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Selective attention plays an essential role in information acquisition and utilization

from the environment. In the past 50 years, research on selective attention has been

a central topic in cognitive science. Compared with unimodal studies, crossmodal

studies are more complex but necessary to solve real-world challenges in both human

experiments and computational modeling. Although an increasing number of findings

on crossmodal selective attention have shed light on humans’ behavioral patterns and

neural underpinnings, a much better understanding is still necessary to yield the same

benefit for intelligent computational agents. This article reviews studies of selective

attention in unimodal visual and auditory and crossmodal audiovisual setups from the

multidisciplinary perspectives of psychology and cognitive neuroscience, and evaluates

different ways to simulate analogous mechanisms in computational models and robotics.

We discuss the gaps between these fields in this interdisciplinary review and provide

insights about how to use psychological findings and theories in artificial intelligence from

different perspectives.

Keywords: selective attention, visual attention, auditory attention, crossmodal learning, computational modeling,

deep learning

1. INTRODUCTION

“The art of being wise is knowing what to overlook.”

–William James, 1842-1910.

The real world is complex, uncertain and rich in dynamic ambiguous stimuli. Detecting sudden
changes in the environment is significant for organisms to survive because these events need
prompt identification and response (Todd and Van Gelder, 1979). Considering the limited capacity
for processing information, selective attention is like a filter with the ability to remove unwanted or
irrelevant information and thus optimizes a human’s action to achieve the current goal (Desimone
and Duncan, 1995). It is crucial as well for intelligent agents to integrate and utilize external and
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internal information efficiently and to reach a signal-to-noise
ratio as high as humans can (signal detection theory, SDT)
(Green and Swets, 1966; Swets, 2014).

Selective attention is involved in the majority of mental
activities, and it is used to control our awareness of the
internal mind and the outside world. Selective attention also
helps to integrate information from multidimensional and
multimodal inputs (Talsma et al., 2010). Empirical research
shows that stimuli with multimodal properties are more salient
than unimodal stimuli; therefore, selective attention is more
easily captured by multimodal inputs to promote further
processing (Van der Burg et al., 2008, 2009). Selective attention is
predominantly categorized by psychologists and neuroscientists
into “endogenous” and “exogenous” attention. Endogenous
attention helps to allocate limited cognitive resources to the
current task (Posner and Snyder, 1975; Corbetta and Shulman,
2002; Styles, 2006). The metaphor for this process is described
as directing a spotlight in a dark room. Such a process helps us,
for instance, to search for one specific email only by glimpsing
the crammed email box. However, the action can sometimes be
interrupted by attractive advertisements or breaking news on a
website. This latter kind of orienting attention is called exogenous
attention which is usually caused by an unexpected change in the
environment. It is considered to be instinctive and spontaneous
and often results in a reflexive saccade (Smith et al., 2004; Styles,
2006). Another point of view distinguishes between “covert” and
“overt” orienting attention: covert attention can attend events
or objects with the absence of eyes movement, while overt
attention guides the fovea to the stimulus directly with eyes or
head movements (Posner, 1980). This is because covert attention
requires inhibition of saccades to sustain fixation, which is not
needed during overt attention (Kulke et al., 2016). Analogously,
covert and overt mechanisms exist in the auditory system. Since
humans cannot move ears like eyes, the difference between these
two mechanisms is that covert auditory attention can govern
attention without any motion, while overt auditory attention
attends to sound sources with head movements (Kondo et al.,
2012; Morillon and Baillet, 2017). Head movements contribute
to sound localization during overt auditory attention (Wallach,
1940; Perrett and Noble, 1997).

To understand the mechanisms underlying selective attention
is helpful for computational models of selective attention for
different purposes and requirements (Das et al., 2017). Attention
models have been proposed and applied in computer science
for decades, and attention mechanisms have achieved high
performance in sequence modeling (Vaswani et al., 2017; Peng
et al., 2019). Bio-inspired implementations of attention in
computer science address the limited computation capacity of
machines through assigning computational resources by priority
(Xu et al., 2015). However, gaps exist between computational
models and theories of human selective attention. Some theories
are metaphysical and mystifying, especially for readers that
lack experience in humans’ behavioral and neural studies.
Frintrop et al. (2010) published a survey about computational
visual systems with an extensive description of the concepts,
theories and neural pathways of visual attention mechanisms.
It is stated that “the interdisciplinarity of the topic holds

not only benefits but also difficulties: concepts of other fields
are usually hard to access due to differences in vocabulary
and lack of knowledge of the relevant literature” (p. 1).
These interdisciplinary challenges are still unsolved thus far.
Additionally, the development and application of technical
measurements and methods like functional magnetic resonance
imaging (fMRI), Magnetoencephalography (MEG), and state-of-
the-art artificial neural networks (ANN) and deep learning (DL)
open up a new window for studies on humans, primates, and
robots. Such new findings should be valuated and integrated into
the current framework.

Although there are several review articles on selective
attention in the field of both psychology and computer science
(Shinn-Cunningham, 2008; Frintrop et al., 2010; Lee and
Choo, 2013), most of them only focus either on a single
modality or on general crossmodal processing (Lahat et al.,
2015; Ramachandram and Taylor, 2017). However, it is essential
to combine and compare selective attention mechanisms from
different modalities together to provide an integrated framework
with similarities and differences among various modalities. In
the current review, firstly, we aim to integrate selective attention
concepts, theories, behavioral, and neural mechanisms studied by
the unimodal and crossmodal experiment designs. Secondly, we
aim to deepen the understanding of the interdisciplinary work in
multisensory integration and crossmodal learning mechanisms
in psychology and computer science. Thirdly, we aim to bridge
the gap between humans’ behavioral and neural patterns and
intelligent system simulation to provide theoretical and practical
benefits to both fields.

The current review is organized into the following parts.
Section 2 is about the existing mainstream attention theories
and models based on human experimental findings and attention
mechanisms in computer science. Section 3 summarizes human
visual selective attention studies and introduces the modeling
work in computer science inspired by psychology. Section 4
describes results on less studied auditory selective attention
and the corresponding modeling work. Section 5 reviews
mechanisms and models about crossmodal selective attention
and state-of-the-art approaches in intelligent systems. Here, to
provide focus, we select the most representative phenomena and
effects in psychology: Pop-out Effect (visual attention), Cocktail
Party Effect (auditory attention), and audiovisual crossmodal
integration and conflict resolution (crossmodal attention). Since
these effects are also well-established and often simulated in
computer science, we highlight the classic and latest work.
Finally, we discuss the current limitations and the future trends of
utilization and implications of human selective attention models
in artificial intelligence.

