chronic
pain.

PAIN-RELATED FEAR AND AVOIDANCE
BEHAVIORS

Pain-related fear promotes maladaptive cognitive and behavioral
responses (Vlaeyen and Linton, 2000; Turk and Wilson, 2010;
Parr et al., 2012; Elsenbruch andWolf, 2015; Vlaeyen, 2015), best
characterized by a fear-avoidance model (Leeuw et al., 2007). In
this model, pain perception begins with catastrophization, the
belief that pain symptoms are indicative of a far worse injury,
in turn resulting in pain-related fear and pain-related anxiety.
Importantly, pain-related fear and anxiety are not synonymous
and appear to be two distinct phenomena, as fear-induced
defensive responses and anxiety-related responses are mediated
by different neural circuits (LeDoux, 2015). We argue that
pain-related fear can stem directly from threat perception; if
an individual views an ongoing activity or present object as
threatening, that individual will actively attempt to escape from
that situation. Pain-related anxiety, on the other hand, can result
from the anticipation of pain; if anticipating future painful
events, an individual will actively avoid that event or behavior.
Through both escape and avoidance, then, chronic pain patients
are likely to not use the painful body area and perhaps avoid
activity altogether.

How do chronic pain patients acquire pain-related fear and
then in turn pain-related anxiety? These processes appear to be
the direct result of fear conditioning and avoidance learning.
Pavlovian fear conditioning occurs due to the association
between a previously neutral stimulus and an aversive stimulus
that leads to an unpleasant response (Milad and Quirk, 2012;
Elsenbruch and Wolf, 2015). In the case of conditioned fear
of pain, the conditioned stimulus (CS) may include both
interoceptive conditioning (IC) and functional movement (De
Peuter et al., 2011). Interoception, as used here, does not only
refer to sensation within the viscera, but also to somatosensory

and nociceptive sensation. Because pain acts as an aversive
stimulus, pain-related fear can be acquired through Pavlovian
fear conditioning. When this is the case, an individual with
chronic pain can reverse the process through extinction of
the conditioned fear (Quirk et al., 2010; Milad and Quirk,
2012). In order for fear extinction to take place, two events
must take place simultaneously or in very close temporal
proximity: (1) the fear association must be active while; (2) a
new non-painful stimulus is introduced (Quirk et al., 2010).
Importantly, extinction is not synonymous with forgetting.
Rather, extinction occurs when a new association either inhibits
the original fear association or alters the affective and mnemonic
properties of that association (Bouton, 2004; Craske et al., 2008;
Radulovic and Tronson, 2010; De Peuter et al., 2011; Kattoor
et al., 2013).

Fear-associated behaviors, however, do not only arise through
Pavlovian conditioning, but also through operant conditioning
(Bouton and Todd, 2014; Trask and Bouton, 2014). According
to the two-factor theory and related models of maladaptive
fear-related behaviors, Pavlovian conditioning facilitates fear
acquisition while operant conditioning results in negative
reinforcement that maintains avoidance and escape behaviors
over time (Krypotos et al., 2015). In standard fear-avoidance
models (Leeuw et al., 2007), initial escape behaviors are
negatively reinforced due to the immediate reduction of pain.
Avoidance behaviors then become associated with lack of pain
altogether, and this continuation of negative reinforcement
prolongs the appearance of those behaviors. Of particular
relevance for our theory, avoidance learning may have a
greater and more enduring effect of overall threat reduction
when compared with extinction (Boeke et al., 2017), and
negatively reinforced escape behaviors can persist even when
the initial classically conditioned CS-US pairing is extinguished
(Krypotos et al., 2015). It is also possible that the persistence
of an avoidance behavior can prevent the acquisition of
knowledge that a CS no longer signals the presence of a
noxious US, thus preventing extinction of the CS-US bond.
By actively controlling when and how to use a painful
body area, chronic pain patients may be inadvertently driving
inherent mechanisms of threat reduction and continuing with
a pattern of learned avoidance behavior that may no longer be
necessary.

Three primary brain structures have been associated with the
fear conditioning process: the medial prefrontal cortex (mPFC),
the amygdala and the hippocampus (Phelps et al., 2004; Phelps
and LeDoux, 2005; Milad et al., 2007; Herry et al., 2010; Pape
and Pare, 2010). How do we know that extinction does not
erase fear memories within these structures and that alternate
associations are learned during extinction? Behavioral studies
have shown that fear associations return after fear extinction
has taken place (Morris and Bouton, 2007; Milad and Quirk,
2012), suggesting that fear memories are not erased but rather are
inhibited or altered by new memories and associations. Further,
it is unlikely that the cellular and synaptic changes associated
with fear extinction occur as a result of long-term depression
(LTD), as prefrontal LTD results in increased fear recovery
after extinction (Herry and Garcia, 2002; Courtin et al., 2013).
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Therefore, it appears as if the primary driving mechanism for
the extinction of conditioned fear is the establishment of new
synaptic connections through LTP, leading to formation of new
associations that dampen the effects of the original fear memory.

