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Sensory modulation disorder (SMD) affects sensory processing across single or multiple
sensory systems. The sensory over-responsivity (SOR) subtype of SMD is manifested
clinically as a condition in which non-painful stimuli are perceived as abnormally
irritating, unpleasant, or even painful. Moreover, SOR interferes with participation in
daily routines and activities (Dunn, 2007; Bar-Shalita et al., 2008; Chien et al., 2016),
co-occurs with daily pain hyper-sensitivity, and reduces quality of life due to bodily
pain. Laboratory behavioral studies have confirmed abnormal pain perception, as
demonstrated by hyperalgesia and an enhanced lingering painful sensation, in children
and adults with SMD. Advanced quantitative sensory testing (QST) has revealed the
mechanisms of altered pain processing in SOR whereby despite the existence of
normal peripheral sensory processing, there is enhanced facilitation of pain-transmitting
pathways along with preserved but delayed inhibitory pain modulation. These findings
point to central nervous system (CNS) involvement as the underlying mechanism
of pain hypersensitivity in SOR. Based on the mutual central processing of both
non-painful and painful sensory stimuli, we suggest shared mechanisms such as cortical
hyper-excitation, an excitatory-inhibitory neuronal imbalance, and sensory modulation
alterations. This is supported by novel findings indicating that SOR is a risk factor
and comorbidity of chronic non-neuropathic pain disorders. This is the first review to
summarize current empirical knowledge investigating SMD and pain, a sensory modality
not yet part of the official SMD realm. We propose a neurophysiological mechanism-
based model for the interrelation between pain and SMD. Embracing the pain domain
could significantly contribute to the understanding of this condition’s pathogenesis
and how it manifests in daily life, as well as suggesting the basis for future potential
mechanism-based therapies.

Keywords: sensory modulation disorder (SMD), pain perception and modulation, sensory over-responsivity (SOR),
excitatory/inhibitory imbalance, sensory systems
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A PRO-NOCICEPTIVE STATE IN
SENSORY MODULATION
DISORDER (SMD)

Tactile over-responsiveness was characterized some decades
ago as consisting of defensive-protective behaviors which
are accompanied by stress responses to nociceptive qualities
of sensory stimuli (Ayres, 1972; Fisher and Dunn, 1983).
Specifically, non-painful sensory stimuli are often experienced by
individuals with this disorder as aversive, bothersome (Kinnealey
et al., 1995) and lingering (Miller et al., 2007). Despite these
reports, the pain sensory system has been neglected in both
the Sensory modulation disorder (SMD) clinical and research
domains. Interestingly, allodynia, a clinical term not implying
a mechanism, refers to pain due to a stimulus that does not
normally provoke pain [International Association of the Study
of Pain (IASP), 2017]. Consequently, allodynia represents a
condition where the response mode differs from the stimulus
mode [International Association of the Study of Pain (IASP),
2017], the latter of which may be induced by various non-painful
stimuli such as light touch, cool or warm stimuli (Price,
1994; Zeilhofer, 2008). Therefore, we suggest allodynia to
mirror sensory over-responsivity (SOR), a subtype of SMD,
by perceiving non-painful sensations as irritating, unpleasant
or painful (Miller et al., 2007). According to the International
Association for the Study of Pain [International Association of
the Study of Pain (IASP), 2017], pain is ‘‘an unpleasant sensory
and emotional experience associated with actual or potential
tissue damage or described in terms of such damage.’’ This
definition of pain has led our research efforts for the past decade,
where we have endeavored to further our understanding of
the SOR phenomenon, by studying its phenotype as well as its
underlying mechanisms.

