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Background: Multi-site MRI studies are often necessary for recruiting sufficiently sized
samples when studying rare conditions. However, they require pooling data from
multiple scanners into a single data set, and therefore it is critical to evaluate the
variability of quantitative MRI measures within and across scanners used in multi-
site studies. The aim of this study was to evaluate the reproducibility of structural
and diffusion weighted (DW) MRI measurements acquired on seven scanners at five
medical centers as part of the Tuberous Sclerosis Complex Autism Center of Excellence
Research Network (TACERN) multisite study.

Methods: The American College of Radiology (ACR) phantom was imaged monthly to
measure reproducibility of signal intensity and uniformity within and across seven 3T
scanners from General Electric, Philips, and Siemens vendors. One healthy adult male
volunteer was imaged repeatedly on all seven scanners under the TACERN structural
and DW protocol (5 b = 0 s/mm2 and 30 b = 1000 s/mm2) over a period of 5 years (age
22–27 years). Reproducibility of inter- and intra-scanner brain segmentation volumes
and diffusion tensor imaging metrics fractional anisotropy (FA) and mean diffusivity (MD)
within white matter regions was quantified with coefficient of variation.

Results: The American College of Radiology Phantom signal intensity and uniformity
were similar across scanners and changed little over time, with a mean intra-scanner
coefficient of variation of 3.6 and 1.8%, respectively. The mean inter- and intra-scanner
coefficients of variation of brain structure volumes derived from T1-weighted (T1w)
images of the human phantom were 3.3 and 1.1%, respectively. The mean inter- and
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intra-scanner coefficients of variation of FA in white matter regions were 4.5 and 2.5%,
while the mean inter- and intra-scanner coefficients of variation of MD in white matter
regions were 5.4 and 1.5%.

Conclusion: Our results suggest that volumetric and diffusion tensor imaging (DTI)
measurements are highly reproducible between and within scanners and provide typical
variation amplitudes that can be used as references to interpret future findings in
the TACERN network.

Keywords: MRI, quality assurance, reproducibility, multicenter study, brain, ACR, phantom

INTRODUCTION

The Tuberous Sclerosis Complex Autism Center of Excellence
Research Network study is a multi-center study examining
neurodevelopment in infants with TSC, a rare genetic disorder
associated with a high incidence (26–50%) of ASD (Jeste et al.,
2008, 2014; Capal et al., 2017). One of the goals of TACERN
is to acquire prospective, longitudinal structural and diffusion
weighted (DW), MRI of TSC infants over the first 3 years of life,
and implement advanced quantitative neuroimaging techniques
to detect MRI biomarkers that predict development of ASD
(Davis et al., 2017). Specifically, TACERN seeks to characterize
the development of brain morphometry from structural MRI
and white matter connectivity from DTI, and evaluate the
relationship of these quantitative MRI measures with ASD
outcome in TSC patients.

Although multi-center studies aid in recruitment of
sufficiently sized samples of patients with rare conditions
like TSC from diverse geographies, they also require rigorous
quality control to minimize site-related bias. Multi-center,
longitudinal MRI studies use multiple scanners, potentially from
different vendors, and use different software to characterize
deviations in quantitative MRI measures that may be associated
with disease. To reliably detect disease-related changes in
quantitative MRI measures, it is critical to harmonize MRI
protocols across sites, adhere to strict quality control procedures,
and to measure variation in MR images that may arise due to
scanner-related sources of noise, and artifact (Pagani et al., 2010).
Sources of variability in MR images include, but are not limited
to: partial volume averaging, variations in signal intensity arising
from spatially varying coil sensitivity profiles and B1 transmit
field inhomogeneity, table vibration, thermal noise in the coils
and subject that create stochastic variability in the image pixels,
and geometric distortion resulting from B0 inhomogeneity,

Abbreviations: ACR, American College of Radiology; ASD, autism spectrum
disorders; BCH, Boston Children’s Hospital; CCHMC, Cincinnati Children’s
Hospital Medical Center; CUSP, cube and sphere; CV, coefficient of variation;
DTI, diffusion tensor imaging; DWI, diffusion weighted imaging; FA, fractional
anisotropy; FOV, field of view; GE, General Electric; ICC, intracranial cavity; IU,
integral uniformity; MD, mean diffusivity; MRI, magnetic resonance imaging;
PSTAPLE, probabilistic simultaneous truth and performance level estimation;
ROI, region of interest; SD, standard deviation; SNR, signal to noise ratio; T1w,
T1-weighted; T2w, T2-weighted; TACERN, Tuberous Sclerosis Complex Autism
Center of Excellence Research Network; TE, echo time; TR, repetition time; TSC,
tuberous sclerosis complex; UAB, University of Alabama; UCLA, University of
California Los Angeles; UTH, University of Texas Houston.

and gradient non-linearity (Morelli et al., 2011). The normal
amplitude of hardware-induced variations in MR images can be
detected and quantified using phantoms, and can be used to
remove the effect of system variability from quantitative MRI
measures of subjects (Keenan et al., 2018).

The American College of Radiology accreditation program has
developed a designated MR protocol and phantom designed to
facilitate scanner quality control. The ACR phantom is a short,
hollow acrylic plastic cylinder of standard dimensions, filled
with nickel chloride, and sodium chloride. Structures within the
phantom allow for measurements of image quality, including
SNR and image intensity uniformity (American College of
Radiology, 2018). Previous reports indicate that frequent, repeat
imaging of the ACR phantom is an effective method for
monitoring and evaluating image quality, and is useful in
multisite studies (Chen et al., 2004; Ihalainen et al., 2011;
Davids et al., 2014).

However, the ACR phantom does not accurately reproduce
all properties of in-vivo tissue, such as its microscopic diffusion
properties. The lack of a validated phantom for DWI with FA
and MD similar to those seen in humans makes the accurate
assessment of DWI reproducibility across scanners challenging.
The best alternative to date is to scan a living human phantom
on each scanner. Repeated imaging of the same human on all
study scanners has successfully characterized the normal physical
and physiological variability in numerous multi-center studies
(Vollmar et al., 2010; Fox et al., 2012; Zhu et al., 2012; Grech-
Sollars et al., 2015; Palacios et al., 2017; Duchesne et al., 2019).

