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Accurate perceptual inference fundamentally depends upon accurate beliefs about the

reliability of sensory data. In this paper, we describe a Bayes optimal and biologically

plausible scheme that refines these beliefs through a gradient descent on variational free

energy. To illustrate this, we simulate belief updating during visual foraging and show that

changes in estimated sensory precision (i.e., confidence in visual data) are highly sensitive

to prior beliefs about the contents of a visual scene. In brief, confident prior beliefs

induce an increase in estimated precision when consistent with sensory evidence, but a

decrease when they conflict. Prior beliefs held with low confidence are rapidly updated

to posterior beliefs, determined by sensory data. These induce much smaller changes in

beliefs about sensory precision. We argue that pathologies of scene construction may be

due to abnormal priors, and show that these can induce a reduction in estimated sensory

precision. Having previously associated this precision with cholinergic signaling, we note

that several neurodegenerative conditions are associated with visual disturbances and

cholinergic deficits; notably, the synucleinopathies. On relating the message passing in

our model to the functional anatomy of the ventral visual stream, we find that simulated

neuronal loss in temporal lobe regions induces confident, inaccurate, empirical prior

beliefs at lower levels in the visual hierarchy. This provides a plausible, if speculative,

computational mechanism for the loss of cholinergic signaling and the visual disturbances

associated with temporal lobe Lewy body pathology. This may be seen as an illustration

of the sorts of hypotheses that may be expressed within this computational framework.

Keywords: active inference, saccades, visual system, synucleinopathy, precision

INTRODUCTION

The brain’s visual system must overcome formidable inferential challenges. Despite receiving
sequentially sampled, spatially limited sensory information from a two-dimensional array of
photoreceptors, we perceive spatially and temporally continuous three-dimensional visual scenes,
populated with complex objects. However, despite this remarkable capacity for scene construction
(Mirza et al., 2016; Parr and Friston, 2017a), the visual system is not infallible. It depends upon
a delicate balance between prior beliefs about perceptual hypotheses (Gregory, 1980), and the
sensory evidence that supports or refutes them (Geisler and Kersten, 2002; Brown and Friston,
2012). This paper is about the computational mechanisms that could maintain this balance, and
the consequences of their failure (e.g., Collerton et al., 2005).

We begin by outlining active inference (Friston et al., 2015), a theory of optimal behavior that
accommodates both perceptual inference and foraging for new sensory data (Mirza et al., 2016).
For our purposes, this foraging takes place through saccades to locations in the visual scene. We
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simulate visual foraging and the concurrent optimisation of
beliefs about the precision of (i.e., confidence in) sensations,
using a simple visual scene. This serves to illustrate the sensitivity
of perceptual inference to the prior beliefs chosen, and the
potential for (pathological) false inference (Friston, 2017).

These considerations serve as a foundation for the next
section, which explores the source of abnormal prior beliefs.
To do so, we extend the model and relate inferential message
passing to the interactions between the ventral visual stream
and subcortical structures. This draws upon previous suggestions
that acetylcholine may act as a sensory precision signal (Yu
and Dayan, 2005; Parr and Friston, 2017c). This rests upon
several empirical observations. First, nicotinic acetylcholine
receptors are found on the presynaptic terminals of cells in
layers 3 and 4 of the cortex (Sahin et al., 1992; Lavine et al.,
1997). These laminae are the targets of sensory relays from
the thalamus (Shipp, 2007). Secondly, cholinergic manipulations
modulate the gain of visually evoked responses (Gil et al.,
1997; Disney et al., 2007). This renders it almost tautologically
true that one of the roles of acetylcholine is to modulate the
precision of (some types of) sensory input, as precision and
gain are mathematically identical. Finally, in both behavioral
(Marshall et al., 2016) and neuroimaging (Moran et al., 2013)
studies in humans that explicitly test the association between
precision and acetylcholine, differences following cholinergic
manipulations are best accounted for by altered precision. If we
lesion our model to simulate the Lewy body pathology associated
with visual disturbances in synuclein disorders (Harding et al.,
2002), we find that the downstream consequences include
decreased sensory precision, neuronal gain, and false perceptual
inferences. These are consistent with the cholinergic deficits,
occipital hypometabolism, and visual hallucinations that occur
with synucleinopathies (McKeith et al., 2004). While this is
speculative, we draw upon this notion throughout to illustrate the
potential relevance of these ideas to pathology.

A prominent, but controversial, hypothesis in research on
neurodegenerative conditions is that deficits in acetylcholine
underwrite the mnemonic deficits characteristic of Alzheimer’s
disease (Perry, 1986; Contestabile, 2011). This has sometimes
been extended to other neurodegenerative conditions (Terry and
Buccafusco, 2003), and to normal aging (Bartus et al., 1982). It is
important to emphasize that the theory and simulations in this
paper are not intended to address the cholinergic hypothesis in
neurodegeneration. While we appeal to computational theories
concerning the role of acetylcholine in health and hallucinatory
disorders, this work should not be seen as supporting (or
refuting) the cholinergic hypothesis of cognitive decline in
dementia: this work just offers a computational (i.e., teleological)
formulation of cholinergic neurotransmission that may help
understand psychopathology.