As mentioned above, central sensitization is a critical factor in
the development of chronic pain syndromes, including (but not
limited to) phantom limb pain, complex regional pain syndrome
(CRPS), musculoskeletal pain and post-surgical pain (Woolf,
2011). In order for central sensitization to be reversed, there must
be a downregulation of ionotropic/mGluRs and nociceptors.
However, if pain relief follows a similar mechanism to the
extinction of conditioned fear, then central sensitization may
not need to be reversed in order for an individual to experience
pain resolution. Similar to the extinction of conditioned fear,
it may be possible to bypass a necessary reversal of central
sensitization by establishing new neural circuits that inhibit
well-established pain associations. Are these new inhibitory
associations formed exclusively between the mPFC, amygdala
and hippocampus as is seen in fear conditioning? There is
abundant evidence that the anterior cingulate cortex (ACC)
and the insula are strongly involved in the perception and
integration of various pain signals (Tracey and Mantyh, 2007;
Lee and Tracey, 2010; Wiech et al., 2010; Segerdahl et al.,
2015). Perhaps these regions are also critically involved in
the abatement of chronic pain. Future studies should address
these critical questions. Moreover, it is conceivable that the
default mode network (DMN), described below, may play
a key mediating role in pain processing in chronic pain
syndromes.

THE DEFAULT MODE NETWORK,
ATTENTIONAL NETWORK AND PAIN
PROCESSING

Research designs utilizing functional MRI (fMRI) to examine the
functional neural correlates of chronic pain can be categorized
into three primary groups: (1) pain-induction trials; (2) resting
state, in which no active cognitive or sensorimotor task
is performed; and (3) active tasks that require perceptual,
sensorimotor, or other cognitive and behavioral processes. The
latter category may also include simple motor tasks, such as
finger tapping, to serve as control or comparison conditions.
During a resting state, researchers hope to identify underlying
brain mechanisms that persist in chronic pain patients even
after a painful stimulus is removed. The brain regions showing
increased activation during wakeful rest, when compared with
task-active states, have been described as the brain’s DMN
(Raichle et al., 2001).

Researchers frequently investigate the DMN using three
processes that can be compared to one another: (1) task-free or
task-independent trials in which the subject is not assigned any
stimulus or task; (2) simple sensorimotor and cognitive tasks;
and (3) complex sensorimotor and cognitive tasks. By comparing
either task-free designs or simple sensorimotor tasks to complex
cognitive tasks, researchers can examine how brain regions in the
DMN change from a resting state to a task-activated state.

Structures associated with the DMN include the mPFC,
medial temporal lobes (including the hippocampus) and
posterior cingulate cortex (PCC; Buckner et al., 2008; Harrison
et al., 2008; Greicius et al., 2009; Sheline et al., 2009). Increased
DMN activity is associated with self-referential thoughts, future
planning, and autobiographical memory (Gusnard et al., 2001;
Buckner et al., 2008; Peeters et al., 2015). Interestingly, chronic
pain is associated with dysregulation within the DMN (Baliki
et al., 2008, 2014; Otti et al., 2013), and this dysregulation may
help to explain the disease processes of chronic pain syndromes.

The medial frontal lobe, including the ACC, serves many
different roles including error detection (Holroyd et al., 2002),
conflict monitoring (Botvinick et al., 2004), and other aspects
of executive functioning and cognitive control (Ridderinkhof
et al., 2004; Posner et al., 2007; Alexander and Brown, 2010).
It is also implicated in the storage of fear memories and
retrieval of those memories (Quinn et al., 2008). Functional
subregions within mPFC include its dorsal (dmPFC) and ventral
(vmPFC) components. The dmPFC appears to mediate action-
related activity, in part by exerting top-down control on the
motor cortex and inhibiting motor output (Narayanan and
Laubach, 2006). The vmPFC is heavily implicated in emotional
regulation (Euston et al., 2012). Together, these regions play
a critical role in both the DMN and salience network, and
individual differences in autonomic reactivity may correspond to
functional connectivity of mPFC to other brain areas (Jennings
et al., 2016). The ACC, although not part of the DMN, is
activated along with other areas of mPFC during fear appraisal,
but not necessarily during fear learning (Maier et al., 2012),
and is an integral structure of the salience network, along
with the insula (Sridharan et al., 2008; Bonnelle et al., 2012).
In the case of acute nociceptive input, the anterior insula
has been shown to integrate sensory information to help
determine whether or not a stimulus is painful (Wiech et al.,
2010), while the contralateral dorsal posterior insula has been
associated with tracking the intensity of an applied noxious
stimulus (Segerdahl et al., 2015). The conversion of acute
pain-induced fear associations into long-lasting memories is
associated with changes in functional connectivity of mPFC
that are also related to self-reported anxiety levels (Tseng
et al., 2017). It is important to note that the dorsolateral
prefrontal cortex (dlPFC)—long known for its role in working
memory, attention and inhibition—is also critical for emotional
information processing (Etkin et al., 2006; Shafritz et al., 2006;
Urry et al., 2006) and pain perception (Lorenz et al., 2003;
Brighina et al., 2011).

