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Efficient multisensory integration is often influenced by other cognitive processes
including, but not limited to, semantic congruency and focused endogenous attention.
Semantic congruency can re-allocate processing resources to the location of a
congruent stimulus, while attention can prioritize the integration of multi-sensory stimuli
under focus. Here, we explore the robustness of this phenomenon in the context
of three stimuli, two of which are in the focus of endogenous attention. Participants
completed an endogenous attention task with a stimulus compound consisting of 3
different objects: (1) a visual object (V) in the foreground, (2) an auditory object (A), and
(3) a visual background scene object (B). Three groups of participants focused their
attention on either the visual object and auditory sound (Group VA, n = 30), the visual
object and the background (VB, n = 27), or the auditory sound and the background (AB,
n = 30), and judged the semantic congruency of the objects under focus. Congruency
varied systematically across all 3 stimuli: All stimuli could be semantically incongruent
(e.g., V, ambulance; A, church bell; and B, swimming-pool) or all could be congruent
(e.g., V, lion; A, roar; and B, savannah), or two objects could be congruent with the
remaining one incongruent to the other two (e.g., V, duck; A, quack; and B, phone
booth). Participants exhibited a distinct pattern of errors: when participants attended
two congruent objects (e.g., group VA: V, lion; A, roar), in the presence of an unattended,
incongruent third object (e.g., B, bath room) they tended to make more errors than in
any other stimulus combination. Drift diffusion modeling of the behavioral data revealed
a significantly smaller drift rate in two-congruent-attended condition, indicating slower
evidence accumulation, which was likely due to interference from the unattended,
incongruent object. Interference with evidence accumulation occurred independently of
which pair of objects was in the focus of attention, which suggests that the vulnerability
of congruency judgments to incongruent unattended distractors is not affected by
sensory modalities. A control analysis ruled out the simple explanation of a negative
response bias. These findings implicate that our perceptual system is highly sensitive to
semantic incongruencies even when they are not endogenously attended.

Keywords: cross-modal integration, semantic congruency, exogenous attention, endogenous attention, drift
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INTRODUCTION

Cross-modal, multi-sensory integration is one of the most
remarkable achievements of perceptual processing as it enables
the binding of information from different sensory modalities into
a single coherent percept [see, e.g., (Senkowski et al., 2008) for a
review]. Yet the efficiency of integration is influenced by several
modulating factors including, but not limited to, spatial and
temporal proximity (Meredith and Stein, 1986a,b), and semantic
congruency (Taylor et al., 2006; Doehrmann and Naumer, 2008;
Steinweg and Mast, 2017). By varying these modulating factors
and observing their effects on multi-sensory integration, we can
study how the brain accomplishes the requisite binding processes,
along with the role of endogenous attention. To capture these
dynamics requires a design that engages endogenous attention in
selecting at least two objects for comparison, in the presence of at
least one distractor, and controlling for modality.

Several studies point to the notion that attention is likely
critical for the advantage that semantic congruence confers upon
cognitive processes of cross-modal integration. For instance,
recent accounts demonstrate a performance advantage for
semantically congruent multisensory stimuli during visual search
(Iordanescu et al., 2008, 2010), but only under low cognitive
load (Matusz et al., 2015). Furthermore, semantic congruency of
multi-modal stimuli facilitates perceptual processing of unrelated
material at the same location of the congruent multisensory
prime (Mastroberardino et al., 2015). The implication of this first
line of research is that semantic congruency facilitates attentional
selection at the location of the congruent stimuli and boosts
perceptual processing and performance. This attentional focusing
is not directly linked to the stimuli per se and therefore cannot
be classified as “bottom-up” or “stimulus-driven” (Corbetta and
Shulman, 2002; Koelewijn et al., 2010; Talsma et al., 2010). Rather,
it is enhanced by the semantic congruency of the stimuli. The
facilitation is therefore due to learned semantic associations and
as such must be classed as a “top-down” process. Yet in these
studies, the attentional engagement is exogenously controlled
via semantic priming, and voluntary, endogenous attention was
not investigated.

Contrasting with the previous literature, a more recent second
line of research investigating the same cognitive processes
arrived at a different conclusion. A recent study found that
task performance involving two cross-modal objects diminished
in the presence of a third modality if that task-irrelevant
object was semantically congruent with one, but not both,
of the two task-relevant objects, especially when the task-
relevant objects were themselves incongruent (Misselhorn et al.,
2016). A similar effect was observed in two other studies.
When participants attended to one of two laterally presented
visual streams of letters while performing a sequential matching
task, their response times (RT) were significantly longer, when
incongruent, task-irrelevant letter sounds were presented as well.
The increase in RTs on these trials coincided with increased
fMRI activation in the anterior cingulate cortex and over fronto-
central EEG sensors (Zimmer et al., 2010a,b). These findings
suggest that semantically incongruent stimuli induce a cognitive
conflict between the components of a multi-modal stimulus and

subsequently, likely exogenously, recruit executive attentional
resources to resolve the conflict, thus reducing the efficiency
of multi-sensory integration of semantically congruent stimuli.
Thus, this line of research suggested that the voluntary allocation
of attentional resources in processing semantically congruent
stimuli can be disrupted by endogenously unattended, task-
irrelevant semantically incongruent stimuli.

These two lines of research imply different mechanisms for
the interaction of semantic congruency and attentional selection.
While the former suggests that congruent stimuli at an attended
location boosts performance, the latter implies that incongruent
and unattended stimuli recruit exogenous attention, and so
divert resources from processing the congruent stimuli in the
attentional focus, which reduces behavioral performance.