2. DIFFERENT THEORIES AND MODELS
OF SELECTIVE ATTENTION

2.1. Classic Bottom-Up and Top-Down
Control vs. Priority Map Theory
The mainstream view of selective attention proposes that there
exist two complementary pathways in the brain cortex, the
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FIGURE 1 | (A) Neuroanatomical model of bottom-up and top-down attentional processing in the visual cortex. The dorsal system (green) executes the top-down

attentional control. FEF, frontal eye field; IPS, intraparietal sulcus. The ventral system (red) executes the bottom-up processing. VFC, ventral frontal cortex; TPJ,

temporoparietal junction (adapted from Corbetta and Shulman, 2002); (B) Cortical oscillation model of attentional control in visual and auditory sensory areas. The

posterior medial frontal cortex (pMFC) modulates selective attention by the excitation of task-relevant processing and the inhibition of task-irrelevant processing. Theta

oscillations facilitate the communication between the pMFC and lateral prefrontal cortex (LPFC) (purple arrow). Gamma oscillations and alpha oscillations are

promoted in task-relevant and task-irrelevant cortical areas, respectively (gray arrows) (adapted from Clayton et al., 2015).

dorsal and ventral systems. The former, which includes parts
of the intraparietal sulcus (IPS) and frontal eye field (FEF),
is in charge of the top-down process guided by goals or
expectations. The latter, which involves the ventral frontal cortex
(VFC) and right temporoparietal junction (TPJ), is in charge
of the bottom-up process triggered by sensory inputs or salient
and unexpected stimuli without any high-level feedback. When
novelty is perceived, the connection between the TPJ and
IPS plays the role of cutting off continuous top-down control
(Corbetta and Shulman, 2002) (see Figure 1A). The classic
bottom-up and top-down control theory can explain many cases
in selective attention, and a lot of computational models are
based on this simple theoretical structure (Fang et al., 2011;
Mahdi et al., 2019). However, in some cases, stimuli that are
not relevant to the current goal, and that do not have any
salient physical features can also capture attention. For instance,
Anderson et al. (2011) let participants do a visual search task in
the training phase to determine the direction of a line segment
inside of a target. One target is associated with a high reward
compared with other targets. During the test phase, that target
only appears as a shape without any reward property. Participants
show significantly longer reaction times doing the visual search
among conditions with this foregoing high-value distractor,
suggesting their attention is still captured by these goal-irrelevant
stimuli. Other research finds that emotional information can also
increase the salience (Vuilleumier, 2005; Pessoa and Adolphs,
2010) to capture attention. Thus, beyond the classical theoretical
dichotomy, the priority map theory remedies the explanatory
gap between goal-driven attentional control and stimulus-driven
selection by adding the past selection history to explain selection
biases (Awh et al., 2012). Here, selection history means the
attention bias to stimuli that have been shown in the previous
context. This bias could be irrelevant or in conflict with the
current goal, so selection history should be independent of top-
down or goal-driven control. In general, these two theoretical
frameworks are both helpful to explain most behavioral cases of
selective attention.

2.2. Functional Neural Networks Model
The Functional neural networks model separates attention into
clear sub-components. Fan and Posner designed the Attentional
Network Test (ANT) by combining the classic Flanker task and
Posner cueing task to provide a quantitative measurement for
studying the sub-components: alerting, orienting, and executive
control (Fan et al., 2002, 2005; Fan and Posner, 2004). The
component of the alerting network increases the focus on the
potential stimuli of interest, and anatomical mechanisms of
alerting are correlated with the thalamic, frontal, and parietal
regions. The orienting function is responsible for selecting task-
related or survival-related information from all the sensory
inputs. The orienting network also determines an attention
shift between exogenous attention engagement (bottom-up)
and endogenous attention disengagement (top-down). Orienting
is associated with the superior parietal lobe (SPL), TPJ, and
frontal eye fields (FEF). The executive control component of
attention plays a dominant role in planning, decision-making,
conflict detection and resolution. The anterior cingulate cortex
(ACC) and lateral prefrontal cortical regions are involved in
the executive control component (Benes, 2000). During the
ANT, participants are asked to determine the direction of the
central arrow above or below the fixation. The central arrow is
acommpanied by congruent or incongruent flankers. In neutral
conditions, the central arrow has no flankers. There are four
cue conditions: no cue, center cue, double cue, and spatial cue.
Effects are calculated by subtracting participants’ reaction time
(RT) under two different conditions: the alerting effect = RT (no-
cue) - RT (double-cue); the orienting effect = RT (center cue) -
RT (spatial cue); the executive control effect = RT (incongruent
flanking) - RT (congruent flanking) (Fan et al., 2002). Clinical
studies using the ANT can explore specific differences of
cognitive performance between patients and healthy participants
(Urbanek et al., 2010; Togo et al., 2015). For example, Johnson
et al. (2008) used the ANT to test children with attention deficit
hyperactivity disorder (ADHD) and found that they show deficits
in the alerting and executive control networks but not in the
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orienting network. Themodel and findings arising from the ANT
could serve to provide useful interventions for clinical treatment.

2.3. Neural Oscillation Model
Neural oscillations characterize the electrical activity of a
population of neurons (Musall et al., 2012). Synchronization
of oscillations is the coordination of firing patterns of groups
of neurons from different brain areas (Varela et al., 2001). In
contrast, the desynchronization of oscillations is the inhibition
of neuron activities with opposite phases. Attention is correlated
with synchronization and desynchronization of specific cortical
neural oscillations. Clayton et al. (2015) propose a gamma-
theta power-phase coupling model of attention and point out
that attention is selectively adjusted via the excitation of task-
relevant processes and the inhibition of task-irrelevant processes
(see Figure 1B). The excitation of task-relevant processes is
controlled by frontomedial theta (fm-theta) power (4–8 Hz)
from the posterior medial frontal cortex (pMFC) to the lateral
prefrontal cortex (LPFC). Among the communication between
LPFC and excited sensory areas, gamma power (>30 Hz) is
associated with the excitation of the task-relevant processes. The
inhibition of task-irrelevant processes is linked with alpha power
(8–14 Hz). The pMFC deploys the crucial inhibition processing
by controlling the default mode network [posterior cingulate
cortex (PCC) and ventromedial prefrontal cortex (vmPFC)] via
the alpha oscillation. The limitation of the model is that the
results obtained and presented across different brain regions are
mainly correlations and descriptive results rather than causal
relationships. Besides, most of the empirical evidence for the
model was obtained by visual tasks instead of other modalities.
Nevertheless, this gamma-theta power-phase coupling model
shows interpretative neural pathways of the neural oscillation of
selective attention.

2.4. Free-Energy Model and Information
Theory
The free-energy model explains attention from a hierarchical
inference perspective (Friston, 2009; Feldman and Friston,
2010). The gist of the model is that the stimuli in the living
environment can be viewed as sensory inputs, surprise or
uncertainty which can increase the entropy of the human brain.
Our brains have a tendency to maintain the information order
to minimize the energy cost caused by surprise. In doing so,
perception brings about the sensory inputs, and attention infers
the consequence caused by the inputs to adjust action and control
the entropy growth.