ACTIVE INFERENCE

Under active inference, creatures minimize their free energy
through action and perception (Friston et al., 2010). Free
energy is a functional of beliefs about the processes causing

sensations, and a function of sensory data. It is an upper
bound on the negative evidence for these beliefs (Beal, 2003),
meaning minimisation of free energy is formally equivalent to
maximization of evidence for a model of the world (Hohwy,
2016). This (generative) model expresses beliefs about how
sensory data are generated, and can take subtly different forms,
depending on the type of inference being performed (Friston
et al., 2017b). In this paper, we describe inference using a Markov
Decision Process (MDP) model:

P(õ, s̃,π , ζ ) = P(π)P(s1)P(ζ )
︸ ︷︷ ︸

priors

∏

τ

P(sτ+1|sτ ,π)
︸ ︷︷ ︸

transitions

P(oτ |sτ , ζ )
︸ ︷︷ ︸

likelihood

Here, õ = [o1, o2, . . . , oT]
T is a sequence of sensory observations

over time. s̃ is the sequence of latent (hidden) states that are
not directly observable. π is the policy (or sequence of actions)
the subject pursues. The equation above says that observations
depend only upon the latent states at the current time step
and a precision term, ζ (Parr and Friston, 2017c). Intuitively, if
ζ = ∞ this probability (i.e., likelihood) becomes deterministic.
Conversely, if ζ = 0 the likelihood of any observation is
completely random; irrespective of the state of the world.

For people who are not familiar with the notion of precision,
precision quantifies the inverse variability or uncertainty
associated with a probability distribution. For example, if the
probability of an observed consequence, given a particular cause
is very precise, then one can be confident that the observed
outcome can be attributed to a particular cause. Conversely, if
contingencies are imprecise, there is no definitive relationship
between causes and consequences and observations do little
to resolve uncertainty about causes. In this sense, precision
corresponds to the confidence with which one can infer a cause
from observations or data. If one believes contingencies are
very precise, one will afford greater weight to sensory evidence
in terms of updating beliefs about their causes. This is why
optimizing the precision per se has been associated with attention.
Clearly, getting precision wrong can have profound effects
on inference; particularly, in hierarchical inference where the
relative precision at different levels of an inference hierarchy
becomes especially important—and sometimes counterintuitive
(as we will see below). Heuristically, getting precision wrong can
lead to both false positives and false negatives, which—in the
context of psychopathology—may be the formal homologue of
hallucinosis and (attentional) neglect.

States depend upon the states at the previous time step,
and the policy currently being pursued. Technically, these
probabilistic dependencies are called empirical priors. In addition
to the likelihood and empirical priors, three (full) prior
distributions are needed: these are the prior over policies, the
initial state, and the precision. Active inference mandates that
the first of these has a very specific form. However, before
we specify this form, we have to consider the form of the
(approximate) posterior beliefs,Q, anMDP agent holds about the
latent variables. To make inference tractable, we employ a mean-
field approximation (Friston and Buzsáki, 2016) that assumes the
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beliefs may be expressed as a product of (marginal) factors:

Q(s̃,π , ζ ) = Q(π)Q(ζ )
∏

τ

Q(sτ |π)

These are the beliefs that are optimized to minimize free energy,
where the approximation allows us to optimize each factor
independently. We can now write the free energy under a given
policy as

F(π) = EQ[lnQ(s̃, ζ |π)− ln P(õ, s̃, ζ |π)]

The notation EQ[ ] means the expectation (or average) under
the approximate posterior beliefs. For actions to minimize this
quantity, policies should be selected that lead to lower free
energies. However, the free energy is a function of observations,
and cannot be defined in relation to observations that have yet
to occur. To solve this problem, we can define an expected free
energy, and use this to define prior beliefs about policies that
minimize this quantity.

G(π) = EQ̃[lnQ(s̃, ζ |π)− ln P(õ, s̃, ζ |π)]

Q̃ (õ, s̃|π) = Q(s̃|π)P(õ|s̃)

P(π) = σ (−G(π))

The key move here is to augment the distribution used for the
expectation so that it includes beliefs about future observations.

This allows us to move from a free energy to an expected free
energy. The third line says that those policies considered a priori
more probable are those that lead to a low expected free energy.
Minimizing expected free energy is equivalent to minimizing
uncertainty about states of the world. In the absence of any
explicit rewards (i.e., prior preferences over outcomes), this
uncertainty resolving behavior dominates policy selection—to
select policies with the greatest epistemic value or affordance.