The goal of this work was to determine the reproducibility of
MRI structural and diffusion data acquired on seven scanners
over 5 years as part of the TACERN study. Monthly ACR
phantom imaging was performed to measure variation in signal
intensity and uniformity within and across scanners. A single
healthy volunteer was also imaged on each scanner under the
TACERN imaging protocol when possible with a goal of every
six months at each site for a total of 26 scans. We analyzed all
images using the same processing pipeline which included a fully
automatic computation of the volume of brain structures and
DTI parameters within 17 white matter regions. In order to assess
the reproducibility, we calculated the coefficient of variation
(CV) for ACR phantom intensity measures and the human
phantom volumetric and DTI measures. Our results indicate
good reproducibility of quantitative MRI measures across and
within scanners and will inform future interpretation of MRI
findings in the TACERN network.
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MATERIALS AND METHODS

Study Design and Sample
This study was performed to measure the variability of
quantitative structural and DW brain MRI measurements across
multiple scanners used in the TACERN study, an ongoing,
prospective, longitudinal, multi-site study investigating MRI
biomarkers of ASD in infants with TSC. TACERN sites include
BCH, CCHMC, UAB, UCLA, and McGovern Medical School at
University of Texas Health Science Center (UTH).

Image quality was evaluated with two methods: (1) The ACR
phantom was imaged monthly under the standardized ACR
phantom protocol to evaluate the stability of MR signal intensity
and uniformity over the study period. (2) A healthy adult male
volunteer was imaged under the TACERN MRI protocol on
every study scanner over a period of 5 years (age 22–27 years)
to evaluate the variability of quantitative MRI measurements
that will be made in the TSC cohort. The human phantom was
scanned every 6 months at each site, when possible. At each
bi-annual scan session, scan-rescan, or back-to-back imaging of
the volunteer under identical TACERN protocols with a brief
exit and re-entry of the scanner between scan sessions, was
achieved when possible, given the scheduling demands of the
clinical scanners used in this study. Scan-rescan is valuable
because it reduces the magnitude of anatomical changes that
may occur with time in the subject and narrows the sources
of measurement variability to those associated with the scanner
and subject repositioning (Wei et al., 2004; Velasco-Annis et al.,
2018). Each human phantom scan was analyzed with the fully
automated TACERN MRI analysis pipeline, that includes a whole
brain labeling and volumetric analysis of cortical, subcortical,
cerebellar, white matter, and ventricular brain structures. The
pipeline also includes a DTI analysis, which computes the single
tensor field and labels regions of white matter for tract selection
(pipeline described below). Brain structure volumes and white
matter DTI metrics were compared across scans acquired on
the same scanner (intra-scanner) and across all scanners (inter-
scanner) to evaluate the reproducibility of quantitative MRI
measurements. All study procedures were approved by the
Institutional Review Board at each site, and the human phantom
provided written informed consent.

MRI Acquisition
MRI scans were acquired at 3T on seven scanners and five
scanner models, including one GE Signa HDxt, one Philips
Achieva, two Philips Ingenia, one Siemens Skyra and two Siemens
TrioTim scanners with 32, 12, and 8 channel head coils. Software
upgrades occurred on two of the seven scanners during the course
of the study (Table 1). Scanner B replaced scanner A at BCH after
3.7 years of research use and scanner E replaced scanner D at
CCHMC after 1.5 years of research use.

Monthly ACR Phantom scans were acquired on all study
scanners under the standardized ACR phantom MRI protocol,
which includes an axial T1w fast spin echo (matrix = 256 × 256,
FOV = 250 mm, number of slices = 11, slice thickness = 5.0 mm,
slice gap = 5.0 mm, resolution = 1.0 mm3

× 1.0 mm3
× 10.0 mm3,

TR = 500 ms, TE = 20 ms, and Flip angle = 90 deg) and axial T2w
fast spin echo (geometry matched to ACR T1w, TR = 2000 ms,
TE = 20, and 80 ms).

Human phantom scans were performed awake or in
natural sleep under the TACERN consensus clinical imaging
protocol that includes high resolution, routine clinical imaging
sequences used for annual surveillance imaging of TSC
patients, plus additional multi b-value DW research sequences.
Imaging protocols were harmonized to the extent permitted
by each platform. Acquisition parameters used on each
scanner are detailed in Table 1. The protocol includes a
1.0 mm3

× 1.0 mm3
× 1.0 mm3 sagittal T1w image,

0.4 mm2
× 0.4 mm2 in-plane resolution axial T2w image, 30

high angular resolution b = 1000 s/mm2, and 6 b = 0 s/mm2 DW
images at 1.7 mm2

× 1.7 mm2 in-plane resolution and 2.0 mm
slice thickness. One b = 0 s/mm2 DWI was acquired with reversed
phase-encoding direction for distortion compensation, covering
the entire brain.

Quality Assurance
MRI data were transmitted to and evaluated at the
Computational Radiology Lab at BCH. MRI metadata
were reviewed for protocol compliance. Scans that did
not adhere to study protocols were excluded (15 ACR, 0
human phantom). Images were reviewed by an expert rater
for extent of brain coverage and artifacts resulting from
a variety of sources, including but not limited to subject
motion, flow, radiofrequency leak, table vibration, magnetic
susceptibility, and venetian blind artifact. Artifacts were
not found in ACR T1w images or human phantom T1w,
T2w, or DW images.

ACR MRI Processing
All MRI processing and analyses were completed using
the Computational Radiology Kit1. ACR phantom processing
was completed using a fully automated processing pipeline.
Each ACR phantom T1w image was aligned to a common
reference ACR T1w image using rigid registration with mutual
information metric. Regions of interest (ROI) were drawn on the
common ACR T1w reference, as defined by the ACR Phantom
Guide, and were used to measure SNR and IU (Figure 1;
American College of Radiology, 2018).