Corresponding to the free-energy model, Fan’s review (Fan,
2014) tries to combine the information theory and experimental
neural findings to explain the top-down mechanisms of humans’
cognition control (the hub of the cognition capacity) and
selective attention. Inspired by the free-energy view, Fan
points out that cognitive control is a high-level uncertainty
or entropy reduction mechanism instead of a low-level
automatic information perception. According to Shannon’s
information theory (Shannon, 1948), uncertainty can be
quantified by entropy, and the rate of entropy is used to
calculate the time density of the information transmission

through different channels. Performance costs appear during
cognitive channel switching. The benefits of the information
theory are that attention or other cognitive processes can
be quantified, and situations (like incongruent or congruent
conditions in conflict processing) can be computed as bits
quantitatively. Fan assimilates stimulus types, time frequency
of the stimulus presentation, and human reaction time from
cognitive psychology experimental tasks into entropy, surprise,
and channel capacity. In this theory, if we know the probability
of an event or a stimulus condition, we can calculate the surprise
value of that condition and infer the information processing rate.
For example, studies found that visual attention can select 30–60
bits per glimpse (Verghese and Pelli, 1992) and the upper limit
of human information processing is around 50 bps. Under this
framework, the anterior insula (AI) and the anterior cingulate
cortex (ACC) are associated with processing the uncertain inputs
and the frontoparietal cortex plays a ubiquitous role in the
active control.

Research from network neuroscience takes a similar viewpoint
that the brain is designed to be functioning with the lowest cost
(Bullmore and Sporns, 2012; Barbey, 2018). However, the free-
energy model and information theory concentrate on top-down
control pathways which may fail to explain some bottom-up
phenomena. For instance, why can human attention be captured
by the salient external stimuli involuntarily? It can cause the rise
of the information entropy and be opposite to the hypothesis
that the human brain instinctively resists the disorder. Besides,
experimental evidence of processing channels is still lacking.

2.5. Attention Mechanisms in Computer
Science
Previous models (1980s–2014) mainly use the saliency-based
winner-take-all algorithm based on human datasets to mimic
humanlike visual or auditory attention (Borji and Itti, 2012;
Lee and Choo, 2013). Those models aim to extract the target
information from the environment or noisy background. In
recent years since 2014, attention mechanisms have been applied
to Convolutional Neural Networks (CNNs), Recurrent Neural
Networks (RNNs), and Long-short Term Memory (LSTM) for
sequencemodeling work. Attentionmechanismswere firstly used
in computer vision (Ba et al., 2014) and then became widely
used across different domains according to the type of input data,
such as object recognition (Hara et al., 2017), image description
generation (Xu et al., 2015), speech recognition (Chorowski et al.,
2015), machine translation (Luong et al., 2015), video caption
generation (Gao L. et al., 2017), sentiment classification (Wang
et al., 2016), visual question answering (Li et al., 2018), etc.

Attention mechanisms in computer science can be
distinguished as soft and hard attention (Xu et al., 2015),
or as global and local attention (Luong et al., 2015). Soft
attention is the expectation of selected information in the input
attention distribution. For example, there is a translation task to
translate one German sentence “Ich komme aus Deutschland”
into an English sentence “I come from Germany.” In machine
translation, attention scores mean different weights assigned to
words in the source sentence (German) according to each word
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TABLE 1 | Main theories of visual selective attention based on various processing pathways.

Theory Viewpoint Processing

Stimulus-driven Theory (1992) Singletons automatically capture visual attention Bottom-up

Goal-driven Theory (1992) Individuals’ intentions determine attentional capture Top-down

Contingent Capture Hypothesis (1992) Contingent on attentional control settings induced by task demands Top-down

Attention Selection Bias Competition (1995) Response to distractors around the target is inhibited Bottom-up & Top-down

Signal Suppression Hypothesis (2010) Salience signal automatically generated by singletons can be suppressed Bottom-up & Top-down

in the target sentence (English). In this example, corresponding
to “Germany,” “Deutschland” should be assigned more weights
than other words in the source sentence. Soft attention
focuses more broadly than hard attention. Hard attention only
concentrates on information of the specific location by assigning
zero weight to other information (Xu et al., 2015). The concepts
of global and local attention vaguely correspond to soft and
hard attention, respectively. Recently, an important application
is the self-attention mechanism (Vaswani et al., 2017). Different
from soft and hard attention, self-attention does not capture
features of mapping between source and target but can learn
the inherent structure both within the source and target text.
In the above example, “from” is more likely to be followed by
“Germany.” Self-attention can be applied in each decoder layer
of neural networks to achieve distributed processing (Bahdanau
et al., 2014). In this way, self-attention shows good performance
and efficiency when the input sentence is too long as in machine
translation (Luong et al., 2015) or the input image is too large as
in computer vision (Peng et al., 2019).

In summary, we conclude in this section that human attention
is a process to allocate cognitive resources with different
weights according to the priority of the events. Similarly,
in computer science, attention mechanisms in models are
designed to be allocating different weights to relevant input
information and ignore irrelevant information with low-valued
weights. However, the connection between computer science
models and psychology is still loose and broad. Especially for
understanding crossmodal selective attention from a functional
view, it is required to explore the human cognition processing
from a computational perspective, which is also beneficial
for confirming psychological and biological hypotheses in
computer science.

3. VISUAL SELECTIVE
ATTENTION—“POP-OUT” EFFECT

3.1. Behavioral and Neural Mechanisms of
Human Visual Selective Attention
Many systematic reviews in the areas of primate vision and
computer vision have introduced the concepts and research
findings in visual selective attention (Frintrop et al., 2010; Borji
and Itti, 2012; Lee and Choo, 2013). In our current review, we
further concentrate in particular on mechanisms of the “pop-
out” effect and computational models based on the saliency map.
In general, the “pop-out” effect describes saliency processing.

Considering that an object is not salient by itself (Itti and Baldi,
2009), the “pop-out” effect usually happens when an object
has more salient physical features than other objects in the
context, such as location, color, shape, orientation, brightness,
etc. (VanRullen, 2003). Saliency can also be extended to affective
and social domains, like familiarity, threat, etc. (Fan, 2014).
Humans’ attention can be immediately captured by salient
objects, which can explain why the warning signs on streets are
always red and apparent.