This sort of evidence accumulation depends upon the
precision afforded sensory evidence, relative to prior beliefs.
Crucially, the likelihood or sensory precision ζ itself has to be
inferred (viaminimization of free energy). This means that while
policies are selected to minimize uncertainty, this selection is
based upon posterior expectations about the precision of sensory
evidence; namely, expected uncertainty that is determined by the
ability of predictions to explain the outcomes encountered.

Having specified the generative model, we can now compute
the free energy gradients for each posterior belief (please see
the appendix), and use these to derive the variational message
passing equations needed for belief updating over time (Friston
et al., 2017a,b; Parr and Friston, 2017c). These are shown in
Figure 1 both as belief update equations and graphically as a
neural network. There are two important points to draw from this
sort of belief update or propagation scheme. First, the structure
of the neural network closely resembles that of a cortical column,
with loops through subcortical structures (Friston et al., 2017c).

FIGURE 1 | Belief propagation and neuronal (variational) message passing. The equations on the left show the update equations that implement a gradient descent

on variational free energy. Please refer to Table 1 and the main text for definitions of the variables used. On the right, the update equations are depicted as a neural

network. This resembles the laminar structure of a cortical column, with loops through subcortical structures. The dotted lines highlight the parts of this network that

correspond to the equations in the (color-matched) panels. σ is a softmax (normalized exponential) function that ensures the posterior probability distribution sums to

one.
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Second, ζ appears as a multiplicative factor, controlling the
gain of messages derived from sensations (Feldman and Friston,
2010). We have previously associated this term with cholinergic
projections to the cortex (Parr and Friston, 2017c). This is
consistent with empirical data suggesting that acetylcholine

TABLE 1 | Glossary of variables (in the text and figures).

Variable Definition

Gπ Expected free energy

π Policy posterior

s
(i)
πτ State posterior belief (for a given

policy and time) at hierarchical

level i

oπτ Outcome belief (for a given policy

and time)

oτ Observed outcome

Aij = P(oτ = i|sτ = j, ζ = 1)

Āij = P(oτ = i|sτ = j, ζ )

Likelihood matrix (mapping

states to outcomes)

Bij (u) = P(sτ+1 = i|sτ = j,π (τ ) = u) Transition matrix (mapping states

to states)

Cτ i = P(oτ = i) Outcome prior

Hi =
∑

j

P(oτ = j|sτ = i, ζ ) ln P(oτ = j|sτ = i, ζ ) Entropy of the likelihood mapping

βz P(ζ ) = Gamma(1,βz )

βz Q(ζ ) = Gamma(1, βz )

Parameter of prior and posterior

beliefs about sensory precision

ζ = EQ(ζ )[ζ ] = β−1
z Posterior expectation of sensory

precision

mediates the gain of visual cortical responses (Disney et al., 2007),
and with the cortical hypometabolism that occurs following
lesions to cholinergic forebrain nuclei (Motohiro et al., 1987).

THE GENERATIVE MODEL

We have outlined above the form of a generic Markov Decision
Process, and of the message passing (Dauwels, 2007) it entails.
We now focus on a more concrete example. This is the model
we will use to illustrate inferences about precision (Figure 2).
It comprises a very simple visual scene, containing only four
features. Each of these is a circle that may be absent (white),
green, or blue. Only one of these features may be foveated at
any one time (Mirza et al., 2016). This means that there are
four hidden state variables representing visual features, and a
fifth that represents fixation location (Parr and Friston, 2017c).
The transition probabilities associated with the visual features
are all identity matrices, ensuring that the precision of prior
beliefs about hidden states is determined only by the prior
probability over initial states, P(s1). The transitions between
fixation locations depend upon the action (i.e., saccade) selected,
and it is this that facilitates the active interrogation of the visual
scene (Gibson, 1966).

Two types of sensory data are generated by this model;
visual and proprioceptive. The latter is generated by an identity
mapping from the fixation location hidden state. Visual data are
caused by both the fixation location and the visual feature found
at that location. Each location is equipped with its own sensory

FIGURE 2 | The generative model. This schematic illustrates the form of the generative model used in our simulations. Blue panels show the hidden states: four

stimuli at different locations (upper left) and the fixation location (upper right). The latter is a control state (entailed by the policy), with transition probabilities that

depend upon policy choices. The green panels show the observable outcomes that are caused by the hidden states. There is one visual and one proprioceptive

outcome. The visual outcome depends on the fixation location and what is at that location. The proprioceptive outcome depends only upon the fixation location. The

precision of the visual outcome depends upon the current fixation location.
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precision, and beliefs about these precisions can be optimized
independently. This generative model should be seen as a toy
example that serves to illustrate a subset of pathological changes
in visual processing. It is not intended as a complete account
of perceptual changes following neurodegenerative insults to the
visual system. To demonstrate the behavior of this model, we
simulated several different combinations of stimuli and prior
belief.