A signal ROI was drawn on axial slices 6 through 10 in
a uniform, high signal region of the template ACR phantom
(volume = 21028 mm3, area/slice = 400 mm2). A background ROI
was drawn on axial slices 2 through 10 (volume = 18024 mm3,
area/slice = 182 mm2) in the background adjacent to the ACR
phantom. The SNR was calculated using the mean of the signal
ROI, x̄Signal, and the SD of the background ROI, σBackground,
as follows:

SNR =
x̄Signal

σBackground

Integral uniformity was measured in a large, circular
uniform region on slice 7 of the template ACR phantom

1http://crl.med.harvard.edu
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TABLE 1 | Clinical T1, T2, and Diffusion-weighted MR protocols for the TACERN study.

BCH UCLA CCHMC UAB UTH

ScannerID A B C D E F G

Field strength (T) 3 3 3 3 3 3 3

Manufacturer Siemens Siemens Siemens Philips Philips Philips General Electric

Model TrioTim Skyra TrioTim Achieva Ingenia Ingenia Signa HDxt

Software versions syngoMRB17 syngoMRE11 syngoMRB17 3.2.1 5.1.9; 5.3.0 4.1.3; 5.1.7; and 5.3.0 HD 16

Number of head coil channels 32 32 12 32 32 32 8

T1-weighted

Orientation sagittal sagittal sagittal sagittal sagittal sagittal sagittal

Field of view (mm) 256 × 256 224 × 224 256 × 256 220 × 220 220 × 220 220 × 220 220 × 220

Matrix 256 × 256 256 × 256 256 × 256 224 × 224 224 × 224 224 × 224 256 × 256

Number of slices 176 192 176 176 176 176 172

Resolution (mm) 1.0 × 1.0 × 1.0 0.9 × 0.9 × 0.9 1.0 × 1.0 × 1.0 1.0 × 1.0 × 1.0 0.9 × 0.9 × 1.0 1.0 × 1.0 × 1.0 0.9 × 0.9 × 1.0

Repetition time (ms) 8 8 8 8 8 8 6

Echo time (ms) 4 2 4 4 4 4 3

Bandwidth (Hz/Px) 199 200 199 191 191 191 244

Inversion time (ms) 1100 1100 1100 1100 1100 1100 1100

Flip angle (deg) 7 7 7 7 7 7 7

Number of averages 1 1 1 1 1 1 1

T2-weighted

Orientation axial axial axial axial axial axial axial

Field of view (mm) 159 × 200 162 × 200 159 × 200 200 × 200 200 × 200 200 × 200 200 × 200

Matrix 408 × 512 364 × 448 408 × 512 512 × 512 512 × 512 512 × 512 512 × 512

Number of slices 76 90 76 76 76 76 76

Resolution (mm) 0.4 × 0.4 × 2.0 0.4 × 0.4 × 2.0 0.4 × 0.4 × 2.0 0.4 × 0.4 × 2.0 0.4 × 0.4 × 2.0 0.4 × 0.4 × 2.0 0.4 x 0.4 × 2.0

Repetition time (ms) 14850 10900 14850 9366 7182 10300 15000

Echo time (ms) 79 82 79 79 79 79 76

Bandwidth (Hz/Px) 208 225 208 196 200 196 244

Flip angle (deg) 90 90 90 90 90 90 90

Number of averages 2 2 2 2 2 2 2

Diffusion-weighted

Orientation axial axial axial axial axial axial axial

Field of view (mm) 220 × 220 220 × 220 220 × 220 220 × 220 220 × 220 220 × 220 220 × 220

Matrix 128 × 128 128 × 128 128 × 128 128 × 128 128 × 128 128 × 128 256 × 256

Number of slices 74 74 74 68 72 72 48

Resolution (mm) 1.7 × 1.7 × 2.0 1.7 × 1.7 × 2.0 1.7 × 1.7 × 2.0 1.7 × 1.7 × 2.0 1.7 × 1.7 × 2.0 1.7 × 1.7 × 2.0 0.9 × 0.9 × 2.0

Repetition time (ms) 6448 6800 10900 10400 11300 15000 12700

Echo time (ms) 88 94 88 64 98 78 87

Bandwidth (Hz/Px) 1395 1500 1395 2378 1144 1276 1953

Flip Angle (deg) 90 90 90 90 90 90 90

Number of averages 1 1 1 1 1 1 1

b-values (number of directions) 0 (13) 0 (13) 0 (15) 0 (3) 0 (18) 0 (24) 0 (15)

400 (6) 400 (6) – – 400 (6) – –

600 (6) 600 (6) – – 600 (6) – –

800 (6) 800 (6) – – 800 (6) – –

1000 (30) 1000 (30) 1000 (30) 1000 (30) 1000 (30) 1000 (30) 1000 (30)

1050–1850 (20) 1050–1850 (20) 1050–1850 (20) 1050–1850 (20) 1050–1850 (20) 1050–1850 (20) –

2000 (6) 2000 (6) 2000 (6) 2000 (6) 2000 (6) 2000 (6) –

– – 2500 (30) 2500 (30) 2500 (30) 2500 (30) 2500 (30)

3000 (4) 3000 (4) 3000 (4) 3000 (4) 3000 (4) 3000 (4) 3000 (31)
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FIGURE 1 | (A) A signal ROI (purple) and a background ROI (red) are used to calculate the SNR in the ACR phantom T1w image. (B) A large, circular ROI (blue)
overlaid on an ideally uniform region of the ACR phantom T1w image is used to measure percent IU. (C) Plot of SNR over time and (D) by scanner for ACR phantom
T1w image. (E) Plot of percent IU over time and (F) by scanner for ACR phantom T1w image.