Nevertheless, controversy remains about the role of top-
down control when a salient stimulus captures attention.
Stimulus-driven theory (bottom-up saliency hypothesis) suggests
that an abrupt-onset object can automatically capture humans’
attention without any intention and be processed faster than
other non-onset elements (Yantis and Jonides, 1984; Theeuwes,
1991). To the contrary, the goal-driven theory (Bacon and
Egeth, 1994) and the contingent capture hypothesis (Folk et al.,
1992) propose that the overlap dimension between stimulus
properties and task setting goals is the crucial factor, since it
can determine whether the salient stimulus can be captured
or not. Experiments show that if the salient stimulus has no
task-relevant feature, participants adopt a feature-search mode
autonomously to suppress the distraction from the salient
stimulus (Bacon and Egeth, 1994).

Hybrid theories attempt to integrate components of both
stimulus-driven and goal-driven theories in attention capture.
Findings from monkey studies showed that attention selection
through biased competition occurred when the target and
the distractor were both within the receptive field. Neurons
responded primarily to the target, whereas the responses to
the distractor were attenuated (Desimone and Duncan, 1995).
Subsequently, Mounts (2000) discovered a phenomenon named
“surround inhibition.” If a salient stimulus appears near the
target, it can be inhibited by top-down control. Later, the
signal suppression hypothesis proposed that the salient stimulus
automatically generates a salience signal at first and then the
signal can be subsequently suppressed, possibly resulting in no
attention capture (Sawaki and Luck, 2010; Gaspelin et al., 2015,
2017) (the theories are summarized in Table 1).

Neural findings of humans and primates contribute a lot
to understand saliency processing in the primary cortex and
subcortex. The saliency map theory (Li, 1999, 2002) suggests
that neurons in the primary visual cortex (V1) play a crucial
role for the input feature processing during the “pop-out” effect.
V1 is the neural foundation of the preattentive process during
visual search, and it only responds to stimuli located in the

Frontiers in Integrative Neuroscience | www.frontiersin.org 5 February 2020 | Volume 14 | Article 10

https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/integrative-neuroscience#articles


Fu et al. Selective Attention Mechanisms and Modeling

classical receptive fields (CRFs). In this saliencymap theory, V1 is
considered to define the saliency degree of visual inputs. Various
features of the target and context enter into the V1 CRFs at the
same time. When features of the target are more significant than
the context, the target pops out. The saliency map computes
the saliency value for all locations in the CRFs rather than only
encoding the target location (Veale et al., 2017). In comparison to
the classical feature integration model (Treisman and Gormican,
1988) and Itti’s saliency model (Itti and Koch, 2000), the main
property of the saliency map theory is that saliency processing is
only based on a single general feature selection map rather than
using a combination map to bind several individual feature maps
together. Furthermore, dominant inputs from V1 convey signals
to an evolutionarily old structure in the midbrain—the superior
colliculus (SC). Superficial layers of the SC encode saliency
representations through center-surround inhibition and transfer
the inputs to deep layers to trigger priority selection mechanisms
to guide attention and gaze (Stein et al., 2002; Veale et al., 2017;
White et al., 2017). There is not only bottom-up processing in
the primary visual cortex and SC, but also top-down processing.
Within the primary visual cortex, the top-down mechanism is
mediated by V2 and the interaction occurs in humanV4 (Melloni
et al., 2012). Moreover, deep layers of the SC represent goal-
related behaviors independent of the visual stimuli (Hafed and
Krauzlis, 2008; Hafed et al., 2008; Veale et al., 2017).

The large-scale human brain networks also play important
roles in visual selective attention. The salience network (SN),
composed of AI (anterior insula) and ACC (anterior cingulate
cortex), is considered to be working as the salience filter to
accept inputs from the sensory cortex and trigger cognitive
control signals to the default mode network (DMN) and central-
executive network (CEN). Functions of the SN are mainly
about accomplishing the dynamic switch between externally and
internally oriented attention (Uddin and Menon, 2009; Menon
and Uddin, 2010; Uddin, 2015). Another taxonomic cingulo-
opercular network shares a large overlap with the SN, containing
the anterior insular/operculum, dorsal anterior cingulate cortex
(dACC), and thalamus. The cingulo-opercular network has
the highest cortical nicotinic acetylcholine receptor (nACHr)
density, which is highly correlated with attention functions
(Picard et al., 2013). However, conclusions about functions of
the cingulo-opercular network are not consistent. For instance,
Sadaghiani and D’Esposito (2014) revealed that the cingulo-
opercular network plays a role in staying alert but not in
selective attention during visual processing. In sum, the V1 and
SC consist of primary cortex-subcortex pathways of saliency
processing and attention orienting. The AI and ACC consist of
large-scale functional networks of saliency processing, alertness
and attention shifting. However, the correlation or interaction
between these two pathways remains unclear.

Besides elementary physical salient features, scene regions
that contain semantic meaning also proved to play a critical
role in attentional guidance (Henderson and Hollingworth,
1999; Wolfe and Horowitz, 2017). Henderson and Hayes (2017)
express the spatial distribution of meaning across scenes as
meaning maps, which are obtained by participants’ ratings of the
meaningfulness of scene regions. They encode the meaning maps

comparable to the image salience and operationalize the attention
distribution to be duration-weighted fixation density. Their
work demonstrates that both, salience and meaning, predict
attention but only meaning guides attention while viewing real-
world scenes. According to the cognitive-relevance theory of
attentional guidance, the meaning maps contain more semantic
information for the real context. Their updated findings appear
to be particularly insightful and practical for artificial intelligence
methods for labeling real-world images.

3.2. Computational Models Based on
Human Visual Selective Attention
Based on human saccade and fixation research, a vast body of
bio-inspired visual attention models has been developed and
broadly applied in object segmentation (Gao G. et al., 2017),
object recognition (Klein and Frintrop, 2011), image caption
generation (Bai and An, 2018), and visual question answering
(VQA) (Liu and Milanova, 2018). The visual attention model
aims to predict the human eye fixation with minimal errors
(Borji and Itti, 2012). Consistent with humans’ visual processing
pathways, models in visual attention are generally classified based
on the bottom-up and top-down streams (Borji and Itti, 2012;
Liu and Milanova, 2018). Bottom-up models are successful in
modeling low-level and early processing stages (Khaligh-Razavi
et al., 2017). The most classic saliency model, which uses features
of color, orientation, edge, and intensity, allocates an attention
weight to each pixel of the image (Itti et al., 1998; Itti and Koch,
2000) (see Figure 2A). The “winner-take-all” strategy is the core
algorithm of saliency models. However, several criticisms on the
saliency model cannot be ignored either. For instance, a salient
feature is obtained by calculating the difference between input at
one location and other input surrounding it so that any spatial
discountinuities of features can be detected (Itti et al., 1998).
This center-surround scheme is analogous to attention selection
via bias competition within the visual receptive fields (Desimone
and Duncan, 1995). However, the salient feature obtained by
this scheme can only correspond to a small local region of an
image scene with higher contrast but not to a whole object or an
extended part of it (VanRullen, 2003; Lee and Choo, 2013) (also
see Figure 2A).