SIMULATIONS

Given this generative model, we can now simulate scene
construction via active vision by solving the equations in
Figure 1–and examining the simulated behavior and posterior
beliefs of a synthetic subject. This approach to simulating visual
search behavior has been described in detail in (Mirza et al., 2016;
Parr and Friston, 2017c). We will present two sets of simulations.
The first uses a simple (single hierarchical level) generative model
to illustrate the basics of perceptual inference—and how this
depends upon the precision afforded sensory evidence, relative
to (empirical) prior beliefs about state transitions. In the second
simulation, we equip the model with a second (hierarchical)
level that embodies the belief that outcomes are generated by
a scene (i.e., a combination of visual objects at four spatial
locations) that remains constant over successive (five saccade)
visual searches. While this, deliberately simple, form of visual
scene does not capture the rich phenomenology associated with
real scene construction (Hassabis et al., 2007), it enables us to
simulate visual processing under lesions that are hierarchically
remote from the (neuromodulatory) effects of expected precision.
We offer this as a formal explanation for the sort of (functional)
diaschisis that characterizes synucleinopathies; particularly those
associated with visual hallucinosis.

Figure 3 shows the results of simulating a visual search for
10 saccades under different prior beliefs and stimuli. First, we
chose a set of prior beliefs that matched the true states of the
world (Figure 3A). There is little change in the estimated sensory
precision over time, and the posterior belief matches both the
prior and the true states. We then tested the case for which
the prior and the true states are different. Figure 3B shows
a prior belief with the same content as 3a, but held with a
lower degree of confidence (i.e., the prior belief is less precise).
Again, there is little change in sensory precision, but now the
posterior reflects the true states and not the prior. In other
words, the sensory likelihood dominates perceptual inference.
In Figure 3C, we simulate another mismatch between the prior
and sensory evidence. This time, the prior belief is held with
a high degree of confidence (i.e., a very precise prior), and
this dominates inference. The posterior belief matches the prior,
and is inconsistent with the sensory data sampled. The conflict
between the prior and the sensory evidence is resolved in this case
by a decrease in the precision associated with the contradictory
locations. Heuristically, if a prior belief is held very confidently,
evidence to the contrary is disregarded or ignored.

We have demonstrated that excessively precise prior beliefs
lead to a compensatory decrease in the precision of the likelihood

FIGURE 3 | Inferring uncertainty. These three groups of plots show the results

of simulating the behavior of a free energy minimizing subject, using the

generative model outlined in Figure 2. The prior beliefs about the visual stimuli

are depicted by setting the intensity of each color equal to the probability of

that color. The posterior beliefs are represented similarly. The true states are

presented along with the saccadic trajectory (red line) that determines the

sequence in which the stimuli were sampled. The (posterior) sensory precision

is shown in the line plots. There is one precision term associated with each

location (LL, lower left; LR, lower right; UL, upper left; UR, upper right). (A)

shows inference with a prior belief that is consistent with the true states. (B)

shows a relatively imprecise prior that is inconsistent with sensory states. Here,

the sensory evidence dominates the inference. (C) shows the result of setting

a precise prior belief against contradictory sensory data. In this case, the prior

dominates, but must induce a decrease in sensory precision in order to do so.
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distribution. Given the association between sensory precision
and cholinergic signals (Dayan and Yu, 2001; Yu and Dayan,
2002; Vossel et al., 2014; Marshall et al., 2016), this provides a
possible mechanism for the decrease in activity in the nucleus
basalis ofMeynert in several neurodegenerative disorders (Candy
et al., 1983). Of these, the synucleinopathies, including Lewy body
dementia, show an especially dramatic decrease in cholinergic
signaling (Perry et al., 1994), and are associated with false
visual inferences (i.e., hallucinations). These are, by definition,
the imposition of prior beliefs on perception in the absence
of supportive sensory evidence. Furthermore, decreased sensory
gain means a smaller response to visual stimulation (Figure 1,
first equation), consistent with the combination of reduced
occipital cholinergic activity (Kuhl et al., 1996) and occipital
hypometabolism (Lobotesis et al., 2001; Heitz et al., 2015) in
synuclein disorders.

The above raises an important question: What is the source
of the abnormal prior beliefs in conditions such as Lewy body
dementia? We have previously argued that pathological prior
beliefs might arise through anatomically defined vascular lesions
(Parr and Friston, 2017b). Here, too, we can appeal to the
anatomical distribution of the lesions to try to understand
the relationship between tissue pathology and computational
(network level) dysfunction. Lewy body pathology occurs in
many brain regions, but it is their presence in parts of the
temporal lobe that is associated with visual hallucinations
(Harding et al., 2002). This leads us to consider the ventral visual
hierarchies and their computational homologs.