(volume = 1746687 mm3; area = 174669 cm2) (Figure 1). Voxels
within the ROI were ordered from low to high intensity, and
the image intensities of the 5th (low) and 95th (high) percentile
voxels were identified and used to calculate IU as described in
(Fu et al., 2006):

IU = 100×
(

1−
[

high− low
high+ low

])

Human Phantom Structural MRI
Processing
All MRI processing and analyses were completed using the
Computational Radiology Kit (see text footnote 1). Human
phantom processing was completed using a fully automated
processing pipeline. In the native space of each human phantom
scan, the T2w image was aligned and resampled to the
1.0 mm3

× 1.0 mm3
× 1.0 mm3 T1w image using rigid
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registration with mutual information metric. The ICC was
then segmented using a previously validated multispectral ICC
segmentation method (Grau et al., 2004), and the ICC was
masked from the T1w and T2w images.

Next, a fully automatic, multi-template MRI parcellation
approach was used to parcellate the T1w image into ROI
for volumetric analysis. We constructed a template library,
composed of 18 T1w images of healthy controls, each with
manual cortical, subcortical, white matter, cerebellar, and
ventricular segmentations based on well-established MRI brain
labeling protocols provided by the Center for Morphometric
Analysis at Massachusetts General Hospital2 (Caviness et al.,
1996; Klein and Tourville, 2012). The 18 templates were each
non-linearly aligned to each subject using dense registration
between the T1w anatomical scans. The dense deformation field
was then used to resample the template manual segmentations
to the target subject anatomy, resulting in 18 template
segmentations aligned to the target T1w image. A consensus
segmentation was computed from all aligned segmentations
using the PSTAPLE algorithm (Akhondi-Asl and Warfield, 2013).
PSTAPLE uses both the label images and intensity profiles of
the T1w templates to compute probability maps for each target
structure, ultimately leading to a fully automatic consensus
labeling of each brain. Finally, the volume of each label (n = 38)
was computed. Subcortical and cortical volume measurements
estimated by PSTAPLE have been shown to be more reproducible
and accurate than Freesurfer and other similar algorithms
(Velasco-Annis et al., 2018).

Human Phantom DW MRI Processing
The DW images were corrected for magnetic susceptibility
distortion using the pair of b = 0 s/mm2 images with opposite
phase-encoding direction and FSL top-up (Andersson et al.,
2003). Inter-volume motion correction was then performed by
affine registration of each DW image to the average b = 0 s/mm2

image. The DW images were aligned and up-sampled to the
1.0 mm3

× 1.0 mm3
× 1.0 mm3 T2w resampled scan using affine

registration and sinc interpolation, and the brain extracted on
DWI using the previously computed ICC segmentation (Dyrby
et al., 2014). A single tensor diffusion model was estimated
using robust least squares in each brain voxel from which
fractional anisotropy [FA = 3Var(λ)/(λ2

1 + λ2
2 + λ2

3)1/2] and
mean diffusivity [MD = (λ1 + λ2 + λ3)/3] were computed,
where λi represent the eigenvalues of the diffusion tensor
(Mori and Zhang, 2006).

Next, a fully automatic, multi-template approach was used
to define 17 white matter ROIs in the native space of each
human phantom DTI scan using a previously validated method
(Suarez et al., 2012). A template library was constructed from
whole brain DTI of 20 healthy controls, with each scan in its
native space. The DTI were computed from 30 high angular
resolution b = 1000 s/mm2 and 5 b = 0 s/mm2 TACERN
protocol DW images.

For each template, scalar FA and color maps of the principal
diffusion directions were computed from the DTI. ROI were

2http://www.neuromorphometrics.org

hand drawn by an expert rater on the color map within white
matter fiber bundles following previously defined and validated
labeling schemes for tractography (Catani et al., 2005; Catani and
Thiebaut de Schotten, 2008; Benjamin et al., 2014). To delineate
the same white matter ROIs in the native space of each human
phantom scan, the following procedure was performed for every
template: the template scalar FA map was aligned to the target
human phantom scalar FA map using affine registration with
mutual information metric. The affine registration field was used
to initialize a non-linear, dense registration of the template DTI
to the human phantom DTI. The affine and dense deformation
fields were then used to resample the template white matter ROIs
to the human phantom native DTI space using nearest neighbor
interpolation. Now with 20 sets of white matter ROIs (one for
each template) aligned to the native space of the human phantom
scan, a final, consensus set of white matter ROIs was computed
using the STAPLE algorithm (Warfield et al., 2004). Lastly, mean
FA and MD were computed in each ROI.

White Matter ROIs
The ROIs analyzed in this analysis were defined using previously
validated labeling schemes for tractography and include left and
right posterior limb of the internal capsule, anterior limb of the
internal capsule, cingulum body, corpus callosum, and inferior
extreme capsule, from here on referred to as uncinate fasciculus
(Catani and Thiebaut de Schotten, 2008). The sagittal stratum
was defined following the labeling technique for tractography of
the optic radiations presented in (Benjamin et al., 2014). Three
ROIs were placed along the arcuate fasciculi in each hemisphere;
in the white matter (1) projecting from the inferior parietal lobule
to the inferior frontal gyrus, (2) underlying the inferior parietal
lobule, and (3) underlying the posterior superior temporal gyrus,
following the labeling scheme presented in (Catani et al., 2005).
From here on we refer to these ROIs as left and right arcuate
fasciculus region 1, region 2, and region 3, respectively.

Statistical Analysis
We quantified reproducibility using the coefficient of variation
(CV) of quantitative MR measurements. The inter-scanner (all
scans across all scanners) and intra-scanner (all scans across
a single scanner) CV were measured for SNR and IU of the
ACR phantom, brain structure volume measurements derived
from brain segmentation labels, and for FA and MD of white
matter, measured within white matter labels. Intra-vendor (all
scans across a single scanner vendor) CV was also computed. The
CV of an MR measurement is defined as the ratio of the SD (σ) to
the mean (x̄) of the measurement, expressed as a percentage:

Inter-scanner CV: CVj =
σj

x̄j
× 100%

Intra-scanner CV: CVij =
σij

x̄ij
× 100%

Intra-vendor CV: CVk =
σkj

x̄kj
× 100%

where i indexes scanner, j indexes label, and k
indexes scanner vendor.
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A CV of value 0 would represent perfect reproducibility, while
a greater value represents a larger SD relative to the mean of the
sample. CV is an ideal measure of reproducibility of brain volume
measurements because it is a dimensionless value relative to the
size of the structure of interest. The analysis was completed using
R software version 3.5.1.