If vmPFC communicates with the ACC, a key structure in
the salience network during fear appraisal, then vmPFC may be
able to downregulate salient pain signals. Studies have shown
that pain-related fear correlates positively with pain intensity
and disability (Crombez et al., 1999; Al-Obaidi et al., 2005;
Gheldof et al., 2006). In addition, individuals who claim to have
a higher pain-sensitivity level display increased activation in
regions of PFC and ACC in response to acute pain compared
with individuals with low pain sensitivity (Coghill et al., 2003).
Furthermore, acceptance-based therapies have the potential to
alter activation of PFC in response to pain (Jensen et al.,
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2012) and to alter functional connectivity between PFC and
emotion-processing regions (Young et al., 2017). Importantly,
therapies emphasizing acceptance of pain are associated with
clinically-meaningful symptom reduction (Vowles et al., 2007a,b;
Vowles and McCracken, 2008). It is not unreasonable to suggest
that pain intensity and disability in chronic pain patients can
be greatly reduced through top-down control of the mPFC
on the DMN, salience network, and fear association network.
Thus, chronic pain patients may have the ability to alter both
brain activity and connectivity by altering thoughts related
to pain perception, as described in a later section of this
article.

There has been much speculation as to the significance
and implications of DMN activity. Mason et al. (2007) believe
that activity within the DMN during task-free (stimulus-
independent) thoughts is a reflection of mind wandering. Others
have countered that it is impossible to decipher whether resting-
state brain activity is due to stimulus-independent thoughts
(mind-wandering) or due to stimulus-dependent thoughts
(Gilbert et al., 2007), particularly when DMN activation is
observed when a simple task is compared with a more
cognitively demanding task (McKiernan et al., 2003). In order
to determine the difference between mind-wandering and either
IC or hyperfixation/hypervilance (two examples of stimulus-
dependent thoughts), researchers can use fMRI to assess chronic
pain patients while at rest and while the patients actively
monitor their symptoms, perhaps by alternating blocks of
rest with active pain monitoring. Such a study will help
to differentiate between stimulus-independent thoughts and
pain stimulus-dependent thoughts. At the moment, we can
hypothesize that dysregulation of the DMN in chronic pain
results from stimulus-dependent thoughts focused around IC
and pain perception.

CONCERNS REGARDING NEUROIMAGING
STUDIES OF CHRONIC PAIN

Thus far, we have highlighted the critical importance of the
mPFC in the development and maintenance of chronic pain.
Research on chronic pain patients, however, has revealed altered
activity and cortical reorganization within other brain regions.
Before we examine specific chronic pain syndromes, we must
first take into consideration two confounding factors when
interpreting neuroimaging studies of chronic pain. First, for
pain studies that require the application of noxious stimuli,
one must discern whether the fMRI results are due to
somatosensory sensation or due to pain sensation. Moulton and
associates (Moulton et al., 2012) found that BOLD responses
might not necessarily reflect pain but rather somatosensory
input and integration, because activation of somatosensory
and motor cortices correlated more with heat intensity than
with heat-induced pain. On the other hand, fMRI can be
used to discern thermal induced pain from heat sensation
and social pain (Wager et al., 2013). It is important to
note that in this study, the specificity and sensitivity between
thermal-induced pain and social pain was markedly lower than
the specificity and sensitivity between thermal induced pain

and heat sensation. Thus, when examining fMRI results, it
may be harder to differentiate physical pain from emotional
pain. This issue highlights the intricate relationship between
physiological pain and pain perception, including social aspects
of pain.

Second, individuals suffering from chronic pain have usually
undergone numerous interventional treatments and have unique
personal experiences owing to the specific features of their
chronic pain syndrome. Both of these factors have the potential
to serve as major methodological confounds and/or contribute to
individual differences. Further, cognitions and emotions clearly
play a significant role in chronic pain, and daily mood may affect
BOLD activation when using fMRI. As a result, no two chronic
pain experiences are identical and large variances from individual
differences are the norm, thereby providing further difficulty in
dissecting the neural mechanisms of chronic pain.