In contrast, high-level task-driven attention models remain
to be explored and developed further. Some research predicts
human eye fixation with free-viewing scenes based on end-to-end
deep learning architectures (Jetley et al., 2016; Kruthiventi et al.,
2017; Kummerer et al., 2017). Deep neural networks (DNNs)
have sometimes been shown to have better performance than
other known models by using top-down processing mechanisms.
Especially, DNNs can successfully simulate human-like attention
mechanisms (Hanson et al., 2018). Here task-driven components
can not only be implemented as targets but also implemented
as prior knowledge, motivation, and other types of cues.
Furthermore, models like DeepFeat incorporating bottom-up
and top-down saliency maps by combining low- and high-
level visual factors surpass other individual bottom-up and top-
down approaches (Mahdi et al., 2019). Nowadays, computer
vision research intends to make models learn the semantic
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FIGURE 2 | (A) Visual saliency model. Features are extracted from the input image. The center-surround mechanism and normalization are used to generate the

individual feature saliency maps. Finally, the saliency map is generated by a linear combination of different individual saliency maps (adapted from Itti et al., 1998); (B)

Auditory saliency model. The structure of the model is similar to the visual saliency model by converting sound inputs into a frequency “intensity image” (adapted from

Kayser et al., 2005).

meaning rather than simply classify objects. For instance, image
captioning requires models not only to detect objects but also
extract relationships between objects (Hinz et al., 2019). Co-
saliency tends to be a promising preprocessing step for many
high-level visual tasks such as video foreground extraction,
image retrieval, and object detection. Because co-saliency implies
priorities based on human visual attention, it can detect the most
important information among a set of images with a reduced
computational demand (Yao et al., 2017). In future research, co-
saliency approaches may be combined with the meaning maps of
human attention for better image interpretation accuracy.

As the number of interdisciplinary studies keeps increasing,
research from psychology and artificial intelligence complement
each other deepening the understanding of human visual
attention mechanisms and improving the performance of
computational models. On the one hand, psychologists interpret
humans’ behavioral or neural patterns by comparing them
with the performance of DNNs. For example, Eckstein et al.
(2017) found that human participants often miss giant targets
in scenes during visual search but computational models such
as Faster R-CNN (Ren et al., 2015), R-FCN (Dai et al.,
2016), and YOLO (Redmon and Farhadi, 2017) do not show
any similar recognizing failures. Their results suggest that
humans use “missing giant targets” as the response strategy to
suppress potential distractors immediately. On the other hand,
computer scientists interpret features of computational models
by comparing their performance with simulations of humans’
behaviors. For instance, Hanson et al. (2018) found that the
Deep Learning (DL) network rather than the single hidden layer
backpropagation neural network can replicate human category
learning. This is because hidden layers of the DL network can

selectively attend to relevant category features as humans do
during category learning.

4. AUDITORY SELECTIVE
ATTENTION—COCKTAIL PARTY EFFECT

4.1. Behavioral and Neural Mechanisms of
Human Auditory Selective Attention
At a noisy party, a person can concentrate on the target
conversation (a top-down process) and easily respond to
someone calling his/her name (a bottom-up process). This
capability (in a real-life scenario) is named “Cocktail Party Effect”
(Cherry, 1953). Auditory information conveys both temporal
and spatial features of objects. For instance, we can determine
whether water in a kettle is boiling by the special sounds
of different heating phases. Auditory scene analysis (ASA)
allows the auditory system to perceive and organize sound
information from the environment (Bregman, 1994). Since
humans cannot close their ears spontaneously to avoid irrelevant
information, selective attention is important to segregate the
forefront auditory information from a complex background and
distinguishmeaningful information fromnoise. Besides, auditory
selective attention allows humans to localize sound sources and
filter out irrelevant sound information effectively.

In the Cocktail Party problem, energetic masking and
informational masking cause ambiguity between the auditory
target and noise in the environment. Energetic masking occurs
when different sound sources have overlaps in frequency spectra
at the same time. The perception and recognition of the target
sound can be weakened physically by noise (e.g., the target speech
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overlaps with a white noise masker). Informational masking
occurs when the target and masker voices sound similar (e.g.,
a target male is speaking while another nontarget male is
speaking at the same time). The listener cannot discriminate
them perceptually (Brungart, 2001; Lidestam et al., 2014). The
neural mechanisms of these two causes are different. Scott et al.
(2004) asked participants to listen to a target speaker with
added noise (energetic masking) or added speech (informational
masking). They found that informational masking was associated
with the activation in the bilateral superior temporal gyri (STG)
and energetic masking was associated with the activation in
the frontoparietal cortex. The activation was correlated with
explicit attentional mechanisms but not specifically to the
auditory processing.

In accordance with the Gestalt framework, ASA is the
solution to the Cocktail Party problem (Bee and Micheyl, 2008).
Similar to visual processing, ASA can be separated into two
components. The primitive analysis (bottom-up process) and the
schema-based processing (top-down process) (Bregman, 1994).
In the primitive analysis, auditory signals are separated into
independent units and integrated into disparate auditory streams
according to sound features and time-frequency. In the schema-
based processing, prior knowledge such as language, music, other
auditory memory, and endogenous attention helps to compare
the auditory input signals with previous experience (Shinn-
Cunningham, 2008) (see Figure 3A). In laboratory studies,
psychologists adopt the dichotic listening paradigm to mimic
the Cocktail Party problem. During the task, participants are
asked to attend to the auditory materials presented to one ear
and ignore the auditory materials presented to the other ear.
Afterwards, participants are asked to report the information
from the attended or unattended ear. Previous studies show that
a higher working memory capacity (WMC) predicts a better
attention focus (Conway et al., 2001; Colflesh and Conway, 2007),
because a lower capacity cannot accomplish segregation and
grouping of any auditory information well. Those findings are
in accordance with the controlled attention theory of working
memory (Baddeley et al., 1974).