RESULTS

ACR Phantom
There were 216 ACR phantom scans in total acquired on 7 of 7
TACERN scanners available for analysis (Table 2). Results of SNR
and IU variability over the study period are presented in Figure 1
and Table 3. SNR was highest on scanner G at 57 ± 1 and lowest
on scanner D at 46.8± 0.9. SNR was most variable on scanner E,
with a CV of 9.9%. Overall, SNR variability was low over the study
period, with CV less than 2.1% on 5 of 7 scanners evaluated.

Average IU was highest on scanner A at 95.1% and lowest on
scanner G at 85.0%. IU was most variable on scanner C, with a CV
of 5.5%. Overall, IU was high for all scanners and IU variability
was low, with an overall mean IU of 91.8% and a CV less than
2.4% on 6 of 7 scanners evaluated.

Human Phantom Volumetric Analysis
There were 26 human phantom scans acquired on 7 of 7 TACERN
scanners available for analysis. Scan and re-scan following exit
and re-entry to the scanner was possible on 5 of 7 scanners in 9 of
17 scan sessions (Table 2).

Figure 2 and Table 4 display a summary of average inter-
and intra-scanner volume CV across all labels. The average inter-
scanner volume CV across all labels was 3.3%, and the average
intra-scanner volume CV was 1.1% across all labels. Scanner B
was the least variable scanner overall, with an average CV of 0.7%
across all labels. Scanner G was the most variable scanner overall
with an average CV of 1.4% across all labels. Intra-vendor CVs
were also computed. The mean CV across all labels in Philips
scans only was 1.7%, while the mean CV across all labels in
Siemens scans was more variable, at 2.7%. There is a single GE
scanner used in the study, and thus intra-vendor CV was not
computed for GE.

Figure 3 and Table 5 display the inter-scanner and mean intra-
scanner mean, SD and CV of volume for each label. For purposes
of concision, mean, SD, and CV for each label on each scanner
are presented in Supplementary Figure 1 and Supplementary
Table 1. All inter-scanner label CVs were less than 5% with the

TABLE 3 | Variability of ACR Phantom T1-weighted signal to noise ratio and
percent integral uniformity over the study period.

Signal to noise ratio Integral uniformity (%)

Scanner Mean SD CV (%) Mean (%) SD (%) CV (%)

A 54 1 1.8 95.1 0.5 0.6

B 55.3 0.9 1.7 94.3 0.6 0.5

C 52.6 1.1 2.1 88.8 4.9 5.5

D 46.8 0.9 2.0 91.7 1.3 1.7

E 48.5 4.8 9.9 94.2 0.5 2.4

F 56.5 3.3 5.8 93.6 0.5 1.4

G 57 1 1.7 85.0 2.1 0.5

exception of right temporal cortex (5.3%), left parietal cortex
(5.4%), and extracerebral spinal fluid (9.9%). The least variable
label volume across scanners was the cerebellar vermis, in the
region of lobules 8, 9, and 10 (1.4%). Inter-scanner CV of left and
right hippocampi and insular cortex were also less than 2%.

The mean intra-scanner label CV across all labels was 1.1%
and within-label ranged from 0.5 to 3.0% for the ICC and
extracerebral spinal fluid volumes, respectively (Tables 4, 5).
The inter-scanner CV exceeded the mean intra-scanner CV by
a factor of 2.5 on average and ranged from a factor of 1.1 in the
right amygdala to a factor of 4.2 in the ICC.

Human Phantom DTI ROI Analysis
There were 24 human phantom scans acquired with DWI on
6 of 7 TACERN scanners available for analysis. DTI data were
not available for scanner B. Scan and re-scan following exit and
re-entry to the scanner was possible on 4 of 6 scanners in 8 of 16
scan sessions (Table 2).

Figure 2 and Table 4 display a summary of inter- and intra-
scanner FA and MD CV across all white matter labels. Overall,
FA and MD in white matter labels were more variable within and
across scanners than volume of brain segmentation labels. The
average inter-scanner FA and MD CV across all labels was 4.5
and 5.4%, respectively. The average intra-scanner FA and MD CV
across all labels was 2.5 and 1.5%, respectively. Scanners A and D
were the least variable scanner overall, with average FA CVs of
1.9 and 1.6% and average MD CVs of 1.2 and 1.3%, respectively.
Scanner E was the most variable scanner overall with an average
FA CV of 3.7 % and an average MD CV of 1.8%. The mean FA CV
across all labels in Philips scans slightly exceeded that of Siemens
scans; with a mean Philips FA CV of 4.0% and a mean Siemens

TABLE 2 | Scan Information.

Scanner A B C D E F G Overall

ACR Number scans (% of total) 38 (18) 21 (10) 17 (8) 15 (7) 30 (13) 57 (26) 38 (18) 216

Years over which scans were acquired 3.7 1.9 2.5 1.5 2.5 4.8 3.1

Human phantom Number scans (% of total) 4 (15) 2 (8) 2 (8) 3 (12) 4 (15) 7 (27) 4 (15) 26

Number re-scans 2 1 0 1 2 3 0 9

Years over which scans were acquired 0.8 0 3.0 0.9 1.4 4.5 4.7

ACR, American College of Radiology.
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FIGURE 2 | Average inter-scanner, intra-scanner, and intra-vendor variability of all brain parcellation cortical label volumes, all white matter ROI FA, and all white
matter ROI MD. Intra-GE was not computed because only one GE scanner was used in the study. DTI scans were not available from scanner B.

TABLE 4 | Average inter-scanner, intra-scanner, and intra-vendor variability of
volume, FA, and MD in all labels.