Pain and other sensory systems aremeasured in the laboratory
setting by performing quantitative sensory testing (QST), a
standardized method to test for and characterize sensory
sensitivity. QST measures the perceived intensity of a given
stimulus (i.e., the subjective experience) while controlling the
intensity of the stimulus (Dyck et al., 1993; McGrath and Brown,
2006; Hansson et al., 2007; Arendt-Nielsen and Yarnitsky,
2009). Moreover, it is used to indirectly evaluate the underlying
sensory functioning by testing a spectrum of peripheral nerve
system functions, as well as revealing abnormalities related to
disorders of the central nervous system (CNS; Bartlett et al.,
1998; Hagander et al., 2000; Arendt-Nielsen and Yarnitsky,
2009). Previous studies in our lab have used QST to evaluate
somatosensory detection thresholds [i.e., the minimum intensity
levels at which 50% of stimuli are recognized; International
Association of the Study of Pain (IASP), 2017], including
those of light touch, vibration, warm and cool sensations. We
found no differences between individuals with SOR and those
without, neither in children nor in adults. Furthermore, when
measuring heat and cold pain thresholds [i.e., the minimum
intensity levels of a stimulus that are perceived as painful;
International Association of the Study of Pain (IASP), 2017],
again, no such group differences were found (Bar-Shalita
et al., 2009, 2012). In light of these findings, we showed

that somatosensory detection and pain thresholds are not
impacted in SOR. Intact sensory detection thresholds denote
the absence of peripheral nerve system lesions. However, when
we investigated laboratory-induced suprathreshold stimuli to
measure the perceived pain intensity, we found group differences
in both children and adults; individuals with SOR rated heat
and mechanical painful stimuli as more painful than those
without SMD, demonstrating hyperalgesia in the former group
(Bar-Shalita et al., 2009, 2012; Weissman-Fogel et al., 2018).
Hyperalgesia denotes abnormally increased pain from a stimulus
that normally provokes pain, and like allodynia, it is a clinical
term rather than a mechanism [International Association of
the Study of Pain (IASP), 2017]. Furthermore, we revealed that
in individuals with SOR the evoked pain sensation is higher
in intensity and lingers for a longer duration after stimulus
termination vs. non-SMD subjects who showed an expected
gradual reduction in pain intensity that reached a level of no-pain
within a 5–6 min time period (Bar-Shalita et al., 2009, 2012,
2014; Weissman-Fogel et al., 2018). This lingering sensation,
termed after-sensation, validates the clinical symptoms reported
by clients and could explain the accumulation of aversive
sensations experienced by individuals with SMD throughout the
day (Kinnealey et al., 2015).

After-sensation and hyperalgesia are both excitatory signs
indicating central-sensitization that impacts pain perception
(Andersen et al., 1996; Woolf and Salter, 2000; Woolf and
Max, 2001; Gottrup et al., 2003; D’Mello and Dickenson,
2008). In SOR, we were the first to report the existence of a
pro-nociceptive state resulting in pain amplification (Weissman-
Fogel et al., 2018). Searching for this pro-nociceptive state
underlying mechanism, we found inhibitory mechanisms which
did not differ from non-SMD controls, though clearly presented
a delayed process of inhibition. This emerged when testing
the conditioned pain modulation (CPM) neurophysiological
phenomenon, where one painful stimulus, the ‘‘conditioning
stimulus,’’ inhibits a concomitant or subsequent painful ‘‘test
stimulus’’ (Weissman-Fogel et al., 2018). Thus, individuals
with SOR have central sensitization which is expressed
as a pro-nociceptive state due to over excitation rather
than reduced inhibition. Incoming sensory stimuli from the
peripersonal space (‘‘the spatial region surrounding the body
that a person regards as theirs psychologically’’; Senkowski
et al., 2014) are experienced by an individual with SOR as
painful (allodynia) and therefore require greater recruitment of
top-down inhibitorymechanisms to support survival. In children
and adults with SOR, their survival efforts are expressed by
defensive-protecting behaviors when confronted with sensory
stimuli intruding their peripersonal space. Indeed, quality of
life is reduced in individuals with SOR, specifically due to
bodily pain.