Event-related potential (ERP) N1-P2 components, alpha
oscillations, and frequency-following responses (FFRs) disclose
how the human brain copes with the Cocktail Party problem
(Du et al., 2011; Strauß et al., 2014; Lewald and Getzmann,
2015). The ERP N1 component peaks between 80 and 120 ms
after the onset of a stimulus. It is sensitive to the exogenous
auditory stimuli features (Michie et al., 1990). N1 (equivalent
in MEG is M100) is generated from the primary auditory
cortex (A1) around the superior surface of the temporal lobes
(Zouridakis et al., 1998). P2 is always observed as the following
component of N1. It peaks at around 200 ms after receiving
the external stimulus. These early components support the
early selection model of auditory attention (Woldorff et al.,
1993; Broadbent, 2013; Lee et al., 2014). Alpha oscillations
occur in the parietal cortex and other auditory cortical regions
during spatial attention. Selective attention modulates alpha
power oscillations in temporal synchrony with the sensory input
and enhances the neural activity related to attended stimuli.
Wöstmann et al. (2016) conducted a MEG study with a dichotic

task and revealed that alpha oscillations are synchronized with
speech rates and can predict the listener’s speech comprehension.
Scalp-recorded frequency-following responses (FFRs) are part of
auditory brainstem responses (ABR). They are evoked potentials
generated from the brainstem area (Mai et al., 2019). FFRs
are phase-locked to the envelope or waveform of the low-
frequency periodic auditory stimuli (Zhang and Gong, 2019). In
the Cocktail Party problem, FFRs encode important features of
speech stimuli to enhance the ability to discriminate the target
stimuli from the distracting stimuli (Du et al., 2011). In summary,
to exert the auditory selective attention, N1-P2 components are
involved in perceiving and detecting the auditory stimuli in the
early control processing; alpha oscillations and FFRs are mainly
modulated by the selective control to accentuate the target and
suppressing noise.

Analogous to the specialized streams of visual selective
attention, there are “what” and “where” pathways in the
auditory cortex (see Figure 3B). The ventral “what” pathway,
which involves the anterolateral Heschl’ gyrus, anterior superior
temporal gyrus, and posterior planum temporale, is in charge
of identifying auditory objects. The dorsal “where” pathway,
which involves the planum temporale and posterior superior
temporal gyrus (pSTG), is in charge of spatially localizing
auditory objects. Within the “what” pathway, the supratemporal
plane-inferior parietal lobule (STP-IPL) network dynamically
modulates auditory selective attention; within the “where”
pathway, the medial pSTG shows a higher-level representation of
auditory localization by integrating the sound-level and timing
features of auditory stimuli (Higgins et al., 2017; Häkkinen and
Rinne, 2018). In addition, the “where” pathway is observed to
activate around 30ms earlier than the “what” pathway implying
that top-down spatial information may modulate the auditory
object perception (Alain et al., 2001; Ahveninen et al., 2006).
However, current studies find that functional overlaps exist
in brain areas under different processing pathways, suggesting
that brain areas are not function-specific (Schadwinkel and
Gutschalk, 2010; Yin et al., 2014). The observed brain activities
are not only stimulus-dependent but also task-dependent
(Häkkinen et al., 2015). Besides, a suggested “when” pathway
for temporal perception (Lu et al., 2017) deserves to be studied
further because the temporal coherence is crucial for binding
and segregating features into speech and speaker recognition
when attention is engaged. Apart from the paralleled pathways,
the distributed processing under different structures may also
provide feedback to facilitate the auditory attention (Bizley and
Cohen, 2013).

For the Cocktail Party problem, previous neural findings
show the attentional selective mechanism occurs in different
phases of information processing. Ding and Simon (2012)
found that the selective mechanism exists in both top-down
modulation and bottom-up adaptation during the Cocktail Party
problem. When the unattended speech signals were physically
stronger, attended speech could still dominate the posterior
auditory cortex responses by the top-down execution. Besides,
when the intensity of the target was more than 8dB louder
than the background, the bottom-up neural responses only
adjusted to the target speaker rather than the background
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FIGURE 3 | (A) Auditory selective attention model with interaction between bottom-up processing and top-down modulation. The compound sound enters the

bottom-up processing in the form of segregated units and then the units are grouped into streams. After segregation and competition, foreground sound stands out

from the background noise. The wider arrow represents the salient object with higher attentional weights. Top-down attention control can modulate processing on

each stage (adapted from Bregman, 1994; Shinn-Cunningham, 2008). (B) The “where” and “what” cortical pathways of auditory attention processing. Within the

dorsal “where” pathway, the superior frontal gyrus (SFG) and superior parietal (SP) areas activate during sound localization. Within the ventral “what” pathway, inferior

frontal gyrus (IFG) and auditory cortex activate to recognize the object (adapted from Alain et al., 2001).

speaker. Golumbic et al. (2013) demonstrate that the selective
mechanism happens only in the high-level cortices such as the
inferior frontal cortex, anterior and inferior temporal cortex,
and IPL. Here, only attended speech was selectively retained.
However, in the low-level auditory cortices like the STG, both
attended and unattended speech were represented. In addition,
one study used functional near-infrared spectroscopy (fNIRS)-
hyperscanning and found that the brain-to-brain interpersonal
neural synchronization (INS) selectively enhances at the left
TPJ only between the listener and the attended speaker but not
between the listener and the unattended speaker. The listener’s
brain activity overtakes the speaker’s showing a faster speech
prediction by the listener. Besides, the INS increased only for the
noisy naturalistic conversations with competing speech but not
for the two-person conversation and was only associated with
the speech content. Their findings implied that the prediction
of the speaker’s speech content might play an important role
in the Cocktail Party Effect (Dai et al., 2018). In summary, the
human brain’s auditory processing during the Cocktail Party
problem is not hierarchical but heterarchical, which is mainly
a bottom-up process aided by top-down modulation (Bregman,
1994). This includes interactions between different pathways
and adaptations to the environment (Shinn-Cunningham, 2008;
Bizley and Cohen, 2013).

4.2. Computational Models for the Human
Cocktail Party Problem Solution
In the future, we may have moving robots offering food and
drinks in noisy restaurants by precisely localizing speaking
customers. Steps to solve the Cocktail Party problem in computer

science can be mainly separated into: speech separation, sound
localization, speaker identification, and speech recognition. The
aims of acoustic models for the Cocktail Party problem are:
identifying multiple speakers and disentangling each speech
stream from noisy background. Numerous classical acoustic
models are data-driven and based on algorithms of signal
processing (Dávila-Chacón et al., 2018). Those models are robust
and with good accuracy but lack the prior knowledge, biological
plausibility and rely on the large datasets. Currently, models
inspired by the human auditory attention system rely on smaller
datasets and have shown improved adaptation. In this section, we
focus on the following bio-inspired models: (1) computational
auditory scene analysis (CASA): neural oscillator models as
examples; (2) saliency models; (3) top-down- and bottom-up-
based models.