Here, we aimed to address these conflicting findings by
investigating the interaction of attentional focus and semantic
congruency in greater detail. We systematically varied the
semantic congruency of three objects (a visual object, an
auditory sound, and a visual background scene) in single- and
cross-modal combinations, under different attentional foci and
under conditions of explicit semantic congruence processing.
Participants in three different groups directed their attention
to two of three objects in the stimuli and made semantic
congruency judgments for two attended stimuli. This allowed
us to observe behavioral performance under conditions that
replicated and extended critical features of the two lines of
research yielding conflicting evidence. We were able to evaluate
whether performance for attended congruent stimuli is increased
or diminished in the presence of a distracting unattended and
incongruent stimulus.

MATERIALS AND METHODS

Participants
Participants (n = 87, mean age 25.53 years, SD 3.71, and
43 male) were recruited from the student population of the
University Hamburg and participated for a small payment. They
all had normal hearing and normal or corrected-to-normal
vision. The study was approved by the ethics committee of the
German Psychological Society (JG072015) and was conducted in
accordance with the principles of the Declaration of Helsinki on
human subject research.

Experimental Design and Stimuli
To investigate the interaction of semantic congruence and
attentional focus on the processing of multi-sensory stimuli, we
created 3-object-component stimuli consisting of a visual object
in the foreground (V), and typical auditory object (A) associated
with the visual object (V), and a visual background scene (B).
Semantic congruence was designed as a within-subject factor and
varied between stimulus components, giving rise to the following
5 experimental conditions1 (see also Table 1): (1) none of the
components are semantically congruent (coded as III), (2) V and

1The three letters in the condition codes always refer to 1, visual; 2, auditory; 3,
background in that order.

Frontiers in Integrative Neuroscience | www.frontiersin.org 2 September 2019 | Volume 13 | Article 53

https://www.frontiersin.org/journals/integrative-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/integrative-neuroscience#articles


fnint-13-00053 September 9, 2019 Time: 15:18 # 3

Spilcke-Liss et al. Semantic Congruency and Endogenous Attention

TABLE 1 | Experimental conditions and example objects comprising the
cross-modal stimuli conditions.

Condition code Visual Auditory Background

III Door bell Ambulance Sky

CCI Duck Duck Phone booth

CIC Fire truck Church bell Burning house

ICC Vacuum cleaner Door bell Door with bell

CCC Lion Roar Savannah

Condition codes are listed in the order visual-auditory-background. C
indicates semantic congruency between the respective components, I indicates
incongruency with the other components.

A are congruent (coded as CCI, 1st and 2nd components are
congruence), (3) V and B are congruent (coded as CIC, 1st, and
3rd component are congruent), (4) A and B are congruent (coded
as ICC, 2nd and 3rd components are congruence, and (5) all
components are congruent (coded as CCC).

Endogenous attention was manipulated as a between-subject
factor in 3 groups: visual object and auditory sound (VA, n = 30,
16 males); visual object and background (VB, n = 27, 13 males);
and auditory sound and background (AB, n = 30, 14 males).
Participants in each group were instructed to focus their attention
on the two object components of their group and judge these
2 components accordingly (see section “Experimental Task and
Procedure” below).

Visual objects were pictures of animals and everyday items,
auditory objects were typical sounds of these visual objects, and
background scenes depicted typical contexts in which the visual
or auditory object could be found (see Figure 1 for an example).
Incongruent combinations were created by randomly pairing an
indoor object with an outdoor background (or sound) and vice
versa. Upright pictures of the visual objects were scaled to a height
of 250 pixels (px) [7.6 degrees of visual angle (dva)], horizontal
pictures were scaled to a width of 510 px (16.13 dva, mean
height 252.82 px, SD 52.41 px, mean width 315.48 px, and SD
99.98 px). The background pictures were scaled to 768× 1024 px
(25.36× 33.4 dva) and presented with a gray frame on a Samsung
SyncMaster 2443DW screen. The sounds were presented via

headphones with a volume of ∼65 DB. All stimulus aspects were
presented simultaneously with the foreground picture centered
on the background (see Figure 1 for an example).

Experimental Task and Procedure
After obtaining informed consent from the subject the
experimenter instructed the participants about the goals of
the study, the 3-component nature of the stimuli, and the
attentional focus that they should maintain throughout the
experiment. Participants were instructed to evaluate the
congruency of the two components in their attentional focus,
which was framed as a judgment of plausibility. Initial pilot
data suggested that participants understood the term “plausible”
better than “congruent.” In the main experiment it was explained
to the participants that their plausibility judgment referred to
the semantic congruence of the two components in question.
They were told to respond as quickly and as accurately as
possible with either the left and right arrow key representing
a “YES” or a “NO” answer. The assignment of the response to
the two response keys was counterbalanced across participants
who responded with their index and middle finger of their
dominant hand. Prior to the main experiment each participant
completed a few training trials from the CCC and III condition
until they responded correctly in 5 consecutive trials. In the
main experiment, participants completed 150 trials (30 in each
condition). Each stimulus was presented for a variable duration
(depending on the duration of the sound clip (mean duration
1.53 s). Participants had to respond within 4 s. Failure to response
in this window resulted in a missing trial. Trials were separated
by 1.4 s. The experiment lasted around 15 min.