ABNORMAL CENTRAL SENSORY
PROCESSING IN SMD

Current neurophysiological methods such as
electroencephalography (EEG) have been used to define the
neural origins of SMD. It has been found that the behavioral
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phenotype of SMD is due to atypical neural processing of
both single non-painful sensory stimulus (i.e., somatosensory
or auditory) and integration of simultaneous multi-sensory
stimulation (i.e., somatosensory and auditory), This has been
manifested by greater (Parush et al., 1997, 2007) and prolonged
(Zlotnik et al., 2018) early event-related potentials (ERPs; a
brain response to a specific external event) in response to
tactile and auditory stimuli, respectively, along with smaller
(Gavin et al., 2011) or greater (Davies et al., 2010) amplitudes
of late auditory ERPs. This abnormally intense processing
and lingering of sensory stimuli may result in individuals
with SMD feeling overwhelmed when facing everyday sensory
experiences. On top of this, adaptation deficiency to repetitive
stimuli has been evident in ERPs (Kisley et al., 2004; Davies
and Gavin, 2007; Brett-Green et al., 2010; i.e., ERP amplitude
inhibition in response to repetitive paired-click stimulation),
indicating a deficiency in pain inhibition probably due to an
inefficient gating process. Moreover, atypical (neural integration
of simultaneous multisensory stimulation (i.e., multisensory
integration) has been indicated by spatio-temporal distribution
of ERP responses to dual auditory and somatosensory stimuli
(Brett-Green et al., 2010). Specifically, while in typically
developing children multisensory integration occurs in central
and post-central scalp regions during both early and later stages
of sensory information processing (Brett-Green et al., 2008),
those with SMD demonstrate a fronto-central distribution
(Brett-Green et al., 2010). Accordingly, we have recently
found (Granovsky et al., 2019) that subjects with SOR have
different topographical dispersions of resting state EEG
activity within the alpha band; while non-SMD individuals
demonstrated increased activity toward parietal sites, those
with SOR did not show this topographical distribution. Finally,
novel findings from our lab point at an abnormal basic
neurophysiological activity under a task-free condition in SOR
individuals whereby there was a global reduction of cortical
activity in theta, alpha and beta bands, most prominently in
the alpha band, compared to non-SMD individuals. Thus,
individuals with SOR demonstrate a neurophysiological state
of a ‘‘non-resting’’ brain, which may partly explain their
reported ongoing daily alertness to peripersonal stimuli.
Furthermore, based on the ‘‘Gating by Inhibition’’ theory
(Jensen and Mazaheri, 2010), alpha activity in higher-order
cortical areas is mandatory for inhibiting task-irrelevant input.
Thus, reduced alpha activity may consequently result in excessive
sensory input processing which may contribute or result
in SOR.

Studies have found associations between neurophysiological
measures and behavioral manifestations of SMD, based on self-
and caregiver reports of daily experience of sensory stimuli
and functional performance on sensory tasks (Kisley et al.,
2004; Gavin et al., 2011; Zlotnik et al., 2018). Namely, more
sensory responsive or more avoiding behavior was correlated
with higher amplitudes and more prolonged latencies of sensory
response ERPs. This may reflect the major resources needed
to process daily sensory stimuli among people with SMD.
Moreover, such brain responses to sensory stimuli have correctly
distinguished children with SMD from typically developing

children and adults with 77%–96% accuracy (Davies and Gavin,
2007; Davies et al., 2010; Gavin et al., 2011). We, therefore,
suggest that these neurophysiological differences may serve as
characteristic markers of SMD that are underpinned by the
anatomical abnormalities in sensory pathways (Owen et al.,
2013) and which may contribute to the sensitive and/or
avoidance behavior. This experience-induced neural plasticity
may further mark its footprint in a sensory signature and
thereby contribute to the sensory symptoms and daily life
challenges experienced by individuals with SMD. Whether
such a neurophysiological anomaly in individuals with SMD is
nature or nurture, there is no doubt it reduces their successful
social and functional participation in their home, school and
community environments.