Volume FA MD

Mean
CV (%)

SD CV
(%)

Mean
CV (%)

SD CV
(%)

Mean
CV (%)

SD CV
(%)

Inter-scanner 3.3 1.6 4.5 1.2 5.4 1.4

Mean intra-scanner 1.1 0.2 2.5 0.9 1.5 0.2

Intra-scanner-A 1.3 0.8 1.9 0.7 1.2 0.5

Intra-scanner-B 0.7 0.7 – – – –

Intra-scanner-C 1.1 1.2 1.7 1.2 1.5 1.2

Intra-scanner-D 1.0 1.0 1.6 0.7 1.3 0.5

Intra-scanner-E 1.2 1.0 3.7 3.2 1.8 1.7

Intra-scanner-F 1.2 0.8 3.3 1.4 1.7 0.4

Intra-scanner-G 1.4 0.9 2.7 1.4 1.5 0.5

Intra-vendor-Philips 1.7 0.7 4.0 2.0 2.6 0.9

Intra-vendor-Siemens 2.7 1.3 3.3 0.7 4.4 1.2

CV, coefficient of variation; FA, fractional anisotropy; MD, mean diffusivity (mm2/s).
Intra-General Electric not computed because only one General Electric scanner.

FA CV of 3.3%. In contrast, the mean MD CV across all labels in
all Philips scans was lower than Siemens, with a mean Philips MD
CV of 2.6%, compared to a mean Siemens MD CV of 4.4%. There
is a single GE scanner used in the study, and thus intra-vendor
CV was not computed for GE.

Figure 4 and Tables 6, 7 display the mean, SD and inter and
intra-scanner CV of FA and MD in all white matter labels. For
purposes of concision, mean, SD, and CV of FA and MD for each
label on each scanner are presented in Supplementary Figure 1
and Supplementary Tables 2, 3.

Inter-scanner FA CVs were less than 5% in 12 of 17 labels
evaluated and between 5 and 8% for 5 of 17 labels, including
bilateral arcuate fasciculus region 3, left sagittal stratum, and
right posterior limb internal capsule and uncinate fasciculus.
Inter-scanner MD CVs were less than 5% in 7 of 17 labels
evaluated. MD inter-scanner CV was maximal in left and
right anterior limb of the internal capsule, at 8.2 and 8.1%,
respectively. The least variable FA across scanners was the
right arcuate fasciculus region 1 at 2.4%, while the least
variable MD CV across scanners was the right arcuate fasciculus
region 2.0 at 2.7%.

The FA of the corpus callosum and left and right posterior
limbs of the internal capsules had the lowest average intra-
scanner CV, at 1.7%, whereas the right uncinate fasciculus had the
highest average intra-scanner FA CV, at 5.3%, driven by an intra-
scanner CV of 10.3% on scanner E. The MD of corpus callosum
had the lowest average intra-scanner CV at 1.1 %, and MD of the
left and right uncinate fasciculus had the highest intra-scanner
MD CV on average, at 2.5%.

The inter-scanner FA CV exceeded the mean intra-scanner
FA CV by a factor of 1.9 on average and ranged from a factor
of 1.0–3.0. The inter-scanner MD CV exceeded the mean intra-
scanner MD CV by a factor of 3.8 on average, and ranged from a
factor of 1.5–6.1.

DISCUSSION

We evaluated the reproducibility of MRI data of the ACR
phantom and a traveling human phantom from seven scanners
across 5 sites in a multi-site imaging study over a period of
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FIGURE 3 | (A) Sagittal, coronal, and axial views of a fully automatic brain parcellation result. Each color label identifies a brain structure of interest. (B) Inter-scanner
and mean intra-scanner CV of brain parcellation label volumes.

5 years. Scanners are often subjected to system maintenance
upgrades over time, and the hardware for imaging can be
heterogeneous across centers. Analyzing the reproducibility
of imaging measures across scanners is therefore important
when combining measures from different scanners into
a single dataset.

Our methods include reproducibility analyses of (1) signal
intensity and uniformity using T1w images of the ACR phantom,
(2) brain segmentation label volumes in a human volunteer, and

(3) DTI metrics of white matter labels in a human volunteer
within and across scanners used in the TACERN study. Analysis
of signal intensity and uniformity demonstrate that SNR was
consistent over time, with a CV of less than 2.1% in 5 of
7 scanners over time. Two scanners that underwent software
upgrades demonstrated the highest SNR CV of 9.9 and 5.8%. SNR
is influenced by a number of scanner-related factors, including
resonance frequency, transmitter gain, scan acceleration, and coil
loading (Keenan et al., 2018), any of which could vary with a
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TABLE 5 | Inter and mean intra-scanner variability of brain parcellation label volumes.

Label Measure Mean SD CV (%) Inter: intra CV ratio Mean SD CV (%) Inter: intra CV ratio