VISUAL HIERARCHIES

The visual system, like other sensory systems, is known to be
hierarchically organized (Desimone et al., 1985; Zeki and Shipp,
1988; Felleman and Van Essen, 1991; Markov et al., 2013). We
have previously appealed to this hierarchical structure to model
reading (Friston et al., 2017c) and visual working memory tasks
(Parr and Friston, 2017d). We now draw upon the same idea

to account for the source of the prior beliefs above, and to
show how inaccurate but highly precise beliefs can develop.
The visual system is organized into two broad hierarchical
streams. These are the ventral (what) and the dorsal (where)
pathways (Ungerleider and Haxby, 1994). It is the former that
is of relevance here, as it leads from the occipital cortex to the
temporal cortex, and represents stimulus identity at increasing
levels of abstraction. While regions earlier in this pathway tend
to respond to simple visual features (Hubel and Wiesel, 1959),
later regions are selective for more complex visual objects (Valdez
et al., 2015) or scenes (Epstein et al., 1999), constructed from
lower level features. This is very important in accounting for the
phenomenology of visual hallucinations in neurodegenerative
conditions, as hallucinatory components of the percept appear
in a consistent and plausible way in the context of the scene.
This implies there is no impairment in scene construction per
se. Instead, it is the wrong scene that is constructed. Crucially,
this suggests hallucinated scenes are constructed based upon
hierarchical principles, leading to the integration of a false
percept in a way that is contextualized by the rest of the scene.
This does not imply any impairment in the posterior precision of
the overall percept.

To account for this hierarchical structure, we can augment
our generative model so that visual stimuli (the “what” panel
in Figure 2) are themselves generated by “scene” states. Both
the “what” and the “scene” variables are types of hidden state.
We refer to the former as a “first level” and the latter as a
“second level” state. The second level is much simpler in this
case (Figure 4), as there is only one type of state with no policies.
Furthermore, all transitions at the second level are taken to be
identity matrices, expressing the belief that the scene remains
constant over time. This type of generative model allows the first
level (empirical) priors to be generated by the second level. While
this generative model is too abstract to map directly to the real
visual system, this type of hierarchy does express cardinal features
of the organization of the ventral visual stream.

Importantly, although inference about a visual feature can be
performed within a given fixation, it takes a multiple saccades to

FIGURE 4 | Hierarchical generative model. This schematic shows the addition to the model in Figure 2. The visual scenes represent second level (2) causes while the

contents of this scene (the ‘what’ states from earlier) are the first level (1) causes generated by these scenes. For example, the scene containing only a green circle in

the lower left quadrant generates white circles in the upper two locations, and a green circle in the lower left. The rest of the generative model is as described in

Figure 2.
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make inferences about the scenes at the second level. This implies
that beliefs at this level should be updated more slowly (Friston
et al., 2017c), consistent with the slower response properties
higher in sensory hierarchies (Hasson et al., 2008; Kiebel et al.,
2008; Murray et al., 2014).

Figure 5 shows the inferences made when we simulate
responses with this hierarchical model. The upper part of the
figure shows the beliefs about each of the second level states
through time. At the start, the second level beliefs are combined
(weighted by their probabilities) to generate an empirical prior
at the first level. In both Figures 5A,B, this prior is relatively
imprecise. A sequence of 5 saccades is performed, and the

observations made are used to refine the first level posteriors in
exactly the same way as in Figure 3. These posterior beliefs are
used to update the second level beliefs. These then generate a new
empirical prior and this sequence repeats. The sensory precision
is reset to its prior value whenever a new empirical prior is set (at
the start of each sequence of 5 saccades).

The reason the precision re-sets to its prior value periodically
is due to the separation of temporal scales inherent in the
generative model. This is analogous to processes like reading, for
which a sentence provides a high level context linking sequential
words. Letters in one word only inform inferences about the next
word via sentence-level representations. This means all lower

FIGURE 5 | Empirical priors and pathology. These plots illustrate the evolution of beliefs about second level states, first level states, and sensory precision. The upper

plots show the beliefs about scenes over time. Each row of these represents a given scene (indicated by the images on the left). The shading indicates the belief that

this is the scene responsible for the sensory input. Black indicates a belief that the probability is 1, white indicates 0. The descending arrows represent the

computation of a first level empirical prior from the second level beliefs. A new empirical prior is generated after every 5 saccades (demarcated by dashed blue lines).

The empirical prior and the sensory consequences of saccadic exploration combine to form first level posterior beliefs (exactly as in Figure 3). The beliefs from each

set of 5 fixations are used to update the second level beliefs (ascending arrows). The lower plots show the beliefs about the sensory precision, aligned to the beliefs at

the higher level. The precision is reset at the vertical dotted lines. (A) shows “healthy” second level priors that associate an equal probability to each scene at τ = 0.

Under these priors, the correct scene is inferred and the consistency between priors and sensory data leads to an increase in sensory precision. (B) shows the same

model but with the prior probability of the third scene set to zero to simulate the loss of this neuron (or neuronal population). Here, the conflict between priors and

sensory evidence leads to a decrease in precision. This also demonstrates the importance of action in perception as, at the final time-step, consistently fixating on the

lower left location leads to a correct percept. This illustrates the point that collecting more data can compensate for the diminished precision of those data.
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level representations are set to their (empirical) prior values every
time we move from one word to the next. In our setting, the same
is true of all lower level representations, including the precision.
In a more complex model, it would be possible to condition the
prior belief about the precision upon slowly changing variables
at the higher level. While beyond the material presented in
this paper, this would allow inferences about the precision to
transcend the time-scale of the lower level.