Data Preprocessing
Response accuracy and RT were collected as experimental data.
All missing trials were removed from the data. Outliers were
defined as 2 SD above the mean of the square-root transformed
RT data and also removed from the experimental data. Finally,
the effect of stimulus duration was removed using a regression
approach: RT data were log-transformed and regressed onto the
stimulus duration (general linear model with stimulus duration

FIGURE 1 | Experimental Task. Participants were presented with a 3-components stimulus compound consisting of a visual foreground object (V), an auditory sound
(A) pertaining to the foreground object, and a visual background image (B). Each group of participants were instructed to focus their attention on 2 components and
judge the semantic congruency of them (i.e., make plausibility judgment). In the example (presented to the AB group), the visual and auditory components are
congruent, whereas the background is incongruent to the two foreground components. The displayed response (“not plausible”) is a correct response for
participants in the AB group.

Frontiers in Integrative Neuroscience | www.frontiersin.org 3 September 2019 | Volume 13 | Article 53

https://www.frontiersin.org/journals/integrative-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/integrative-neuroscience#articles


fnint-13-00053 September 9, 2019 Time: 15:18 # 4

Spilcke-Liss et al. Semantic Congruency and Endogenous Attention

and intercept as predictor variables). Duration-predicted RTs
were removed by subtractions, and residuals from this regression
were back projected into the original RT space and subjected to
exponential transformation.

Statistical Analysis
Response accuracy and RT were analyzed with linear mixed-
effects models using the nlme package in R. Specifically, we set
up omnibus mixed-effects repeated measures ANOVAs with the
within-subject factor Condition (III, CCI, CIC, ICC, and CCC)
and the between subject-factor Focus (VA, VB, and AB) using
the formula:

DV ∼ condition ∗ focus, random = ∼ 1 | id/condition

where DV is the dependent variable “percent error,” “RT (correct
trials},” or “RT (incorrect trials).” Post hoc Bonferroni-adjusted
contrasts were carried out using the multcomp package in R.

Cognitive Computational Modeling
Hierarchical Bayesian parameter estimation with the drift
diffusion model (DDM) yielded group and individual participant
estimates the drift rate (v), the boundary separation (a), and
the non-accumulation time (t), also called the non-decision time
(Ratcliff and McKoon, 2008). The DDM treats a binary decision
as the result of an evidence accumulation process, in which the
gathering of evidence for one or the other option is modeled as a
Gaussian random walk that drifts at a certain rate toward one of
two decision boundaries representing the two alternative options
[see Ratcliff and McKoon (2008) for a schematic of the model].
Once one of these boundaries is crossed, a decision for this
option is made. There are 4 primary free parameters in the DDM,
whose optimized values are determined during model fitting:
(1) the drift rate v governs the speed of evidence accumulation,
corresponds to the slope of the random walk, and reflects choice
difficulty, (2) the boundary separation a represents the distance
between both decision boundaries and models how cautious a
decision maker is with higher caution corresponding to a larger
boundary separation, (3) the starting point z is the point between
both decision boundaries at which the evidence accumulation
starts. Although this parameter is unused in this study (i.e., is set
to a/2) it can model general biases toward one or the other option,
(4) the non-decision time t captures all aspects of the RT that
are not related to evidence accumulation, i.e., stimulus-encoding,
feature selection, action-planning, and action-execution time.

Model fitting with the HDDM package in Python (Wiecki
et al., 2013) offered a Hierarchical Bayesian workflow using
Markov Chain Monte Carlo (MCMC) techniques. In most
cases this yields more stable results than traditional Maximum
Likelihood estimation and includes measures of estimation
uncertainty in the form of posterior distributions of parameters.
In addition, subject-specific parameter values are sampled from
an overarching group distribution, which is updated using the
data from all participants. This usually leads to more stable
optimized parameter solutions, while also allowing for individual
variability in these estimates.

The package offers a model parameterization depending on
the experimental factors, e.g., one could model different drift
rates for all conditions or for all groups or any combination
of them. We compared these different model variants using
the deviance information criterion (DIC), a model comparison
index similar to the Bayesian information criterion (BIC),
but applicable for Bayesian analysis using MCMC sampling.
A difference in DIC scores of 15 and above is considered
meaningful (Spiegelhalter et al., 2002).

Each model variant was fit using the HDDM package (Wiecki
et al., 2013) with 4 chains and 7000 samples following a burn-
in phase of 500 samples to reduce the dependencies on initial
values and to reach a steady state of the chain. Convergence was
tested through visual inspection of the chains and by calculating
the R̂ statistic (Gelman and Rubin, 1992), which compares
within-chain and between-chain variance. The threshold for non-
convergence was set at 1.05. We used the HDDM defaults as
group-level priors, namely the drift rate was modeled as a group-
level normal distribution [N (µ,σ2)], whose parameters µv and
σv

2 were modeled as N (2,3) and half-normal distribution HN
(2) (2 being the variance parameter). The boundary separation
was modeled as a Gamma (G) distribution, whose parameters µa
and σa

2 were modeled as G (1.5,0.75) and HN (0.1) distributions.
Finally, the non-decision time was also modeled as a normal
distribution, whose parameters µt and σt

2 were modeled as
N (2,3) and HN (1) distributions. We compared parameter
estimates for the different levels of each factor by mean of the
group posterior distribution.