DESCENDING NOCICEPTIVE PATHWAYS
AND THEIR MODULATORY ROLE IN PAIN

The brainstem contains a collection of structures responsible
for a descending pain modulation system, as structures
within this region can produce analgesic effects and monitor
nociceptive communication. Specifically, the periaqueductal
gray-rostral ventromedial medulla (PAG-RVM) system allows
for the bidirectional control of pronociception (nociceptive
facilitation) and antinociception (nociceptive inhibition; Tracey
and Mantyh, 2007; Heinricher et al., 2009). Chronic pain
may arise from a dysregulation of nociceptive pathways, in
particular an enhancement of pronociception or a reduction
of antinociception (Heinricher et al., 2009). Within the RVM
there are three types of neurons: ON, OFF and NEUTRAL
cells. Evidence suggests that ON cells promote pronociception
while OFF cells facilitate antinociception (Kincaid et al., 2006;
Heinricher et al., 2009; Ossipov et al., 2010; Staud, 2013).
Additionally, the dorsal reticular nucleus (DRt) and ventrolateral
medulla (VLM) play a critical role in descending nociceptive
control with the Drt facilitating nociception and the VLM
inhibiting nociception (Heinricher et al., 2009). Although the
PAG-RVM system combined with the Drt and VLM contribute
to the development of chronic pain, these structures are both
directly and indirectly modulated by the top-down influence
of cortical and subcortical structures within the salience and
fear networks, such as mPFC, ACC, amygdala, insula and
hypothalamus (Tracey and Mantyh, 2007; Heinricher et al.,
2009; Lee and Tracey, 2010). Thus, it appears that pain
perception in general is modulated by higher cortical brain
regions, which in turn can modify descending nociceptive
pathways.

As mentioned previously, chronic pain can result from
a variety of pain-related syndromes. Below, we provide
neuroimaging and treatment results for a few of these syndromes,
focusing upon the similarities and distinctions among the
syndromes that have the potential to inform models of the brain
mechanisms of chronic pain. Theoretically, these mechanisms
may exert a top-down influence on the nociceptive modulation
system in cases of dysregulation within the brainstem. Additional
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research must be conducted investigating the role of cognitions
and emotions as they relate to cortical/subcortical regulation
of brainstem structures, and fMRI is well-suited for that level
of investigation. Such research may provide, for example, brain
imaging evidence of the therapeutic effects of cognitive and
acceptance based therapies in chronic pain management.

PHANTOM LIMB PAIN AND CRPS

Phantom limb pain is described as pain occurring in a lost
or amputated limb due to referred sensation from neighboring
bodily regions (Nikolajsen and Jensen, 2001). Symptoms of
phantom limb pain include but are not limited to burning,
itching, tingling, electrical sensations, cramping, and muscle
spasms (Flor, 2002). The neural mechanisms resulting in
phantom limb pain mirror that of central sensitization (Woolf
et al., 1992; Subedi and Grossberg, 2011; Woolf, 2011). CRPS,
previously known as reflex sympathetic dystrophy (RSD), is a
pain disorder characterized by allodynia, swelling, dysautonomia
and temperature changes that cannot be attributed to another
physiological disorder (Jänig and Baron, 2002; Marinus et al.,
2011). Traumatic injury has been described as one of the
leading causal factors resulting in CRPS, occurring in 30%–77%
of presenting patients (McBride and Atkins, 2005). These
symptoms, however, may spread from one part of the body,
such as the right upper arm, to another distal extremity like the
lower left leg. Similar to phantom limb pain, CRPS appears to be
facilitated by the process of central sensitization (Bruehl, 2010;
Woolf, 2011).

Theoretically, the symptoms of phantom limb pain and
CRPS should reverse through NMDAR antagonists. If central
sensitization facilitates both phantom limb pain and CRPS,
downregulation of NMDAR should drastically reduce symptoms.
NMDAR antagonists, however, have variable effects on patients
with phantom limb pain (Nikolajsen et al., 1996; Huse et al.,
2001; Maier et al., 2003; Robinson et al., 2004; Schley et al.,
2007) and CRPS (Koffler et al., 2007; Schwartzman et al., 2009;
Pickering and McCabe, 2014). In addition, sympathetic blocks
that provide a local anesthetic to block incoming pain signals are
not a universally successful treatment for CRPS (Cepeda et al.,
2002, 2005; Meier et al., 2009; Stanton et al., 2013).

What accounts for the maintenance of both chronic pain
disorders, considering that pharmacologic intervention is of
limited value? Although the primary culprit may be faulty
communication between mPFC and limbic structures, other
brain regions have been implicated in both pain syndromes.
Phantom limb pain is associated with cortical reorganization
within the de-afferated primary motor cortex and S1 (Birbaumer
et al., 1997; Lotze et al., 2001; MacIver et al., 2008). Similar
to phantom limb pain, CRPS is associated with cortical
reorganization of the primary motor cortex (Maihofner et al.,
2007; Kirveskari et al., 2010; Pleger et al., 2014) and S1
(Maihofner et al., 2003; Pleger et al., 2014), although some
research suggests this is not always the case (Di Pietro et al.,
2013a,b). Regardless of cortical changes in S1, there is reason
to believe that such alterations do not produce pain (Gustin
et al., 2012). Knecht et al. (1998) reported that cortical

reorganization normally resulting from amputation of a limb
does not necessarily correspond to changes in phantom limb
pain perception over time. In the study, over a 4-week period,
the overall extent of cortical reorganization and number of
sites associated with mislocalization of phantom limb pain
remained constant. Mislocalization refers to changes in the
location of painful areas of the body after the application of
non-noxious stimuli (touch, vibration and heat) and painful
stimuli. To the surprise of the researchers, the topography of
mislocalized pain sensations had changed in every subject despite
no significant changes in cortical reorganization. The results
of this study suggest that pain sensation and perception are
highly malleable and may not be causally related to cortical
reorganization.