Figure 5A illustrates this process in a model with “healthy”
second level priors. There is a very rapid inference that the
third scene is the most likely cause at the second level, and
the first level beliefs, following saccadic interrogation, invariably
match the true states. A moderate increase in estimated precision
occurs under the second empirical prior, because confident prior
beliefs match the sensory inputs. Note that the start location
is in the lower left, so there is a larger effect for the precision
at this location. This illustrates the fact that the prior has a
greater influence at the start of the trial, where fewer observations
have been made. Figure 5B shows a simulated synucleinopathy.
Neuronal loss (or disconnection) high in the ventral stream
has been simulated by setting the second level prior belief
for one of the scenes (the correct one) to zero. This is as if
we had removed the neuron that represents this second level
hypothesis. Interestingly, this does not impede the formation of
confident (false) first level empirical priors. As we saw earlier,
these induce a decrease in the estimated sensory precision, and
false perceptual inference. This demonstrates that pathology high
in ventral visual hierarchies can, in principle, induce changes
in distant brain areas—something that has been characterized
in terms of a functional or dynamic diaschisis (Price et al.,
2001; Carrera and Tononi, 2014). The idea that damage to a
neuronal population preserves the confidence in the beliefs they
represent may seem counterintuitive. However, even with the loss
of neurons representing the correct inference, there is still a clear
“best” explanation at the level of scenes. This leads to confident
posterior beliefs about the scene, giving rise to confident (but
incorrect) empirical prior beliefs about the contents of that scene.
This is further facilitated by the permissive decrease in sensory
precision.

This result recapitulates the idea that, for hallucinations to
occur, prior beliefs must be held with a high degree of confidence
(precision) relative to that associated with contradictory sensory
evidence. This has previously been demonstrated in the context
of auditory hallucinations in schizophrenia (Adams et al., 2013).
Our account does, however, provide a different perspective on
the initial computational insult. While this has previously been
formulated as a false prior belief that something is present, we
have demonstrated that hallucinations may be induced by a false
prior that a given scene is not a good explanation for sensory
data. This forces the brain to resort to an alternative explanation,
associated with other, spurious, perceptual content.

COMPUTATIONAL NEUROPATHOLOGY

In the above, we have presented a model that relates
temporal lobe pathology to the development of complex

visual hallucinations and reduced cholinergic signaling to the
occipital cortex. Crucially, although the primary pathology only
affects temporal components of the simulated network, its
computational consequences are felt throughout the brain via a
dynamic diaschisis (from Greek διασχισις meaning “shocked
throughout”). This type of account is necessary in explaining the
patterns of diaschisis observed in neuropathological processes.

The synucleinopathies [including Lewy body dementia,
Parkinson’s disease, and Multiple system atrophy (Tsuboi and
Dickson, 2005; McCann et al., 2014)] provide important
examples that illustrate the need to connect tissue pathology to
computational dysfunction. Despite the presence of physiological
changes in the occipital cortices (Kuhl et al., 1996), and
visual symptoms (McKeith et al., 2004; Weil et al., 2016),
the histopathological processes in these disorders tend not
to affect occipital cortex directly (Khundakar et al., 2016).
While impaired dopamine signaling to the cortex in these
disorders might contribute, occipital regions tend to receive
relatively few dopaminergic projections (Javoy-Agid et al., 1989).
The absence of these processes in primary visual areas, and
the association between visual symptoms and temporal lobe
Lewy bodies (Harding et al., 2002), calls for an explanation
of physiological changes in the former in terms of their
computational relationship to the latter.

We note that, for prior beliefs to dominate inference, the
sensory precision must be low relative to the precision of prior
beliefs. This means that hallucinations could occur with intact
prior beliefs and a primary lesion to systems encoding sensory
precision, or an increase in prior confidence without any change
in sensory precision. Computationally, these are equivalent as
they each change the balance of precisions in the same way.
However, they are not necessarily biologically equivalent. The
former implies a primary lesion to neuromodulatory systems
that modulate synaptic gain in sensory cortices, while the latter
implies damage to higher regions of cortex that provide empirical
priors to sensory areas. In the context of visual hallucinations in
Lewy body disease, both of these are present. While these may be
two independent primary lesions, a simpler explanation would
be that one is a downstream effect of the other. In this paper, we
have suggested a mechanism by which damage to higher cortical
areas could lead to disruption of synaptic gain in early visual
cortex.