RESULTS

Analysis of Errors and Response Times
We first inspected the percent errors in all 3 groups of subjects
with different attentional foci across all 5 stimulus conditions.
To be counted as an error, the participant would have to (a)
respond “not plausible” to two congruent components in the
attentional focus (e.g., in group VA visual: lion, auditory: roar,
background: swimming pool) or (b) respond “plausible” to two
incongruent components in the attentional focus (e.g., in group
VA visual: fire truck, auditory: church bell, background: burning
house). Overall, participants only made few errors on the task
(overall percentage of errors: (group VA: 8.1% incorrect, 91.2%
correct, 0.7% missing trials, group VB: 9.1% incorrect, 90.5%
correct, 0.4% missing trials, group AB: 13.2% incorrect, 86.3%
correct, and 0.5% missing trials). However, despite the overall
low number of errors the different groups made substantially
more errors in different, yet specific conditions in the task (see
Figure 2): whenever the unattended component was incongruent
to the two congruent components in the attentional focus (i.e., in
group VA – CCI, in group VB – CIC, in group AB – ICC), the
error rate was substantially higher, than in all other conditions.

A mixed effects ANOVA with the within-subject factor
Condition and between-subject factor Focus confirmed a
significant main effect of Condition (F4,336 = 10.48, p < 0.0001)
and a significant Condition × Focus interaction effect
(F8,336 = 14.42, p < 0.0001). Subsequent, Bonferroni-adjusted
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FIGURE 2 | Mean percent errors and response times. Participants in all 3 attention groups committed substantially more errors when the unattended stimulus
component was incongruent to the other (congruent) components in the attentional focus.

contrasts between the different stimulus conditions revealed that
the interaction effect was driven in each group by a significant
difference between the critical condition (in group VA – CCI,
in group VB – CIC, in group AB – ICC) and all conditions
(all z-values > 3.9, p < 0.001).

Across all conditions a “NO” response (not plausible) was
more frequently correct (for instance in conditions III, CIC,
and ICC for the VA group) than a “YES” response (namely in
condition CCI and CCC for the group VA). Thus, it is conceivable
that participants learned about this subtle response bias and
that they committed more errors in the critical conditions. The
possibility of such a response bias is detectable, if the data are
sorted according to the response itself instead of the response
accuracy. If a response bias was present in the data, we would
expect to see higher frequency of “NO” response across all
conditions in all groups. Figure 3 demonstrates that this is not
the case. In fact, the pattern found in this analysis mirrors the
finding from Figure 2: in the critical conditions there were
a significant number of “NO” responses (i.e., and incorrect
decision), whereas in the non-critical condition there were mostly
“NO” and “YES” responses (correct responses depending on the
condition). Importantly, this figure reveals that there was no
overall bias toward “NO” responses.

In contrast, analyses of the RTs did not yield an equally
systematic pattern of findings despite a significant effect for
Condition (F4,331 = 7.11, p < 0.001) and for Condition x Focus
(F8,331 = 5.53, p< 0.0001) for RT in correct trials and a significant
effect for Condition (F4,170 = 2.78, p = 0.029) and a trend-level
Condition × Focus interaction (F8,170 = 1.86, p = 0.069) for RT
in error trials. Subsequent Bonferroni-adjusted post hoc contrasts
revealed that for RTs in correct trials only, condition ICC in

group AB was significantly longer than all other conditions (all
z-values > 4.1, p < 0.001). In addition, for RTs in error trials,
conditions III, and CCI in group VB were significantly larger than
all other conditions (all z-values > 3.16, p < 0.05). There were no
additional RT effects in any of the other groups.

CONCLUSION

In conclusion, participants made significantly more errors
whenever the unattended stimulus was semantically incongruent
with the two congruent stimuli in the focus of endogenous
attention. However, a corresponding increase in RT on those
error trials could not be found.

Computational Cognitive Modeling
In the next step we applied cognitive computational modeling to
these data to gain additional insights into the cognitive processes
governing the responses in this task. The drift diffusion model
(DDM) (Ratcliff and McKoon, 2008) is particularly well-suited
for modeling the decisions in this task. A decision in the DDM
is the result of an evidence accumulation process, which “drifts”
at a specific rate to one of two decision boundaries representing
the two decision options. In our case we defined the two options
as “correct” and “incorrect” responses as this form of data coding
has provided fruitful insights into the speed-accuracy trade-off
present in most behavioral decision-making paradigms (Ratcliff
and Rouder, 1998; Steinweg and Mast, 2017).

We compare variants of the DDM with different
configurations of free parameters. Each of the 3 selected
parameters (drift rate v, boundary separation a, and non-decision
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FIGURE 3 | Response bias in the data (proportion scale). Data are displayed according to the actual response of the participant (“YES” and “NO”) for all conditions in
all groups. While in some conditions subject responded with “NO” more frequently, there was no overall evidence for a general response bias in the data.

time t) could be modeled as a single parameter across all stimulus
conditions or as a single parameter across all groups. In
contrast, each parameter could be also modeled separately
for each stimulus condition and for each attention group. We
systematically compared all possible variants of the DDM using
their DIC score (see Figure 4).

This model comparison analysis reveals that the model
variants in which all three parameters are modeled separately
for each condition provided the best model fit, but there
are no meaningful differences between these regarding the
group impact (DIC differences < 15). Nevertheless, model 1
(the model with the lowest DIC score) also provided separate
parameter distributions for each group, which allowed us to
compare parameter distribution for each condition in each
group. Given that the critical condition corresponded to different
stimulus configurations in each group, model 1 thus provides
the granularity to detect the effect of critical conditions in
the parameter distributions. We show the group posterior
distributions for all parameters in Figure 5.