Based on the Gestalt framework (Rock and Palmer, 1990),
the goal of most CASA models is to segregate sounds with
similar patterns or connections and group them into independent
streams from the mixed auditory scene. Stemming from CASA
models, neural oscillator models show good adaptation in
auditory segregation. Neural oscillator models perform stream
segregation based on the oscillatory correlation. Attention
interest is modeled as a Gaussian distribution across the attended
frequency. The attentional leaky integrator (ALI) consists of
the connection weights between oscillators and the attentional
process. The synchronized oscillators activate the ALI to separate
sounds into streams like the endogenous attention mechanism
(Wrigley and Brown, 2004). Furthermore, to make use of
the temporal proximity of sound sources, Wang and Chang
(2008) propose a two-dimensional (time and frequency) network
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FIGURE 4 | Locally Excitatory, Globally Inhibitory Oscillator Network (LEGION)

(adapted from Wang and Terman, 1995).

oscillator model with relaxation oscillators of local excitation
and global inhibition (see Locally Excitatory, Globally Inhibitory
Oscillator Network, LEGION; Wang and Terman, 1995) (see
Figure 4). Analogous to humans’ neural oscillations, the local
excitation mechanism makes oscillators synchronize when they
are stimulated by the same stimuli and the global inhibition has
an effect on the whole network to make oscillators desynchronize
by different stimuli (Dipoppa et al., 2016). In their model, they
use alternating sequences of high- and low-frequency tones
as inputs. Tones with similar patterns (e.g., close frequency,
onset or offset time) tend to be grouped into the same stream.
One stream corresponds to an assembly of synchronized neural
oscillators. The oscillator models mimic the human selective
attentional control and show good adaptation to separate the
multi-tone streams.

The oscillator models try to mimic the endogenous attentional
control while the saliency models try to mimic the exogenous
attention. Similar to visual saliency models (see section 3.2),
auditory saliency models are built by abstracting features
(intensity, frequency contrast, and temporal contrast) from
the sound “intensity image,” which is a visual conversion of
auditory time-frequency spectrograms and normalized to be
an integrated saliency map (Kayser et al., 2005; Kalinli and
Narayanan, 2007) (see Figure 2B). Considering that humans
and other primate animals can process the pure auditory
signals without any visual conversion, Kaya and Elhilali (2012)
modify the auditory saliency model by directly extracting the
multi-dimensional temporal auditory signal features (envelope,
frequency, rate, bandwidth, and pitch) of the auditory scene
as input. Their model relies on the selection of parameters
to reduce error rates of the saliency determination by fewer
features. Several limits exist for developing the auditory saliency
models. Firstly, unlike visual attention, acoustic signals are
distributed across different frequency bands and time windows.
This makes auditory models rely much on temporal features.
There is no apparent physical marker for a person to locate
sounds compared with eye gaze used in visual saliency models.
Secondly, in some cases differences between the saliency of
sound streams are not apparent enough for the auditory saliency

models to discriminate (e.g., separating one girl’s voice from a
group of chatting girls). Therefore, more high-level features or
top-down modulation could be helpful for a model to indicate
the significant sound stream. To integrate both endogenous
and exogenous attention in the model, Morissette and Chartier
(2015) propose a model by extracting frequency, amplitude, and
position as features and connecting them with the oscillator
model LEGION. Segments with consistent features are bound
into the saliency map according to the temporal correlation.
Notably, a module of inhibition-of-return (IOR) is inserted to
inhibit attention from fixing at the most salient scene for a long
time. This mechanism can achieve the attentional shifting and
orientation (Klein, 2000).

Prior knowledge (e.g., memory, prediction, and expectation)
also plays a crucial role in human auditory perception, therefore
several top-down- and bottom-up-based models integrate the
prior knowledge into the data-driven models. Some of them
extract acoustic features of the target sound and store them
in memory-like modules to mimic humans’ long-term memory
function as top-down modulation. Oldoni et al. (2013) combine
a self-organized map (SOM) of the acoustic features in the
bottom-up processing to continuously learn the saliency and
novelty of acoustic features. After training, each SOM unit
matches up with a representative sound prototype. For the
top-down processing, the IOR and LEGION mechanisms are
introduced to shift and select attention, respectively. Xu et al.
(2015) propose an Auditory Selection framework with Attention
and Memory (ASAM). In this model, there is one speech
perceptor extracting the voiceprint of speakers and accumulating
the voiceprint in a lifelong-learning memory module during
the training phase to be the prior knowledge for the model.
Later, the learned voiceprint is used to attend and filter the
target speech from the sound input to achieve the top-down
and bottom-up interaction. The testing performance showed
good robustness and adaptation for both top-down (follow a
specific conversation) and bottom-up (capture the salient sound
or speech) attention tasks.

Shi et al. (2018) propose the Top-Down Auditory model
(TDAA) and use the prediction of the target speaker as the top-
down modulation. Their model contributes to the auditory scene
analysis with multiple unknown speakers. They adopt the Short-
Time Fourier Transformation (STFT) and Bidirectional Long-
Short Term Memory (BiLSTM) to predict the number of the
speakers. Later, the classifier recurrent neural networks (RNN)
separate the most salient speaker and iterate until no more
speakers can be separated to avoid repeated prediction. Finally,
an attention module is used to separate each speaker’s spectrum
from the spectrum mixture. Besides, binaural models are apt to
make use of the spatial localization information to address the
Cocktail Party problem. For instance,Ma et al. (2018) train DNNs
to localize acoustic features in full 360◦ azimuth angles. After
the training phase, the binaural localization with spectral features
is used as prior knowledge in the top-down modulation of the
model. Their model serves to predict the speech with different
localizations under noisy situations with room reverberation. In
summary, those top-down and bottom-up interaction models
incorporate mechanisms of processing in the human auditory

Frontiers in Integrative Neuroscience | www.frontiersin.org 10 February 2020 | Volume 14 | Article 10

https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/integrative-neuroscience#articles


Fu et al. Selective Attention Mechanisms and Modeling

FIGURE 5 | (A) Human crossmodal integration and attentional control. The black and gray arrows denote the feed-forward bottom-up stimulus saliency processing

and the green arrows denote the top-down modulation of attention. The yellow dashed arrows represent the recurrent adjustment (adapted from Talsma et al., 2010);

(B) Artificial neural networks of crossmodal integration. The crossmodal integration mechanisms are used to realign the input from visual and auditory modalities

(adapted from Parisi et al., 2017, 2018).

system. They selectively attend or shift attention to the target
speech dynamically rather than only focusing on the stream
separation, which can be more adaptive to those uncertain and
complex auditory scenarios.

5. AUDIOVISUAL CROSSMODAL
SELECTIVE ATTENTION

5.1. Behavioral and Neural Mechanisms of
Human Crossmodal Selective Attention
In order to survive in an uncertain and multimodal world,
humans develop the ability to integrate and discriminate
simultaneous signals from multiple sensory modalities, such as
vision, audition, tactile, and olfaction. For example, humans
can make use of visual cues like lip movement and body
gestures to recognize and localize sounds in noisy circumstances.
The crossmodal integration ability is beneficial for humans to
localize and perceive objects but can also cause ambiguity.
Crossmodal conflicts arise when information from different
modalities are incompatible with each other and can result in
failures of the crossmodal integration and object recognition.
To resolve conflicts, selective attention is required to focus
on the task-relevant modality information and to ignore the
interference from irrelevant modalities (Veen and Carter, 2006).
For humans, the capacity for conflict adaptation plays a crucial
role in learning and adapting to the environment. When human
toddlers detect any conflict between the current environment
and their prior knowledge, they will generate curiosity and be
motivated to learn new knowledge or rules (Wu and Miao,
2013). Curiosity is also important for the trial and error
learning of robots (Hafez et al., 2019). In this subsection, we
mainly talk about behavioral and neural mechanisms of selective
attention underlying audiovisual crossmodal integration and
conflict resolution.