AN EXCITATORY/INHIBITORY (E/I)
IMBALANCE AS A SHARED MECHANISM
FOR SMD AND PAIN

The neurophysiological studies described above which
investigated the central processes in response to external
non-painful stimuli suggest an imbalance between excitatory
and inhibitory processes in the brain. A balanced excitatory
(glutamatergic) and inhibitory [γ-aminobutyric acid
(GABA)ergic and glycinergic] ratio is essential for the brain
to work appropriately in response to different sensory inputs.
In adults, the tightly regulated E/I balance is achieved by
homeostatic control of the strength and weight of transmissions
in response to external stimuli. An increased E/I ratio can lead
to a prolonged neocortical activity which may be associated
with abnormal sensory processing such as hypersensitivity to
different sensory stimuli (Zhang and Sun, 2011).

The E/I balance is one of the fundamental elements
required for a normal sensory threshold and for regulating
supra-threshold stimuli that originate from different sensory
organs. In her early work, Ayres (Ayres, 1972) described
the interrelationship of excitatory and inhibitory processes
as modulation. Sufficient modulation occurs when the two
processes work in harmony. Dunn (1997, 2001) developed
a model of sensory modulation to explain the relationship
between behavior and neurophysiological responses. Based on
Dunn’s model of sensory processing, the nervous system’s
functionality is represented by neurological thresholds whereby
a ‘‘high threshold’’ requires a greater sensory input for
activation while a ‘‘low threshold’’ requires lower stimulation
for activation of sensory processing (Dunn, 1999). Behaviorally,
individuals with low thresholds notice and respond to sensory
stimuli more readily than the typical individuals, and thus
represent a sensory profile that is sensory sensitive and
sensory avoiding, defined as SOR (Miller et al., 2007).
It is suggested by both Dunn (2001) and Miller et al.
(2007) that individual sensory profiles are grouped based on
psychophysiological measures, such as sensory thresholds and
responses to supra-threshold stimuli, rather than by responses
to specific sensory modalities. This, therefore, suggests that
there are neurophysiological mechanisms common to more than
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one sensory system including the pain, auditory, tactile, and
visual systems.

The hypersensitivity and lingering in response to
experimental pain observed in individuals with SOR (Bar-Shalita
et al., 2009, 2012, 2014; Weissman-Fogel et al., 2018) despite
efficient habituation and inhibition capabilities (Weissman-
Fogel et al., 2018) indicates increased neuronal excitation in the
pain-transmitting pathways with no inhibition deficiency. We,
therefore, suggest that the enhanced activity of pain-facilitatory
pathways with preserved pain-inhibitory mechanisms in SMD
may be related to an E/I imbalance (Weissman-Fogel et al.,
2018). Glutamate, the main excitatory neurotransmitter,
and GABA, the main inhibitory transmitter within the
CNS play key roles in central pain processing. Specifically,
glutamate plays an important role in pain transmission and
modulation (see review: Goudet et al., 2009). The glutamate
receptors are widely distributed throughout the CNS where
they regulate cell excitability and synaptic transmission at
different levels of the pain matrix. Expression of glutamate
receptors have been reported in the thalamus (Lourenço
Neto et al., 2000), amygdala (Neugebauer, 2007), and the
midbrain periaqueductal gray region (PAG; Marabese et al.,
2005) and generally serve a pro-nociceptive role (Goudet
et al., 2009). The ascending dorsal horn nociceptive neurons
project toward all these brain areas with the PAG being an
important center for the processing of nociceptive information
and descending modulatory circuitry. Glutamate receptors
that have also been detected in glial cells which are active
regulators and protectors of nervous system and therefore
play a role in pain. On the other hand, GABA receptors have
an important anti-nociceptive role in acute and chronic pain.
At the supra-spinal level, they depress ascending adrenergic
and dopaminergic input to the brainstem, and facilitate the
descending noradrenergic input to the spinal cord dorsal horn
(Goudet et al., 2009). Importantly, elevated brain glutamate
levels (Harris et al., 2009; Prescot et al., 2009; Petrou et al.,
2012) and lower levels of GABA (Foerster et al., 2012; Petrou
et al., 2012) have been reported in chronic pain conditions.
This neurotransmitter imbalance is manifested by neuronal
hyperexcitability, which can be alleviated by anticonvulsants.
Anticonvulsants inhibit neuronal hyperexcitability
by multiple mechanisms including direct or indirect
enhancement of inhibitory GABAergic neurotransmission,
or inhibition of glutamatergic neurotransmission
(Sullivan and Robinson, 2006).