Interestingly, the drift rate parameter (Figure 5, top) for the
critical condition is always smaller than all other conditions in
each group. This resembles the patterns of errors seen in the
behavioral analysis above: whenever the unattended stimulus
component was incongruent to the two other components in the
attentional focus, we observed a reduced drift rate parameter.
Similarly, the boundary separation parameter for the critical

condition is also the smallest compared with all other conditions,
but this pattern is less clear than for the drift rate. Finally,
no such pattern of the critical conditions was observed for the
non-decision time.

Having selected the best-fitting model from within a family
of model variants does not insure that the model actually fits
the data. This can be tested using posterior predictive checks
(PPC), in which the model generates new data using the fitted
parameters. These data are then compared to the original data.
Below, we show the PPC findings for our selected Model 4, which
simulated 500 new data points for the same number of subjects
in each attention group. The response accuracy and correct and
error RTs were then compared to the original data (see Figure 2).
Figure 6 shows the findings from this posterior predictive check.

The correct and incorrect responses of the PPC match the
original data with high accuracy. However, the simulated RTs
do not fit with the subtle differences in correct and incorrect
RTs in the data. In fact, it seems that in the PCC simulations
all conditions in all groups are modeled with essentially
the same mean RT.

DISCUSSION

We found a specific effect of attentional focus on the processing
of our multi-sensory stimuli. Whenever the unattended

Frontiers in Integrative Neuroscience | www.frontiersin.org 6 September 2019 | Volume 13 | Article 53

https://www.frontiersin.org/journals/integrative-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/integrative-neuroscience#articles


fnint-13-00053 September 9, 2019 Time: 15:18 # 7

Spilcke-Liss et al. Semantic Congruency and Endogenous Attention

FIGURE 4 | Model comparison. Top, deviance information criterion (DIC) for all model variants tested in this study sorted by size. DIC balances model fit (deviance,
difference between fitted model and data), and model complexity (number of free parameters). Middle, indicator variable for the model variant. A black dot for a
particular model variant indicates that the parameter listed in the row is modeled separately for each level of the factors Condition (5 levels) or Focus (3 levels
corresponding to the three experimental groups). Bottom, number of parameters (color-coded) for each model variant indicating model complexity.

FIGURE 5 | Group posterior distribution for all parameters in each condition and attention group. The critical conditions are plotted with thick lines. Note that the
variance parameter for the normal distribution shown here is always the same for a specific parameter (i.e., each condition in each group has the same variance
parameter).

stimulus is incongruent with the two others in the attentional
focus, participants made significantly more errors in semantic
congruency judgments than in any other stimulus condition.
This effect is paralleled by a significantly reduced drift rate
parameter in these stimulus conditions as revealed in our
drift diffusion modeling. RTs do not show a similar increase
in RTs in error trials in these specific conditions. Rather, the
pattern in error RTs seems to be driven by non-systematic
increases in specific stimulus conditions, but unrelated to the
attentional manipulation.

Our findings are in line with those studies demonstrating
that semantically incongruent stimuli outside the focus of
attention can capture those processing resources and disrupt
the processing and evaluation of the attended stimuli (Zimmer
et al., 2010a,b; Misselhorn et al., 2016). Indeed, it seems that in
our data semantically incongruent stimuli induce a re-focusing
of attention, such that the incongruency of the unattended
stimulus is then considered leading to an incorrect (incongruent)
judgment. If this was the case, then from the perspective of the
participants, they would be making correct responses. This could
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FIGURE 6 | Posterior predictive checks. The simulated new data from Model 4 shows great accuracy in reproducing the choices (top), but it does not capture the
slight differences in the RTs in correct, and incorrect trials (bottom).

be the reason why the RTs between correct and incorrect trials
in these critical conditions are almost identical (see Figure 2
bottom, VA – CCI, VB – CIC, AB – ICC). Such an account would
still be consistent with the neuroimaging findings from earlier
studies demonstrating higher activations in anterior cingulate
cortex (ACC) implying a processing of the conflict between
semantically incongruent stimuli (Zimmer et al., 2010b). Other
previous studies that also investigated sematic congruency in a
multimodal context also observed higher ACC activations during
the processing on incongruent stimuli (Weissman et al., 2004)
reminiscent of the findings on conflict detection in the Stroop
task (Fan et al., 2003). The brains in our subjects could be
detecting the incongruency between the one of the previously
attended congruent stimuli and the incongruent previously
unattended, but now re-focused stimuli and yet still make an
incongruent (but from their perspective correct) judgment. Of
note, our primary finding of attentional capture of semantically
incongruent stimuli occurs irrespective of the modality of the
stimuli suggesting that we observed a general effect between
attentional selection that is influence by sematic (in) congruency.

Nevertheless, previous studies investigating semantic
congruency with multi-modal stimuli also observed modulation
of brain activity in the primary uni-sensory areas. In general,
activation in primary sensory cortices in boosted if the modality
is task-relevant (Weissman et al., 2004) and (semantically)
congruent with other modality in stimulus compound (van
Atteveldt et al., 2004), although an active encoding task might
alleviate the advantage for congruent stimulus compounds
(van Atteveldt et al., 2007). In fact, other studies have also

reported increased activity in higher activations for incongruent
stimuli in primary sensory areas of the target modality
(Weissman et al., 2004). These neural findings generally support
the influence of endogenous and exogenous attention on the
processing of multi-modal semantic congruency: as attention is
directed toward a target modality (endogenous attention) the
activation in those primary uni-sensory is increased, but if the
target modality is incongruent with an unattended modality,
processing resources are also recruited (exogenous attention) and
activation in related brain regions is also increased. Our findings
support the exogenous attention recruitment hypothesis: that
is, participants committed significantly more errors whenever
the unattended stimulus was incongruent to the two stimuli in
the attentional focus, irrespective of the sensory modality of the
stimuli. This points toward a general attentional bias for the
processing of semantic incongruency.