In short, the formal account of active inference or vision on
offer here also provides an explanation in terms of a functional
diaschisis—a dysfunction of one region as a consequence of a
distant lesion (Price et al., 2001; Carrera and Tononi, 2014).
Figure 6 illustrates a plausible computational anatomy that could
underwrite this account. While this anatomy is speculative, it
serves to illustrate the importance of the functional interactions
between brain regions to the understanding of neurological
disease. Damage to temporal regions, representing second level
beliefs, induces changes in the first level beliefs. This leads
to inconsistencies between perceptual beliefs and sensory data,
which down regulates cholinergic projections to the occipital
cortex. Decreased cholinergic signaling uncouples beliefs about
states from sensations they cause, facilitating hallucinations
(Perry et al., 1991; O’Callaghan et al., 2017). As this model
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FIGURE 6 | Precision, expected uncertainty and the ventral visual stream. This

schematic illustrates the hypothetical computational anatomy of the ventral

visual stream and its cholinergic modulation. Visual outcomes (oτ ) are shown

in the primary visual cortex. These inform first level beliefs (s
(1)
τ ) early in the

ventral stream, and the connection between these is modulated by cholinergic

projections from the basal nucleus in the forebrain. First level beliefs are

reciprocally influenced by second level beliefs (s
(2)
τ ) in the temporal lobe. Here,

(ζ = EQ(ζ )[ζ ] = β−1
z ) (see Table 1 and Figure 1 for further details). We have

(speculatively) suggested that the prefrontal cortex may be engaged in

computing the expected precision, utilizing its inputs from those regions

representing first level beliefs, and its connections to the basal forebrain

(Zaborszky et al., 1997).

would predict, treatment with cholinesterase inhibitors increases
occipital blood flow, while attenuating visual hallucinations
(Mori et al., 2006). A complementary, and more biophysically
detailed, perspective on this is formulated in terms of impaired
conductance (Tsukada et al., 2015) in the synapses between visual
cortical neurons, and those in the ventral visual stream.

An influential model of recurrent complex visual
hallucinations (Collerton et al., 2005) implicates these same
regions, but makes the point that many other disorders involve
similar changes. For example, cholinergic deficits are also
associated with Alzheimer’s disease (Minoshima et al., 2004),
although to a lesser extent (Perry et al., 1994; Tiraboschi et al.,
2000). Like those for Lewy body disease, pharmacological
therapeutics have focused on correcting this neurochemical
deficit (Lam et al., 2009). There is evidence to implicate changes
in the temporal lobes in this disorder, as it tends to impact these
structures early. However, this is typically more medial than in
Lewy body dementia (Minoshima et al., 2002). Furthermore, it
is unlikely that the cholinergic deficits in Alzheimer’s disease
are consequences of temporal lobe changes, as there is good
evidence for a primary pathological insult to the nucleus basalis
(Etienne et al., 1986; Samuel et al., 1994; Liu et al., 2015). This
renders it improbable that this condition exhibits a similar
set of computational deficits to those described above. The
lower prevalence of visual hallucinations in Alzheimer’s disease,
despite overlapping pathological features with Lewy body
disease, illustrates an important point. It is not sufficient to have

temporal lobe damage and cholinergic dysfunction to give rise
to hallucinations. The interplay between the two is crucial in
characterizing this type of diaschisis.

In this paper, we have focused upon false positive inferences
(i.e., hallucinations). However, brain damage often leads to false
negative inferences (i.e., agnosia) (Warrington and James, 1967).
These manifest as a failure to perceive a stimulus, despite it
being present. The approach we have described could be used
to account for these phenomena in several ways. We outline
these here, but emphasize that determining which of these best
accounts for agnosia remains an open question that requires
further investigation. The first way in which we could account for
this is by setting a prior belief that a given object is present to zero.
If the most probable alternative explanation is the absence of any
object, this inference will result. It is important to distinguish
this inference of absence from uncertain inferences, in which the
presence or absence of an object cannot be inferred with any
certainty. These could result from disconnections that render
this object conditionally independent from sensory data in the
generative model. This would ensure beliefs about the presence
or absence of a given object would not depend upon these data.
A third way in which certain stimuli may fail to enter into
perceptual awareness is the failure to attend to certain kinds of
stimuli, as in visual neglect (Halligan and Marshall, 1998). We
have previously argued that this syndrome, in which stimuli on
the left of space are ignored, depends upon a failure to actively
engage with stimuli on the left (Parr and Friston, 2017b).