The coupling between SOR to daily non-painful stimuli and
enhanced pain facilitation suggests a common brain mechanism
that is due to an E/I imbalance. This shared mechanism in SMD
individuals who are pain-free may further serve as a predisposing
factor for the development of pain disorders. Indeed, we
recently found SMD to be a contributing factor for having
complex regional pain syndrome (CRPS). CRPS is a chronic pain
syndrome of unknown pathophysiology that develops after limb
surgery or injury in 4%–7% of patients (Harden et al., 2010;
Bruehl, 2015). Though the origin and progress of CRPS varies, it
usually evokes a severe state of disablement in the affected limb,
which robustly reduces function and quality of life (Lohnberg

and Altmaier, 2013; van Velzen et al., 2014; Bean et al., 2016).
No specific clinical sign or symptom has been found as a risk
factor for CRPS onset (Pons et al., 2015). Yet, early identification
of those at risk for CRPS is linked to enhanced outcomes (Li
et al., 2010; Wertli et al., 2013). Our findings revealed that for a
person with SMD the risk of CRPS is 2.68–8.21 times higher than
for a person without SMD. Consequently, including the SMD
domain as a risk factor in the CRPS clinical discussion prior to
intervention may allow for an early diagnosis and a significant
prognostic improvement.

MULTI-SENSORY PROCESSING SHAPING
THE PAIN EXPERIENCE IN SMD

Applying a nociceptive stimulus to the skin evokes activity
imaged in a large network of brain regions which is referred
to as the ‘‘pain matrix.’’ The pain matrix comprises the
primary (S1) and secondary (S2) somatosensory cortices, the
insula, and the anterior cingulate cortex (ACC; Treede et al.,
1999; Peyron et al., 2002; Apkarian et al., 2005). However,
Mouraux et al.’s (2011) findings challenge this model and
suggest that the pain matrix regions are equally involved in
processing non-nociceptive and nociceptive stimuli. Moreover,
they postulate that most parts of the pain matrix are likely
involved in cognitive brain processes that detect and process
salient multisensory stimuli. Based on the hypothesis that most
of the neocortex is multisensory (Ghazanfar and Schroeder,
2006), Senkowski et al. (2014) argue that pain-related neural
responses at all processing stages can be shaped by non-painful
stimuli. Different factors, such as stimulus intensity and valence,
affect the way other sensory stimuli shape the pain perception.
Specifically, painful stimuli accompanied by environmental input
from other sensory modalities can impact not only the pain
perception but also the processing of these stimuli. Other sensory
modality stimuli may draw attention away and subsequently
reduce the perceived pain intensity, or conversely, these stimuli
can amplify the saliency of the painful stimuli and evoke
an augmented pain experience. This suggests that non-painful
stimuli in the peripersonal space have an important role in
shaping the pain experience. Exploring this association, we found
that the correlation between daily pain sensitivity and hyper-
responsiveness tripled in individuals with SOR compared to
non-SMD individuals (Bar-Shalita et al., 2015). Moreover, an
unpleasant sensation intruding the peripersonal space usually
evokes a defense response (Senkowski et al., 2014). Indeed,
children and adults with SOR demonstrate and report protective
responses to non-painful stimuli (Miller et al., 2007), which may
be explained similarly to the main function of pain, warning
of danger and preventing future tissue damage (Crombez
et al., 2005; Dowman, 2011; Senkowski et al., 2014). Taken
together, research on the multisensory shaping of pain has
definite clinical implications (e.g., Senkowski and Heinz, 2016),
but also offers an important novel understanding of the
mechanisms as well as the relevance of multisensory processing
to pain processing.