In our study, the differences between the critical conditions
mentioned above and the other conditions involving one
incongruent stimulus is that in the critical conditions, the
participants are initially primed to process a congruent stimulus
combination because it is in the attentional focus. The
incongruent stimulus then captures attentional resources leading
to a refocusing of attention and prompting the participants
to make more “incongruent” judgments, which are counted
as “incorrect” here from the standpoint of an all-knowing
observer, who knows what the participant should focus on.
That is, in the critical condition the congruent stimulus pair
comes first, whereas in the other conditions (e.g., for VA – CIC
and ICC) the attention is already focused on an incongruent
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stimulus pair, which is in most cases correctly detected through
an “incongruent” judgment. This could be a potential reason
for the lack of a systematic response time difference between
the conditions: participants make the identical “incongruent”
judgment, which could take approximately the same amount of
processing time, but in the critical condition these responses are
counted as incorrect.

Our drift diffusion modeling revealed that the observed
increases in error rate in the critical conditions involving
an unattended incongruent stimulus were paralleled by a
significantly lower drift rate (Figure 5). The drift rate in
diffusion models describes the speed of evidence accumulation
until a decision is reached, when the diffusion process hits
one of the two decision boundaries (Ratcliff and McKoon,
2008). In terms of cognitive processing, a lower drift rate
in the presence of constant boundary separation means that
participants take longer to accumulate evidence over the same
boundary. This is commonly an indicator of difficulty induced
by task condition or some other variable. The situation in
our critical conditions would qualify as increased difficulty
of evidence accumulation if exogenous attention engaged by
incongruent, task-irrelevant stimuli interfered with endogenous
attention. This implication has further evidence in that our
model fitting of the DDM resulted in a significantly reduced
boundary separation parameter in the critical condition, meaning
that the representation of the two task options of congruent vs.
incongruent was less stably separate, likely due to interference
from exogenous attention to the incongruent distractor. The
combination of lower drift diffusion rates and reduced boundary
separation is consistent with our observation that RTs were not
reduced in the critical conditions, and with the increased error
rates in decisions in the critical conditions. Thus, the cognitive
computational modeling revealed cognitive dynamics that a more
conventional analysis of RTs would have missed.

Our RT data (Figure 2) also revealed a small number of
significant RT differences between correct and incorrect trials
in some conditions in the VB and AB groups. However, there
appears to be no systematic pattern in these differences that can
be related to the experimental manipulation. A potential reason
for these non-systematic effects could be that the overall error rate
in the experiment is quite low leaving only a few error trials for
computing an average error RT. It is therefore likely that some of
these high error RTs are driven by outlying data points that were
not detected in our preprocessing steps.

The low number and unsystematic occurrence of error trials
is also the likely reason that the classic DDM failed to replicate
the observed differences in RT in the posterior predictive check
(Figure 6), while at the same time reproducing the pattern of
errors quite accurately. In fact, the synthetic data generated from
the fitted parameters of the classic DDM exhibited no difference
in mean RTs for any condition in any group, which could be
interpreted that the observed RT differences are unsystematic and
cannot be accurately modeled by the classic DDM. One way of
accounting for different RT distributions of correct and incorrect
responses is to add parameters that model inter-trial variability
of drift rate, starting point and non-decision time. We did not
include these parameters, because our main interest was on the

core DDM parameters such as drift rate and boundary separation,
and estimating the latter can be compromised by adding the
former (Boehm et al., 2018). However, this does not mean that
the classic DDM is not suitable for modeling the data in our
experiment. In fact, by tuning drift rate, boundary separation
and non-decision time independently for each condition, the
model is capable of reproducing the pattern of correct, and
incorrect responses with a high degree of accuracy (Figure 6).
This reinforces the interpretation from above that a lower drift
rate in the critical condition indicates an increased processing
demand due to the refocusing of the attentional focus to include
the (formerly) unattended, incongruent stimulus.

Semantic congruency is a powerful amplifier of multi-sensory
integration leading to higher brain activation (Doehrmann and
Naumer, 2008) and better performance (Taylor et al., 2006;
Steinweg and Mast, 2017). In addition, it can focus non-
voluntary, “stimulus-driven” attention toward congruent stimuli
and can boost perceptual processing resources at their location
(Iordanescu et al., 2008, 2010). Moreover, semantic incongruency
can disrupt the perceptual processing of stimuli in the attentional
focus (Zimmer et al., 2010a,b). The findings of the present study
are in line with these previous findings as we were able to
show that semantic incongruency – independent of the stimulus
modality – led to a re-focusing of attention to include the
previous unattended (and incongruent) stimulus. It thus seems
that our perceptual system is finely attuned to detect semantic
incongruencies, even at a pre-attentive state. From a predictive
coding perspective (Rao and Ballard, 1999; Friston, 2005), such
incongruencies constitute prediction errors (violations of our
expectations), which prompts the reallocation of processing
resources via exogenous attention in implicitly attempting to
resolve the incongruency of the percept. This would imply
that the behavioral performance of our subjects in the critical
condition is not erroneous, but rather adaptive to the needs for
further cognitive processing independently of modality.