A number of outstanding questions are raised by the approach
we have taken, which require empirical resolution. The first
concerns our use of the term “visual features.”We have illustrated
a feature as the color of a circle in a given location, but this
is not mandated by the mathematics used in our generative
model. In principle, relevant features could be shape, luminance,
contrast, or any other experienced attribute. We would need
to present patients with a task like that illustrated above, but
with different sorts of stimuli, to elucidate which of these
afford the right level of description—and whether the ensuing
responses are conserved over patients. The second question
concerns the fixed parameters of the generative model—such as
the prior belief about sensory precision. These are likely to be
subject specific, but could be estimated from eye-tracking data
collected during the above task (Mirza et al., 2018). Finally, we
would hope to use these data to fit the prior beliefs (at the
second level) of both patients and healthy participants (i.e., a
quantitative and belief based computational phenotyping). We
predict that patient data would offer greatest evidence for a
reduced (Friston et al., 2016) version of the model that best fits
healthy participants. If patient data afforded greater evidence
for any other model, this would provide evidence against
the hypotheses advanced in this paper. Given the associations
between the parameters of our model and their biological
substrates, this makes additional, falsifiable, predictions. First,
if we were to perform this behavioral experiment combined
with neuroimaging, we would predict a reduced effective
connectivity between early visual areas and regions in the ventral
visual stream that correlates with behaviorally derived precision
parameters. Second, chemical neuroimaging to assess cholinergic

Frontiers in Integrative Neuroscience | www.frontiersin.org 9 September 2018 | Volume 12 | Article 39

https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/integrative-neuroscience#articles


Parr et al. Inferring Uncertainty

dysfunction should correlate with both behaviorally derived
precision parameters, and decreases in effective connectivity in
the visual system. Evidence against these associations would
represent evidence against our hypothesis.

CONCLUSION

In the first part of this paper, we illustrated the computational
mechanisms that could act to maintain the perceptual balance
between prior beliefs and sensory evidence. We simulated
inferences about the precision associated with the likelihood,
and demonstrated that confident, but incorrect, prior beliefs
cause a decrease in the expected sensory precision, and false
perceptual inferences. In the second part, we asked what
the computational mechanisms might be that give rise to
pathological empirical priors, and motivated this through an
appeal to the neurobiology of synuclein disorders. We described
a plausible mechanism by which tissue pathology in higher
visual areas could cause in occipital hypometabolism, cholinergic
deficits, and visual hallucinations. Crucially, this calls upon
the computational (network level) pathologies induced by
regional synucleinopathies. This accounts for several empirical
findings, including the association of temporal lobe changes
with hallucinations in Lewy body disease and the improvement
in hallucinations and occipital metabolism when these patients
are treated with cholinesterase inhibitors. The ideas and

simulations presented here emphasize the importance of relating
neuropathological processes to computational dysfunction to
understand neurological disease.

SOFTWARE NOTE

Although the generative model changes from application to
application, the belief updates described in this paper are
generic and can be implemented using standard routines (here a
customized version of spm_MDP_VB_X.m). These routines are
available as Matlab code in the SPM academic software: http://
www.fil.ion.ucl.ac.uk/spm/. Simulations of the sort reported
above can be reproduced (and customized) via a graphical
user interface by typing in >> DEM and selecting the “visual
foraging” demo.
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APPENDIX

In this appendix, we outline the derivations for the update
equations we have used in our simulation. For more technical
accounts, please see (Friston et al., 2017a,b; Parr and Friston,
2017c).

Inference
The free energy for a given policy is given as

F(π) = EQ[lnQ(s̃|π)− ln P(õ, s̃|π , ζ )]

If we are interested in finding Q(sτ |π), we can omit all terms that
are constant with respect to this

F(π) = EQ(sτ |π)[lnQ(sτ |π)]− EQ(sτ−1|π)Q(sτ |π)[lnP(sτ |sτ−1,π)]

−EQ(sτ |π)Q(sτ+1|π)[lnP(sτ+1|sτ ,π)]

−EQ(sτ |π)[ln P(oτ |sτ , ζ )]

In terms of sufficient statistics, this is

Fπ = sπτ ·
(

ln sπτ − lnBπτ−1sπτ−1 − lnBπτ · sπτ+1

−ζ lnA · oτ

)

We can then set up a gradient descent on this using an auxiliary
variable, vπτ :

sπτ = σ (vπτ )

v̇πτ = −∇sFπ = επτ

επτ = lnBπτ−1sπτ−1 + lnBπτ · sπτ+1 + ζ lnA · oτ − ln sπτ

Here, σ is a softmax (normalized exponential) function.

Planning
In order to treat planning as inference (Botvinick and Toussaint,
2012), we must define the free energy to include beliefs about
policies. This is:

F = π · (Fπ + Gπ + lnπ)

If we set the gradient of the free energy to zero, we find:

∇πF = 0 ⇔ π = σ (−Fπ − Gπ )

Precision
We can include beliefs about the precision of the likelihood by
defining Ā = 1

ZA
ζ . We then express beliefs about ζ as gamma

distributions (for which ζ = EQ[ζ ] = β−1
z ), and write down the

free energy as:

F = −π ·
∑

τ

sπτ · (ln Ā · oτ + lnBπτ · sπτ+1)+ ln βz

− lnβz + ζβz

∇ζF = 0 ⇔ βz = βz −
∑

τ

sτ ·∇ζ ln Ā · oτ

β̇z = βz −
∑

τ

sτ ·∇ζ ln Ā · oτ − βz
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