Adult-onset CRPS is clinically distinct from childhood-
onset CRPS. Unlike in adult-onset CRPS, children with CRPS
usually experience full resolution of pain symptoms (Low et al.,
2007; Linnman et al., 2013; Weissmann and Uziel, 2016).
One study examining childhood-onset CRPS found altered
functional connectivity in five key brain structures: amygdala,
ACC, caudate, post-central gyrus, and putamen (Linnman
et al., 2013). Interestingly, the researchers observed that CRPS
children with complete pain resolution still exhibited altered
functional connectivity in these brain structures. Similar to
cortical reorganization, then, altered functional connectivity and
pain perception are not causally connected. Unfortunately, their
analysis did not examine functional connectivity of mPFC, a
region that would be of interest for pain perception and its
relation to conditioned fear. Future studies should examine
structural and functional connectivity between mPFC and limbic
regions to address the question of whether pain perception in
CRPS is related to neural circuitry of fear conditioning, and is
perhaps a conditioned phenomenon.

Mirror therapy has been shown to be an effective therapeutic
modality for phantom limb pain (Chan et al., 2007; Finn et al.,
2017), while motor imagery therapy has been documented to
be an effective treatment for CRPS (Moseley, 2004b; Bowering
et al., 2013). Treatments targeting motor movement may help
to regulate altered cortical representations of the affected
limb in the primary motor cortex and S1. In addition, such
therapeutic modalities may be effective through changes in
proprioceptive representations of limb positioning and body
movement within the dorsal visual processing stream, or
‘‘where’’ visual pathway (Preissler et al., 2013). In addition
to changes within primary motor cortex, S1, and posterior
parietal areas, mirror and motor imagery therapy may also
facilitate the growth of new neural circuits that inhibit
previously established fear-associated connections. From a
classical conditioning standpoint, these therapies may lead
to the formation of new CS-US pairings, in which the
proprioceptive feedback resulting from the therapy (the CS)
is associated with the pain-free state (the US). The CR,
then, would be the relief state resulting from being pain
free. Through classical conditioning, additional proprioceptive
representations can serve as neutral stimuli to become associated
with a pain-free state, thereby inhibiting the original pain
associations.
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CHRONIC BACK PAIN

As with phantom limb pain and CRPS, chronic back pain
(CBP) is associated with central sensitization (Woolf, 2011;
Roussel et al., 2013). In addition, CBP results in structural
and functional changes in attentional, emotional, and default
mode networks (Apkarian et al., 2004; Baliki et al., 2006, 2008;
Tagliazucchi et al., 2010; Seminowicz et al., 2011; Hashmi et al.,
2013; Zhang et al., 2014). Specifically, CBP is associated with
a 5%–11% reduction in overall cortical volume, with symptom
duration correlated with amount of gray matter loss (Apkarian
et al., 2004). In addition, reduced gray matter density in dlPFC
correlates with increased pain severity, while increased dlPFC
thickness following surgery or other intervention procedures
correlates with a reduction in reported pain (Apkarian et al.,
2004; Seminowicz et al., 2011). These studies, however, did
not differentiate the temporal divide between pain resolution
and increase in dlPFC thickness. Thus, one cannot conclude
whether symptoms decreased as a result of increased cortical
gray matter density or whether patients achieved pain-free
states prior to cortical reorganization. Similar results have
been found in hip osteoarthritis (coxarthrosis; Rodriguez-Raecke
et al., 2013), such that pain resolution preceded increased
dlPFC thickness. Therefore, the relationship between dlPFC
thickness and chronic pain may be merely correlational,
or perhaps, pain resolution leads to alterations in cortical
circuitry.

Interestingly, Hashmi and associates (Hashmi et al., 2013)
noted a functional difference between CBP and acute back
pain, classified as back pain occurring for less than 3 months.
While experiencing increased levels of pain, subjects with acute
back pain consistently showed increased activations in the ACC
and insula, two key structures within the salience network.
Individuals with CBP, however, showed increased activations
in the mPFC and amygdala. The results of this study highlight
the role of ACC and insula in initial pain detection. In another
study, patients with CBP exhibited increased pain levels due
to thermal stimulation, and their reported pain levels were
positively associated with activation in insular cortex (Baliki
et al., 2006). Spontaneous pain in these patients, however,
was correlated with activation in mPFC. Thus, in CBP, pain
perception in the absence of an overt threatening or noxious
stimulus seems to be facilitated through mPFC. It is possible that
when acute pain becomes chronic, the mPFC and fear associated
structures may begin to play an important mediating role in
the perception of pain. Further, dysregulation within this region
may help to explain the altered dynamics within DMN observed
in patients with CBP (Baliki et al., 2006, 2008; Hashmi et al.,
2013).