Frontiers in Integrative Neuroscience | www.frontiersin.org 4 July 2019 | Volume 13 | Article 27

https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/integrative-neuroscience#articles


Bar-Shalita et al. Sensory Modulation Disorder and Pain

CLINICAL MANIFESTATION OF SOR IN
CHRONIC PAIN CONDITIONS

Increased sensitivity to non-painful sensory stimuli is widely
described for many chronic pain states. For example, in
migraine, lower sensory thresholds, enhanced psychophysical
and neurophysiological responses, and reduced adaptation and
habituation to a specific sensory modality (usually visual
or auditory) have all been reported including during the
inter-ictal state (Harriott and Schwedt, 2014; Demarquay and
Mauguière, 2016). Furthermore, many migraineurs report inter-
ictal discomfort to everyday stimuli such as odors, light and
sound, which may even trigger or worsen headache intensity
(Vanagaite et al., 1997; Martin et al., 2006; Borini et al.,
2008; Friedman and De Ver Dye, 2009; Noseda and Burstein,
2013; Schwedt, 2013). Thus, this multi-sensory hypersensitivity
may point to an abnormal central multisensory integration in
migraine (Schwedt, 2013).

Similar to the suggested SMD pathophysiology, the
underlying neurophysiological mechanisms of increased
sensitivity in inter-ictal migraine suggest alterations in the
cortical circuits and neurotransmitters which maintain the
E/I balance (Pietrobon and Moskowitz, 2013; Demarquay and
Mauguière, 2016). Moreover, the results of our recent study have
revealed that 45% of migraine patients are diagnosed with SMD
(Granovsky et al., 2018), an incidence far above the ∼10% SMD
incidence (range 5%–16%) among pain-free healthy pediatric
and adult populations (Ahn et al., 2004; Ben-Sasson et al., 2009;
Bar-Shalita et al., 2015). The association of SOR with migraine
pain symptoms such as having sensory aura, a higher frequency
of monthly attacks, and an enhanced activity of pain facilitatory
pathways (Granovsky et al., 2018) further support the inter-
relation between non-painful sensory and pain transmitting
pathways (Schwedt, 2013). An example of this is a study reporting
that experimentally-evoked trigeminal pain further enhances
the cortical hyperexcitability and the lack of habituation to light
in migraine patients (Boulloche et al., 2010). This phenomenon
can be related to the anatomical integration of pain and visual
processing in thalamic nuclei (Noseda and Burstein, 2013)
that project to cortical areas involved in the processing of
pain and visual perception. We can only hypothesize about a
similarity of the central neuroanatomical integration alterations
in sensory and pain-transmitting pathways to that described
in migraine.

Another chronic pain state characterized by a global
disturbance in sensory responsiveness is fibromyalgia (FM).
Many studies have reported on greater sensitivity to various
non-painful sensory experimental stimuli (tactile, thermal,
electrical, auditory) in FM (Lautenbacher et al., 1994; Montoya
et al., 2006; Geisser et al., 2008; Hollins et al., 2009). Similar
to migraine, FM patients have also enhanced sensory responses
to everyday real-life stimuli such as auditory stimuli (Geisser
et al., 2008) and cutaneous sensations (Borg et al., 2015). This
greater sensitivity is known as a ‘‘generalized hypervigilance’’
and is considered as one of the pathophysiological mechanisms
of FM (McDermid et al., 1996; Rollman, 2009). Some
authors also refer to heightened affective, sensory and pain

responses as an abnormality of the interoceptive system in
FM (Lovero et al., 2009; Seth and Friston, 2016; Duschek
et al., 2017; Valenzuela-Moguillansky et al., 2017; Martínez
et al., 2018). Along with the widely reported pro-nociceptive
pattern of psychophysical and neurophysiological responses
(Staud and Spaeth, 2008; Staud, 2011; O’Brien et al., 2018),
sensory over-responsiveness in FM can point to a decrease
in inhibitory and/or an increase in facilitatory activity in
the CNS.