LEFT RIGHT

Cerebellar cortex inter-scanner 51274 1258 2.5 3.1 51490 1171 2.3 2.3

Mean intra-scanner 51270 428 0.8 51501 521 1.0

Cingulate cortex Inter-scanner 12266 324 2.6 2.2 10869 238 2.2 2.2

Mean intra-scanner 12338 147 1.2 10919 112 1.0

Frontal cortex Inter-scanner 94435 4163 4.4 3.1 96357 4384 4.6 3.3

Mean intra-scanner 94040 1306 1.4 95936 1307 1.4

Insular cortex Inter-scanner 6356 106 1.7 1.9 6773 124 1.8 1.6

Mean intra-scanner 6376 56 0.9 6804 72 1.1

Occipital cortex Inter-scanner 33598 1015 3.0 2.5 36392 1090 3.0 1.9

Mean intra-scanner 33594 394 1.2 36295 584 1.6

Parietal cortex Inter-scanner 48671 2627 5.4 3.9 47279 1812 3.8 2.9

Mean intra-scanner 48449 657 1.4 47204 631 1.3

Temporal cortex Inter-scanner 61785 3102 5.0 3.3 61533 3238 5.3 3.8

Mean intra-scanner 61524 893 1.5 61207 853 1.4

Cerebellar white matter Inter-scanner 18600 487 2.6 3.3 18438 394 2.1 2.33

Mean intra-scanner 18653 144 0.8 18491 160 0.9

Cerebral white matter Inter-scanner 245773 7068 2.9 3.2 249787 6668 2.7 3.9

Mean intra-scanner 246668 2161 0.9 250626 1745 0.7

Amygdala Inter-scanner 1307 41 3.1 1.1 1289 35 2.7 1.1

Mean intra-scanner 1309 35 2.7 1287 32 2.5

Caudate Inter-scanner 4130 195 4.7 2.9 4270 170 4.0 2.4

Mean intra-scanner 4164 67 1.6 4305 73 1.7

Hippocampus Inter-scanner 4038 65 1.6 2.7 3984 65 1.6 1.2

Mean intra-scanner 4053 25 0.6 3998 50 1.3

Pallidum Inter-scanner 1610 72 4.5 1.6 1666 59 3.5 1.5

Mean intra-scanner 1622 44 2.8 1672 37 2.3

Putamen Inter-scanner 5432 222 4.1 2.4 5274 246 4.7 3.6

Mean intra-scanner 5442 91 1.7 5299 68 1.3

Thalamus Inter-scanner 7903 194 2.5 2.1 7479 161 2.2 2.4

Mean intra-scanner 7942 95 1.2 7517 68 0.9

Ventral diencephalon Inter-scanner 5592 117 2.1 2.1 5538 146 2.6 2.4

Mean intra-scanner 5618 57 1.0 5564 58 1.1

BILATERAL

Cerebellar vermal lobules I-V Inter-scanner 4699 148 3.2 2.1

Mean intra-scanner 4715 70 1.5

Cerebellar vermal lobules VI-VII Inter-scanner 1530 34 2.2 1.2

Mean intra-scanner 1529 27 1.8

Cerebellar vermal lobules VIII-X Inter-scanner 2938 40 1.4 1.6

Mean intra-scanner 2935 27 0.9

Extracerebral cerebrospinal fluid Inter-scanner 262844 25930 9.9 3.3

Mean intra-scanner 267104 8091 3.0

Intracranial cavity Inter-scanner 1553414 33165 2.1 4.2

Mean intra-scanner 1560739 7326 0.5

Ventricular cerebrospinal fluid Inter-scanner 19614 858 4.4 1.6

Mean intra-scanner 19758 527 2.7

All scans were included (n = 26).

software upgrade. Image uniformity on all scanners exceeded
the ACR recommended IU of 82% or higher on 3T systems
(American College of Radiology, 2018). IU was 92% on average

across scanners, in line with reports of ACR IU in previous
quality assurance studies (Chen et al., 2004; Davids et al., 2014).
Variation in IU can be due to many factors, including but not
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FIGURE 4 | (A) White matter ROI superimposed on a color map of the principal diffusion directions. Red color map voxels indicate left-right diffusion, green color
map voxels indicate anterior-posterior diffusion, blue color map voxels indicate inferior-superior diffusion, and other colors indicate intermediate diffusion directions.
Four axial slices from a single scan depict 2D slices of 3D white matter ROI, outlined in unique colors: light blue, cingulum; green, corpus callosum; white, arcuate
fasciculus region 1; royal blue, arcuate fasciculus region 2; red, anterior limb of the internal capsule; orange, posterior limb of the internal capsule; yellow, arcuate
fasciculus region 3; pink, sagittal stratum; and purple, uncinate fasciculus. (B) Inter-scanner and mean intra-scanner CV of white matter ROI FA. (C) Inter-scanner
and mean intra-scanner CV of white matter ROI MD. Labels are ordered from bottom to top by increasing inter-scanner coefficient of variation.

limited to B0 and B1 non-uniformities, gradient linearity, and
eddy currents (Keenan et al., 2018). Scanner C exhibited two
temporally segregated clusters of IU, indicating an initial non-
uniformity that was later corrected.

We found the inter-scanner variability of brain volume
measurements overall was low and in line with other multisite
studies of brain volume measurements. We found inter-scanner
volume CV was on average 3.3%, ranged from 1.4 to 9.9%,
and was less than 5% in 35 of 38 labels. Previous studies
generally report average inter-scanner CV of less than 5%,
depending on the brain structure analyzed (Huppertz et al.,
2010; De Guio et al., 2016), and also have found a similarly
high CSF inter-scanner CV of 9% (Huppertz et al., 2010).

We found mean intra-scanner volume CV was on average
1.1% and ranged from 0.5 to 3.0%, similar to previous studies
that report 0–3% intra-scanner CV of tissue volumes (de
Boer et al., 2010; Huppertz et al., 2010; Landman et al.,
2011; Maclaren et al., 2014; De Guio et al., 2016). Despite
variable SNR on scanner E over the study period, scanner E
volume measurements were not outlying from the rest of the
data set, likely due to the robustness of the automated brain
segmentation methodology.

Inter-scanner label volume CV was on average 2.5 times
more variable than intra-scanner label volume CV. Higher
inter-scanner compared to intra-scanner CV is expected
given variation in hardware and software across scanners,
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TABLE 6 | Inter and mean intra-scanner variability of FA in white matter ROIs.