Why do some individuals present with back pain while others
with similar physiological findings do not? Perhaps subjects who
do not report back pain are less likely to form pain-related
fear whenever a back condition occurs. Alternatively, perhaps
pain-free individuals with back bulges do not experience pain
because the brain does not detect the disc bulge as being a threat.
In a standard fear-avoidance model, pain-related fear involves
threat perception (Leeuw et al., 2007). Perhaps the asymptomatic

subjects with disc bulges have little to no pain-related fear,
which explains their lack of symptoms. This model, however, is
speculative and future research is necessary to provide further
support for the idea that pain-related fear avoidance is causally
associated with verbal report of pain symptoms.

Motor control therapy has been found to be a successful
form of treatment for CBP (Macedo et al., 2012; Saragiotto
et al., 2016). Similar to therapies for phantom limb pain
and CRPS, motor control therapy may help to form new
CS-US relationships that may inhibit or alter pre-existing pain
and fear associations. Support for this theory comes from
prior work showing that in conjunction with motor control
therapy, pain physiology education courses can help decrease
pain scores in CBP (Moseley, 2004a; Moseley and Butler,
2015). How can these education courses help to inhibit pain
and fear associations? From a cognitive-learning perspective,
maladaptive thoughts such as, ‘‘something must be seriously
wrong with me, this pain is indicative of something worse,’’
may become the CR in response to pain. As discussed
earlier, cognitive representations of pain may also serve as
an antecedent CS leading to the CR of increased anxiety.
Through cognitive remediation, an individual can reframe these
thoughts in a more adaptive manner: ‘‘I am in pain right
now, but from a physiological perspective, I am not in any
life-threatening danger.’’ This cognitive reappraisal may then
reduce pain-related fear and pain-related anxiety by preventing
negative reinforcement, which in turn will reduce avoidance
behaviors.

AN INTEGRATIVE MIND-BODY APPROACH
TO THE TREATMENT OF CHRONIC PAIN

The molecular mechanisms underlying central sensitization
involve glutamate and non-glutamate receptors (Figure 1), and
are similar in nature to those of LTP in fear-related circuits.
Currently, treatments seeking to alter the molecular mechanisms
of central sensitization, such as NMDAR antagonists and
nociceptive input, are not universally successful in treating
different chronic pain syndromes. Similarly, previously observed
cortical and functional alterations have not been causally
related to chronic pain. Further, pain resolution in chronic
pain syndromes may occur even if cortical and functional
alterations are still apparent. Rather than focus on altered cortical
thickness or connectivity, we suggest a greater emphasis be
placed upon how structures communicate with one another,
particularly how the mPFC communicates with other brain
structures in the salience network, fear network and the DMN.
As demonstrated in patients with CBP, the dlPFC plays a
regulatory role in pain perception and may provide inhibitory
pathways that suppress pain and fear circuits. However, given
the mPFC’s connection to the DMN and fear circuit, along
with its projections to the salience network, this brain structure
may be of greater importance for pain modulation. Recent
pre-clinical evidence indicating that vmPFC activity is required
for the effectiveness of extinction-based therapies (Fucich et al.,
2018) buttresses the importance of this structure in therapeutic
success.
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FIGURE 2 | Mind-body approach to healing that promotes executive control originating from mPFC. The inner circle indicates the behavioral mechanisms underlying
chronic pain. This approach to healing, grounded in cognitive reappraisal, mindfulness meditation, and functional rehabilitation, will promote new synaptic
connections necessary for fear extinction (outer circle). Notice that the inner circle does not go away. Instead, by strengthening the components of the outer circle,
the mPFC can exercise executive control by inhibiting maladaptive pathways (inner circle). As a result, chronic pain patients learn how to better cope with pain, in
essence giving them the power to conquer the debilitating nature of their pain.

Therefore, to more successfully treat chronic pain conditions,
we propose an alternative approach to psychotropic agents that
downregulate glutamate and non-glutamate receptors. Instead
of attempting to reverse central sensitization occurring at the
level of the spinal cord, we suggest the use of a cognitive
behavioral program that will foster the development of new
synaptic connections between the mPFC and other structures
that will, in turn, inhibit LTP within pain and fear circuits
(Figure 2). We further propose that the most effective form
of chronic pain rehabilitation is through a combination of
cognitive reappraisals, mindfulness meditation, and functional
rehabilitation (Figure 2). As previously mentioned in the
discussion of CBP, cognitive reappraisals may help to reduce
pain-related fear and anxiety, which may then reduce avoidance
behaviors (see Table 1 for a list of cognitive reappraisals).