Since pain is a multidimensional and complex experience
composed of sensory, affective-motivational, cognitive-
evaluative components (Melzack and Casey, 1968), we
propose the SMD as another factor that may shape the
pain experience.

ABNORMAL EEG RESPONSES
AS A SHARED MECHANISM FOR
SMD AND PAIN

In migraine and FM, along with enhanced pain psychophysical
responses, cortical activity has been repeatedly shown to be
abnormal. More specifically, reports from many studies have
pointed to higher amplitudes of early (A-delta mediated)
pain-evoked ERPs (Gibson et al., 1994; Lorenz et al., 1996;
Lev et al., 2010; de Tommaso et al., 2011; Truini et al.,
2015), along with deficient habituation of these and other
neurophysiological responses (Valeriani et al., 2003; Lev et al.,
2010; de Tommaso et al., 2014, 2015; Harriott and Schwedt,
2014). Similarly, research in SMD has also indicated higher
(Parush et al., 1997, 2007) and prolonged (Zlotnik et al.,
2018) early ERPs in response to non-painful sensory stimuli
along with an adaptation deficiency (Kisley et al., 2004;
Davies and Gavin, 2007; Brett-Green et al., 2010). These
neurophysiological markers again suggest a shared mechanism
in SMD and chronic pain, namely, enhanced cortical activity and
deficient inhibition.

Though brain imaging studies in SMD are yet to come,
we can deduce from a standardized low resolution brain
electromagnetic tomography (sLORETA) study in migraine that
these neurophysiological markers may be linked with enhanced
activity of S1 and reduced activity of the orbitofrontal cortex
(the part of the prefrontal cortex associated with initiation
of pain inhibition; Lev et al., 2010). In migraine, these
neurophysiological activity patterns are observed in painful
as well as non-painful stimuli (de Tommaso et al., 2013)
and moreover are correlated with the clinical characteristics
(Lev et al., 2013).

An abnormal pattern of EEG responses in chronic pain
patients is also reported in resting-state conditions. The most
consistent reported findings refer to the abnormal alpha,
theta or beta activity in migraine and FM. More specifically
in migraine, increased alpha power has been recorded in
posterior brain regions, while activity in the frontal lobe
has revealed decreased activity in alpha generators (Clemens
et al., 2008; Cao et al., 2018). Other studies have also
reported on a global inter-ictal decrease of EEG activity
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FIGURE 1 | SMDolor model depicts a neurophysiological mechanism-based model for the interrelation between pain and SMD. The numbers represents the
putative processes that manifest clinically: SOR, and pro-nociceptive state expressions of central alteration (1); both conditions elicit stimuli processing impact on
brain mechanisms due to brain plasticity (2); and also create a bi-directional impact on the sensory perception (3); which may accumulate to develop chronic pain as
a consequence of pro-nociception (4); which then nurtures the brain mechanisms alterations via brain plasticity (5).

(Tsounis and Varfis, 1992; Cao et al., 2016) and on an
association between slower alpha activity and greater disease
and attack durations (Bjørk et al., 2009). Whereas in FM,
decreased alpha, increased beta (Vanneste et al., 2017) and
augmented theta activity (Fallon et al., 2018) have been
found in different cortical areas and have also been reported
to positively correlate with clinical symptoms. Interestingly,
abnormal alpha activity and a global reduction of cortical activity
in theta, alpha and beta bands has also been observed in SMD
(Granovsky et al., 2019).

Further validation for the suggested link between chronic
pain and SMD is evident in our recent unpublished data on
migraineurs (article in preparation). Our research has indicated
that lower connectivity values in the theta band at centro-parietal
region are correlated with higher scores in SOR.