DATA AVAILABILITY

The datasets generated for this study are available on request to
the corresponding author.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by the German Psychological Society. The
patients/participants provided their written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

JG designed the research. JS-L collected the data. JG, JS-L, and
MS analyzed the data. SG helped with computational modeling.
All authors wrote the manuscript.

Frontiers in Integrative Neuroscience | www.frontiersin.org 9 September 2019 | Volume 13 | Article 53

https://www.frontiersin.org/journals/integrative-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/integrative-neuroscience#articles


fnint-13-00053 September 9, 2019 Time: 15:18 # 10

Spilcke-Liss et al. Semantic Congruency and Endogenous Attention

FUNDING

JG and JZ were supported by the Collaborative
Research Center TRR 169 “Crossmodal Learning”
funded by the German Research Foundation (DFG)

and the National Science Foundation of China (NSFC).
MS and JG were supported by a Computational
Neuroscience grant from the United States National Science
Foundation and the German Ministry of Education and
Research (BMBF, 01GQ1603).

REFERENCES
Boehm, U., Annis, J., Frank, M. J., Hawkins, G. E., Heathcote, A., Kellen, D., et al.

(2018). Estimating across-trial variability parameters of the diffusion decision
model: expert advice and recommendations. J. Math. Psychol. 87, 46–75.
doi: 10.1016/j.jmp.2018.09.004

Corbetta, M., and Shulman, G. L. (2002). Control of goal-directed and stimulus-
driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215. doi: 10.1038/
nrn755

Doehrmann, O., and Naumer, M. J. (2008). Semantics and the multisensory brain:
how meaning modulates processes of audio-visual integration. Brain Res. 1242,
136–150. doi: 10.1016/j.brainres.2008.03.071

Fan, J., Flombaum, J. I., McCandliss, B. D., Thomas, K. M., and Posner, M. I.
(2003). Cognitive and brain consequences of conflict. Neuroimage 18, 42–57.
doi: 10.1006/nimg.2002.1319

Friston, K. (2005). A theory of cortical responses. Philos. Trans. R. Soc. B Biol. Sci.
360, 815–836. doi: 10.1098/rstb.2005.1622

Gelman, A., and Rubin, D. B. (1992). Inference from iterative simulation using
multiple sequences. Stat. Sci. 7, 457–472. doi: 10.1214/ss/1177011136

Iordanescu, L., Grabowecky, M., Franconeri, S., Theeuwes, J., and Suzuki, S. (2010).
Characteristic sounds make you look at target objects more quickly. Atten.
Percept. Psychophys. 72, 1736–1741. doi: 10.3758/APP.72.7.1736

Iordanescu, L., Guzman-Martinez, E., Grabowecky, M., and Suzuki, S. (2008).
Characteristic sounds facilitate visual search. Psychon. Bull. Rev. 15, 548–554.
doi: 10.3758/PBR.15.3.548

Koelewijn, T., Bronkhorst, A., and Theeuwes, J. (2010). Attention and the multiple
stages of multisensory integration: a review of audiovisual studies.ACTPSY 134,
372–384. doi: 10.1016/j.actpsy.2010.03.010

Mastroberardino, S., Santangelo, V., and Macaluso, E. (2015). Crossmodal
semantic congruence can affect visuo-spatial processing and activity of the
fronto-parietal attention networks. Front. Integr. Neurosci. 9:45. doi: 10.3389/
fnint.2015.00045

Matusz, P. J., Broadbent, H., Ferrari, J., Forrest, B., Merkley, R., and Scerif, G.
(2015). Multi-modal distraction: insights from children’s limited attention.
Cognition 136, 156–165. doi: 10.1016/j.cognition.2014.11.031

Meredith, M. A., and Stein, B. E. (1986a). Spatial factors determine the activity
of multisensory neurons in cat superior colliculus. Brain Res. 365, 350–354.
doi: 10.1016/0006-8993(86)91648-3

Meredith, M. A., and Stein, B. E. (1986b). Visual, auditory, and somatosensory
convergence on cells in superior colliculus results in multisensory integration.
J. Neurophysiol. 56, 640–662. doi: 10.1152/jn.1986.56.3.640

Misselhorn, J., Daume, J., Engel, A. K., and Friese, U. (2016). A matter of
attention_ crossmodal congruence enhances and impairs performance in a
novel trimodal matching paradigm. Neuropsychologia 88, 113–122. doi: 10.
1016/j.neuropsychologia.2015.07.022

Rao, R. P. N., and Ballard, D. H. (1999). Predictive coding in the visual cortex:
a functional interpretation of some extra-classical receptive-field effects. Nat.
Neurosci. 2, 79–87. doi: 10.1038/4580

Ratcliff, R., and McKoon, G. (2008). The diffusion decision model: theory and data
for two-choice decision tasks. Neural Comput. 20, 873–922. doi: 10.1162/neco.
2008.12-06-420

Ratcliff, R., and Rouder, J. N. (1998). Modeling response times for two-choice
decisions. Psychol. Sci. 9, 347–356. doi: 10.1111/1467-9280.00067

Senkowski, D., Schneider, T. R., Foxe, J. J., and Engel, A. K. (2008). Crossmodal
binding through neural coherence: implications for multisensory processing.
Trends Neurosci. 31, 401–409. doi: 10.1016/j.tins.2008.05.002