Indirect evidence exists indicating that cognitive reappraisal can
modify central sensitization processes, as cognitive behavioral
therapy (CBT) emphasizing pain regulation strategies has been
shown to reduce secondary hyperalgesia (Salomons et al., 2014).
Evidence also indicates that therapy grounded in cognitive
reappraisal and the reduction of catastrophic thoughts increases
functional brain connectivity between S1 and anterior insula
(Lazaridou et al., 2017) and between the DMN and executive
control networks (Kucyi et al., 2016). CBT has also been
shown to normalize aberrant functional connectivity in frontal-
parietal attentional circuitry in chronic pain patients, with
higher connectivity associated with greater reduction in pain
intensity ratings (Yoshino et al., 2018). Similarly, in chronic
pain patients, CBT has been shown to increase gray matter
volume in lateral PFC, the pregenual region of ACC, posterior
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TABLE 1 | Examples of turning maladaptive cognitions into adaptive cognitive
reappraisals.

Maladaptive cognitions Cognitive reappraisals

This pain will never go away. I am in pain right now but that
does not mean this pain will last
forever.

There is no definitive cure. I
will never be pain-free.

Advances are continually made
in medicine and a cure may be
found in the future.

I do not want to engage in
any activity because I am in
pain.

Even though I am in pain, let
me see what I can do within a
reasonable limit without causing
any further pain.

I am a victim. If doctors
cannot fix me, I cannot fix
myself.

I am an active participant in my
recovery.

parietal cortex and somatosensory cortex, accompanied by a
reduction in catastrophizing (Seminowicz et al., 2013). Thus,
cognitive therapies for pain management have the potential
to alter neural circuits related to attention, emotion, and
the integration of pain signals. Hence, we hypothesize that
cognitive reappraisals may promote the reduction of pain
and the extinction of conditioned pain-related fear through
top-down regulation of brain regions involved in emotion and
sensory processing. This process may be mediated by a general
reduction in the negative affective states associated with pain
perception.

Unlike cognitive reappraisals, mindfulness meditation focuses
on present moment awareness without becoming emotionally
involved or overtaken with sensations or thoughts (Kabat-
Zinn et al., 1985). Studies have demonstrated small to
moderate treatment effects for both mindfulness meditation and
mindfulness-based stress reduction (MBSR) for chronic pain
and related conditions (Crowe et al., 2016; Hilton et al., 2017),
and it appears as if change in mindfulness scores mediates
better clinical outcomes (Alsubaie et al., 2017). Neuroimaging
evidence indicates that reductions in pain severity accompanying
MBSR for chronic pain are associated with increased functional
connectivity between anterior insula and ACC (Su et al., 2016).
Similarly, among mindfulness meditators, reductions in pain
unpleasantness ratings accompanying a noxious stimulus have
been associated with decreased activation in lateral PFC and
increased activation in posterior insula (Gard et al., 2012). These
authors also observed an increase in ACC activation during the
anticipation of a painful stimulus accompanied by a reduction
in anticipatory anxiety among the mindfulness meditators, but
not controls. Further, in a direct comparison of the neural
mechanisms of mindfulness to those of ‘‘sham’’ mindfulness,
Zeidan and associates (Zeidan et al., 2015) observed that reduced
pain intensity and unpleasantness ratings to a painful stimulus
were associated with increased activation in subgenual ACC,
orbitofrontal cortex and anterior insula during mindfulness,
but not sham mindfulness. Additional studies have shown that
mindfulness meditation is associated with reduction in anxiety
in both clinical (Marchand, 2012) and nonclinical (Zeidan et al.,
2014) populations, and compared with non-meditating subjects,
mindfulness meditation increases co-activation of the mPFC

and ACC (Brown and Jones, 2010). As previously mentioned,
this co-activation is associated with fear appraisal (Maier et al.,
2012).

Increased co-activation of mPFC and ACC in mindfulness
meditators may be indicative of the mPFC’s top-down influence,
or executive control, on the salience network. Further, if the
salience network is involved in threat perception, the mPFC can
deem the sensation of pain as non-threatening, which helps to
explain pain reduction in mindfulness meditation (Grant and
Rainville, 2009; Zeidan et al., 2011). By acting on the mPFC,
mindfulness meditation can also help to normalize dysregulation
within the DMN (Brewer et al., 2011). Importantly, evidence
suggests that mindfulness meditation results in pain reduction
through its effects on pain circuits rather than through placebo
effects (Zeidan et al., 2015). Recent evidence also suggests that
sleep deprivation may increase pain sensitivity and reduce the
effectiveness of pain-reducing medication (Alexandre et al.,
2017). Therefore, methods that help promote relaxation and
enhance sleep quality may be useful additions to a mindfulness
meditation or MBSR program for the treatment of chronic
pain.