SENSORY MODULATION ALTERATIONS
AS A SHARED MECHANISM FOR
CHRONIC PAIN AND SMD

The assessment of pain modulation is performed by using
various stimulation protocols which include a combination
of different stimulus modalities and psychophysical tests.
The latter selectively engage the pain facilitatory bottom-up
or pain inhibitory top-down pathways and are believed to
reflect the ‘‘real-life’’ modulation process exerted by patients
when exposed to clinical pain. One of the most studied
mechanisms of the supraspinally-mediated descending pain
inhibitory system is the diffuse noxious inhibitory control
(DNIC). DNIC engages the activation of the endogenous
analgesia system, where upon arrival of data to the brainstem the
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ascending pain activates descending pain inhibitory pathways,
exerting effects on incoming nociceptive inputs (Le Bars,
2002). The pain alleviating efficiency of DNIC relates on the
balance between the anti-nociceptive effect of noradrenergic
neurotransmission, and pro- or anti-nociceptive effect of
serotonergic neurotransmission, that depends on the type
of serotonin receptor (Bannister and Dickenson, 2016). The
neurophysiological mechanism for the activation of bottom-up
facilitatory pathways is associated with the glutamate-mediated
windup of second-order neurons and reflects the state of
central neuronal sensitization (Woolf and Thompson, 1991).
Moreover, imbalance between the excited pain facilitatory
systems, and the reduced activity in pain inhibitory pathways,
including reduced functional connectivity with the brain regions
associated with pain inhibition and/or enhanced connectivity
with the brain regions associated with pain facilitation (Wang
et al., 2016; Harper et al., 2018) point on a pro-nociceptive
pain modulation profile as reported in many chronic pain
states (Granovsky and Yarnitsky, 2013; Yarnitsky et al., 2014;
Yarnitsky, 2015), including migraine and FM. Despite the
still open chicken-and-egg question on the causality of the
interrelations between the modulation state and the presence
of the various pain syndromes, it is believed that a pre-existing
facilitatory state of the CNS leads to the establishment of a
pro-nociceptive profile and the acquisition of chronic pain
syndromes. This causative relation was found in a longitudinal
study on pain-free pre-thoracotomy patients, demonstrating
that those with less-efficient endogenous pain inhibition had a
higher incidence and intensity of chronic post-operative pain
(Yarnitsky et al., 2008). These results were later reproduced
for cesarean section and major abdominal surgery patients,
respectively (Landau et al., 2010; Wilder-Smith et al., 2010). All
the above findings taken together demonstrate that SMD is a
pro-nociceptive condition (Weissman-Fogel et al., 2018). We

propose that SOR is a predisposing factor or risk factor for
chronic pain.

SUMMARY

We propose a neurophysiological mechanism-based model for
the interrelation between pain and SMD, namely the SMDolor
Model (Figure 1; the numbers guide the following explanation).
Shared central neural mechanisms between SOR and pain, E/I
imbalance; cortical hyper-excitation and sensory modulation
alterations, are the cornerstone of this proposed model. These
shared mechanisms are behaviorally expressed (1) as SOR
in sensory systems processing non-painful stimuli, and as a
pro-nociceptive state when processing painful stimuli. Daily
life events require a multi-sensory integration for adaptive
responding. This warrants a convergence of sensory stimuli
from different modalities including pain which in turn causes
pain to be influenced by these other sensory stimuli and vice
versa (3), consequently, daily life events are experienced as
aversive, irritating, and painful by individuals with SOR. These
experiences induce neuronal plasticity (2) that may further
result in a sensory signature which strengthens the abnormal
shared mechanisms, contributing to the sensory symptoms that
shape the daily life challenges experienced by individuals with
SOR. These loop reactions may in some cases accumulate
up to the point of developing a chronic pain condition (4).
Chronic pain may then further nurture the shared central neural
mechanisms (5).
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