Label Measure Mean FA SD FA CV (%) FA Inter: intra
CV ratio

Mean FA SD FA CV (%) FA Inter: Intra
CV ratio

LEFT RIGHT

Anterior limb internal capsule Inter-scanner 5.1 0.2 3.9 2.0 5.2 0.2 3.8 1.0

Mean intra-scanner 5.1 0.1 2.0 5.2 0.2 3.8

Arcuate fasciculus region 1 Inter-scanner 4.1 0.1 2.4 1.0 4.3 0.2 4.7 2.0

Mean intra-scanner 4.1 0.1 2.4 4.3 0.1 2.3

Arcuate fasciculus region 2 Inter-scanner 3.8 0.1 2.6 1.0 4.2 0.2 4.8 2.0

Mean intra-scanner 3.8 0.1 2.6 4.2 0.1 2.4

Arcuate fasciculus region 3 Inter-scanner 4.6 0.3 6.5 3.0 4.0 0.3 7.5 1.5

Mean intra-scanner 4.6 0.1 2.2 4.0 0.2 5.0

Cingulum Inter-scanner 4.6 0.2 4.4 2.0 4.5 0.2 4.4 2.0

Mean intra-scanner 4.6 0.1 2.2 4.5 0.1 2.2

Posterior limb internal capsule Inter-scanner 5.8 0.2 3.4 2.0 5.9 0.3 5.1 3.0

Mean intra-scanner 5.8 0.1 1.7 5.8 0.1 1.7

Sagittal stratum Inter-scanner 5.0 0.3 6.0 3.0 4.6 0.2 4.4 2.0

Mean intra-scanner 5.0 0.1 2.0 4.6 0.1 2.2

Uncinate fasciculus Inter-scanner 4.1 0.2 4.9 1.0 3.8 0.2 5.3 1.0

Mean intra-scanner 4.2 0.2 4.8 3.8 0.2 5.3

BILATERAL

Corpus callosum Inter-scanner 6.1 0.2 3.3 1.9

Mean intra-scanner 6.0 0.1 1.7

All scans were included (n = 24). DTI data were not available for Scanner B. FA is scaled × 10.

TABLE 7 | Inter and intra-scanner variability of MD in white matter ROIs.

Label Measure Mean MD SD MD CV (%) MD Inter: intra
CV ratio

Mean MD SD MD CV (%) MD Inter: Intra
CV ratio

LEFT RIGHT

Anterior limb internal capsule Inter-scanner 7.3 0.6 8.2 5.9 7.4 0.6 8.1 5.8

Mean intra-scanner 7.2 0.1 1.4 7.3 0.1 1.4

Arcuate fasciculus region 1 Inter-scanner 7.2 0.4 5.6 4.0 7.3 0.4 5.5 3.9

Mean intra-scanner 7.2 0.1 1.4 7.3 0.1 1.4

Arcuate fasciculus region 2 Inter-scanner 7.5 0.3 4.0 3.1 7.3 0.2 2.7 1.9

Mean intra-scanner 7.5 0.1 1.3 7.3 0.1 1.4

Arcuate fasciculus region 3 Inter-scanner 7.5 0.3 4.0 3.1 7.6 0.3 3.9 3.0

Mean intra-scanner 7.5 0.1 1.3 7.6 0.1 1.3

Cingulum Inter-scanner 7.6 0.4 5.3 4.1 7.5 0.4 5.3 4.1

Mean intra-scanner 7.6 0.1 1.3 7.5 0.1 1.3

Posterior limb internal capsule Inter-scanner 7.2 0.5 6.9 4.9 7.0 0.4 5.7 4.1

Mean intra-scanner 7.2 0.1 1.4 7.0 0.1 1.4

Sagittal stratum Inter-scanner 8.3 0.5 6.0 2.5 8.1 0.4 4.9 4.1

Mean intra-scanner 8.3 0.2 2.4 8.1 0.1 1.2

Uncinate fasciculus Inter-scanner 8.0 0.4 5.0 2.0 8.1 0.3 3.7 1.5

Mean intra-scanner 8.1 0.2 2.5 8.1 0.2 2.5

BILATERAL

Corpus callosum Inter-scanner 9.0 0.6 6.7 6.1

Mean intra-scanner 9.0 0.1 1.1

All scans were included (n = 24). DTI data were not available Scanner B. MD is scaled × 10,000 mm2/s.
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in addition to intra-scanner sources of variance including
noise and subject positioning within the scanner. Within-
subject biological sources of variation also contribute to
inter-scanner measurement variation. Previous work has
shown that time of day and level of hydration affects
brain and cerebrospinal fluid volume measurements
(Dieleman et al., 2017).

We found the reproducibility of DTI measurements within
and across TACERN scanners is in accordance with previous
studies of multisite DTI studies. Over all white matter labels,
we found intra-scanner FA (2.5%) was greater than the
intra-scanner MD (1.5%). Our findings are in line with
past studies that generally report <3% CV FA (Heiervang
et al., 2006; Zhu et al., 2012; Grech-Sollars et al., 2015;
Acheson et al., 2017; Palacios et al., 2017) . Reports of
MD are more variable, ranging from 0 to 7 % with
most studies clustering around 2% intra-scanner CV MD
(Heiervang et al., 2006; Magnotta et al., 2012; Grech-Sollars
et al., 2015; Shahim et al., 2017; Nencka et al., 2018;
Zhou et al., 2018).

We found an inter-scanner FA CV of 4.5%, in line with
past studies of inter-scanner variability in white matter ROIs

that report <5% CV for FA (Pagani et al., 2010; Vollmar
et al., 2010; Grech-Sollars et al., 2015; Nencka et al., 2018).
Studies of inter-scanner variability of FA within larger ROIs,
such as whole brain white matter, lobar white matter, or white
matter tracts generally report a CV of less than 4% (Magnotta
et al., 2012; Grech-Sollars et al., 2015). For MD, we found an
inter-scanner CV of 5.4%, greater than the inter-scanner FA
CV. In contrast, past studies typically report an inter-scanner
MD CV of <3%, lower than inter-scanner FA CV (Pagani
et al., 2010; Magnotta et al., 2012; Grech-Sollars et al., 2015;
Palacios et al., 2017; Nencka et al., 2018; Zhou et al., 2018).
We found the average ratio of inter- to intra-scanner CV
FA was approximately 2 to 1; whereas the average inter- to
intra-scanner CV MD ratio was approximately 4 to 1. Thus,
our data suggest that the FA is more robust to inter-scanner
variations than MD.

This study is limited because scan-rescan was not possible
on all study scanners due to scheduling demands of the
clinical scanners utilized in the TACERN study. Thus change
in subject anatomy over time is an additional source of
measurement error that cannot be excluded from the intra-
scanner CV metric.
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CONCLUSION

Volumetric and DTI measurements acquired on TACERN
study scanners are highly reproducible between and within
scanners. Our findings will be useful for calculating sample
sizes needed to identify group differences corresponding to
pre-specified effect sizes, and for interpreting future MRI findings
in the TACERN study.
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