Lastly, functional rehabilitation aims to increase patient range
of motion and functional movements in daily living, such as
walking, squatting and bending over. Similar to mirror therapy
in phantom limb pain, motor imagery therapy in CRPS, and
motor control in CBP, functional rehabilitation will also form
new CS-US relationships which may then be generalized to other
stimuli. We emphasize here that functional rehabilitation does
not promote mind over body. Therefore, if functional movement
exacerbates the pain symptoms, a chronic pain patient should not
try to push through the pain in that moment. Instead, chronic
pain patients should carefully assess for pain by trying different
functional movements and slowly increase movement or range
of motion when pain is not prohibitive (Ambrose and Golightly,
2015).

Because complete pain reduction is not always feasible, it
is critical that the chronic pain patient does not use pain
resolution as a barometer for success, as continued pain and fear
associations may become barriers to success. Instead, increased
functionality in daily living should become the barometer.
Hence, the goal of our suggested approach to treating chronic
pain is not to eliminate the pain entirely, but to conquer
the maladaptive cognitive appraisals and the established neural
associations in fear circuitry that make it difficult to function.
Such a comprehensive treatment plan should lead to increased
success rates for chronic pain interventions. When necessary and
where indicated, medication management should accompany
these therapeutic programs. However, a combination of the
three non-pharmacological therapies should mitigate the need
for pharmacological intervention, and perhaps, eliminate it
altogether over time.

CONCLUSION AND PROTOCOL
RECOMMENDATION

In conclusion, we offer the hypothesis that the most effective
and beneficial treatment program for long-term management
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of chronic pain requires three unique aspects of therapy:
(1) cognitive reappraisals; (2) mindfulness meditation; and
(3) functional rehabilitation. We further hypothesize that
a multimodal treatment program will lead to increased
connectivity between mPFC and other cortical/subcortical
regions, such as insula and amygdala, compared with any
one of these therapies alone. To test this hypothesis, we
suggest the implementation of an 8- to 12-week four-arm
randomized clinical trial for patients experiencing chronic pain.
To attain sufficient power for detecting differences among
groups, 120 patients should be randomized to one of the
following conditions: CBT alone, mindfulness meditation alone,
functional rehabilitation alone, or combined multimodal therapy
including CBT, mindfulness and functional rehabilitation.
The randomization process should lead to approximately
30 patients per group, which is an adequate sample size
even with the likelihood of patient drop-out and issues
with image acquisition, such as participant motion or other
artifact.

For CBT, we recommend a program consisting of weekly
45-min sessions comprised of: psychoeducation regarding
the learned mechanisms of avoidance, cognitive restructuring
through reappraisal, attention diversion and self-regulatory
skills. Although prior studies have utilized a group approach
to CBT (Seminowicz et al., 2013; Yoshino et al., 2018), we
recommend individually-tailored CBT, if feasible, to maximize
effectiveness. For mindfulness, we recommend a modified
protocol based upon prior work (Zeidan et al., 2011, 2015).
Weekly 45-min sessions with the therapist should include
a 30-min mindfulness program comprised of: following the
breath, progressive body scan and nonjudgmental awareness
of thoughts. The therapist conducting these sessions should
intentionally instruct the participant to become aware of
body sensations, teaching the participants to allow these
sensations to arise without judgment or emotional reaction.
For functional rehabilitation, we suggest twice weekly 45-min
sessions encompassing a program of walking, strength training,
and stretching exercises (Lee and Kang, 2016), including
walking outdoors or on a treadmill, depending on feasibility.
Because it would not be feasible to incorporate full versions
of these different therapies into a program for the combined
therapy group, the multimodal treatment program should
include weekly 90-min sessions incorporating abbreviated

aspects of each of the three individual therapies. For each
session, we recommend 30 min of CBT, followed by a
20 min mindfulness session, and then 40 min of functional
rehabilitation.

To examine putative changes in functional brain connectivity,
along with regional brain activity associated with monitoring
painful sensations, study participants should be scanned
twice: once prior to the initiation of assigned therapy
and once following the conclusion of the intervention.
Scanning protocol should include a 5-min ‘‘eyes-closed’’
resting state fMRI series, followed by a simple block-
design fMRI procedure that includes alternating blocks
of maintaining fixation on a central fixation cross and
actively monitoring potentially painful body sensations.
Changes in structural connectivity can be assessed by
including a diffusion tensor imaging (DTI) scanning series,
if available.

We acknowledge the ambitious nature of this proposed
clinical trial, requiring many hours of therapeutic services and
a total of 240 MRI scanning sessions. Therefore, we recommend
a multi-site approach to this intensive investigation. Despite the
likelihood that such a study might take a few years to complete,
the knowledge gained through this studywill have lasting impacts
on treatment recommendations for chronic pain.
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