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and van der Linde, A. (2002).
Bayesian measures of model complexity and fit. J. R. Stat. Soc. B 64, 583–639.
doi: 10.1111/1467-9868.00353

Steinweg, B., and Mast, F. W. (2017). Semantic incongruity influences response
caution in audio-visual integration. Exp. Brain Res. 235, 349–363. doi: 10.1007/
s00221-016-4796-0

Talsma, D., Senkowski, D., Soto-Faraco, S., and Woldorff, M. G. (2010). The
multifaceted interplay between attention and multisensory integration. Trends
Cogn. Sci. 14, 1–11. doi: 10.1016/j.tics.2010.06.008

Taylor, K. I., Moss, H. E., Stamatakis, E. A., and Tyler, L. K. (2006). Binding
crossmodal object features in perirhinal cortex. Proc. Natl. Acad. Sci. U.S.A. 103,
8239–8244. doi: 10.1073/pnas.0509704103

van Atteveldt, N., Formisano, E., Goebel, R., and Blomert, L. (2004). Integration
of letters and speech sounds in the human brain. Neuron 43, 271–282.
doi: 10.1016/j.neuron.2004.06.025

van Atteveldt, N. M., Formisano, E., Goebel, R., and Blomert, L. (2007). Top-
down task effects overrule automatic multisensory responses to letter-sound
pairs in auditory association cortex. Neuroimage 36, 1345–1360. doi: 10.1016/
j.neuroimage.2007.03.065

Weissman, D. H., Warner, L. M., and Woldorff, M. G. (2004). The neural
mechanisms for minimizing cross-modal distraction. J. Neurosci. 24, 10941–
10949. doi: 10.1523/JNEUROSCI.3669-04.2004

Wiecki, T. V., Sofer, I., and Frank, M. J. (2013). HDDM: hierarchical bayesian
estimation of the drift-diffusion model in python. Front. Neuroinform. 7:14.
doi: 10.3389/fninf.2013.00014

Zimmer, U., Itthipanyanan, S., Grent-’t-Jong, T., and Woldorff, M. G.
(2010a). The electrophysiological time course of the interaction
of stimulus conflict and the multisensory spread of attention.
Eur. J. Neurosci. 31, 1744–1754. doi: 10.1111/j.1460-9568.2010.
07229.x

Zimmer, U., Roberts, K. C., Harshbarger, T. B., and Woldorff, M. G. (2010b).
Multisensory conflict modulates the spread of visual attention across a
multisensory object. Neuroimage 52, 606–616. doi: 10.1016/j.neuroimage.2010.
04.245

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Spilcke-Liss, Zhu, Gluth, Spezio and Gläscher. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Integrative Neuroscience | www.frontiersin.org 10 September 2019 | Volume 13 | Article 53

https://doi.org/10.1016/j.jmp.2018.09.004
https://doi.org/10.1038/nrn755
https://doi.org/10.1038/nrn755
https://doi.org/10.1016/j.brainres.2008.03.071
https://doi.org/10.1006/nimg.2002.1319
https://doi.org/10.1098/rstb.2005.1622
https://doi.org/10.1214/ss/1177011136
https://doi.org/10.3758/APP.72.7.1736
https://doi.org/10.3758/PBR.15.3.548
https://doi.org/10.1016/j.actpsy.2010.03.010
https://doi.org/10.3389/fnint.2015.00045
https://doi.org/10.3389/fnint.2015.00045
https://doi.org/10.1016/j.cognition.2014.11.031
https://doi.org/10.1016/0006-8993(86)91648-3
https://doi.org/10.1152/jn.1986.56.3.640
https://doi.org/10.1016/j.neuropsychologia.2015.07.022
https://doi.org/10.1016/j.neuropsychologia.2015.07.022
https://doi.org/10.1038/4580
https://doi.org/10.1162/neco.2008.12-06-420
https://doi.org/10.1162/neco.2008.12-06-420
https://doi.org/10.1111/1467-9280.00067
https://doi.org/10.1016/j.tins.2008.05.002
https://doi.org/10.1111/1467-9868.00353
https://doi.org/10.1007/s00221-016-4796-0
https://doi.org/10.1007/s00221-016-4796-0
https://doi.org/10.1016/j.tics.2010.06.008
https://doi.org/10.1073/pnas.0509704103
https://doi.org/10.1016/j.neuron.2004.06.025
https://doi.org/10.1016/j.neuroimage.2007.03.065
https://doi.org/10.1016/j.neuroimage.2007.03.065
https://doi.org/10.1523/JNEUROSCI.3669-04.2004
https://doi.org/10.3389/fninf.2013.00014
https://doi.org/10.1111/j.1460-9568.2010.07229.x
https://doi.org/10.1111/j.1460-9568.2010.07229.x
https://doi.org/10.1016/j.neuroimage.2010.04.245
https://doi.org/10.1016/j.neuroimage.2010.04.245
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/integrative-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/integrative-neuroscience#articles

	Semantic Incongruency Interferes With Endogenous Attention in Cross-Modal Integration of Semantically Congruent Objects
	Introduction
	Materials and Methods
	Participants
	Experimental Design and Stimuli
	Experimental Task and Procedure
	Data Preprocessing
	Statistical Analysis
	Cognitive Computational Modeling

	Results
	Analysis of Errors and Response Times

	Conclusion
	Computational Cognitive Modeling

	Discussion
	Data Availability
	Ethics Statement
	Author Contributions
	Funding
	References