First, how and when does a crossmodal conflict occur?
Previous studies proved that humans tend to integrate visual
and auditory stimuli with spatial-temporal linkage into the
same object (Senkowski et al., 2008). The “Unity assumption”
proposes that when humans believe that the multisensory inputs
they perceive are generated from the same source, crossmodal
integration occurs (e.g., when students think the speech they
hear in the lecture room matches the lip movements of the
professor, they believe that the speech is from the professor)
(Roseboom et al., 2013). Besides, prior knowledge and experience
can generate expectation effects to facilitate object recognition
during crossmodal integration. Therefore, when the stimuli from
different modalities are spatially (e.g., ventriloquism effect; Choe
et al., 1975) or temporally incongruent (e.g., double flash illusion;
Roseboom et al., 2013) or contrary to our expectations (e.g.,
see a cat with a “bark” sound), humans perceive crossmodal
conflicts. During the early integration stage, selective attention
plays the role of capturing the salient visual and auditory stimuli
by bottom-up processing. When conflicts are detected, selective
attention executes a top-down modulation from higher-level
semantic representations according to the internal goal and
relevant modalities. The crossmodal information processing is
not only a feed-forward process but also contains backward
feedback and recurrent processes, which are important to
facilitate the primary sensory processing (Talsma et al., 2010;
see Figure 5A).

Second, which modality dominates when humans are
confronted with audiovisual conflicts? Lots of studies have
examined the “ventriloquism effect,” which originally refers to
the strong visual bias during the sound localization (Thurlow
and Jack, 1973; Choe et al., 1975; Warren et al., 1981). Research
findings show that this strong modality bias changes through
the lifespan of a human (Sloutsky, 2003). Compared to toddlers,
adults aremore likely to have visual stimuli preferences (Sloutsky,
2003). Some researchers argue that the ventriloquism effect
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results from an optimal or suboptimal decision-making strategy,
especially when unimodal stimuli are blurred. If the auditory
stimuli are more reliable than the visual stimuli, an auditory
bias occurs as well (Alais and Burr, 2004; Shams and Kim, 2010;
Ma, 2012; Roseboom et al., 2013). To sum up, vision in general
has a higher spatial resolution than audition, whereas audition
has a higher temporal resolution than vision. As the modality
appropriateness hypothesis points out, the information from
one modality dominates according to the temporal or spatial
features of the audiovisual event and themodality with the higher
accuracy (Welch and Warren, 1980).

Third, how do humans resolve crossmodal conflicts? In the
conflict-monitory theory, the module of conflict monitoring
(CM) is activated when conflicts are detected and passes the
signal to the executive control (EC) module to accomplish
the task-related conflict resolution by the top-down attentional
control (Botvinick et al., 2001). From the previous findings,
to perceive crossmodal signals and detect crossmodal conflicts,
selective attention plays the role of gating crossmodal coupling
between sensory function areas in a modality-general fashion
(Eimer and Driver, 2001; Mcdonald et al., 2003; Convento et al.,
2018). However, to solve crossmodal conflicts, selective attention
inclines toward processing in a modality-specific fashion (Yang
et al., 2017; Mengotti et al., 2018).

Except for some specific vision and audition processing
brain areas, the superior colliculus (SC) is a crucial brain
area with multisensory convergence zones from visual and
auditory primary cortices to higher-level multisensory areas.
As it is mentioned in section 3.1, the SC also implements
selective attention by orienting both covert and overt attention
toward the salient stimulus and triggers corresponding motor
outputs (e.g., eye movements, saccades) (Wallace et al., 1998;
Meredith, 2002; Krauzlis et al., 2013). Besides, the superior
temporal sulcus (STS), inferior parietal sulcus (IPS), frontal
cortex (including premotor and ACC), and posterior insula are
involved in the crossmodal processing (for review see Calvert,
2001; Stein and Stanford, 2008). Within the crossmodal brain
functional network, the STS plays the role of linking unimodal
representations (Hertz and Amedi, 2014). The parietal lobe
is thought to process representations of visual, auditory, and
crossmodal spatial attention (Farah et al., 1989). However, when
audiovisual inputs are incongruent, crossmodal attenuations
or deactivations occur (Kuchinsky et al., 2012). To resolve
conflicts, as human fMRI studies have shown, the dorsal anterior
cingulate cortex (dACC) is responsible for dealing with conflicts
between the current goal and irrelevant distractors. The dACC is
positively correlated with attention orientation and interference
suppression (Weissman et al., 2004). Song et al. (2017) conducted
a mice experiment by using a task with audiovisual conflicts,
where audition was required to dominate vision. They found
that when the conflict occurred, the co-activation of the primary
visual and auditory cortices suppressed the response evoked by
vision but maintained the response evoked by audition in the
posterior parietal cortex (PPC).

Electrophysiological studies have shown the existence of
cells that respond to stimulation in more than one modality to
accomplish crossmodal integration and conflict resolution. Diehl

and Romanski (2014) found that neurons in the ventrolateral
prefrontal cortex (VLPFC) of Macaques were bimodal
and nonlinear multisensory. When incongruent faces and
vocalizations were presented, those neurons showed significant
changes with an early suppression and a late enhancement
during the stimulus displaying period. Other experimental
evidence argues that coherent oscillations across different
modality cortices are the key mechanism of the crossmodal
interplay (Wang, 2010). An enhancement of the phase locking
for the short-latency gamma-band activity (GBA) is found for
the attended multisensory stimuli. The early GBA enhancement
enables the amplification and integration of crossmodal task-
relevant inputs (Senkowski et al., 2008). Incongruent crossmodal
inputs cause a stronger gamma-band coherence than congruent
inputs suggesting the involvement of gamma oscillations
decoupling under crossmodal binding (Misselhorn et al.,
2019). Attentional control during the crossmodal integration
and conflict resolution is associated with alpha-band effects
from the frontoparietal attention network rather than primary
sensory cortices. Frontal alpha oscillations are involved in
the top-down perceptual regulation; parietal oscillations are
involved in the intersensory reorientation (Misselhorn et al.,
2019). Reversed to the gamma oscillation patterns, incongruent
conditions showed weaker alpha oscillation changes compared
to congruent conditions. This gamma-alpha oscillation cycle
pattern is proposed to be the information gating mechanism
by inhibiting task-irrelevant regions and selectively routing the
task-relevant regions (Jensen and Mazaheri, 2010; Bonnefond
and Jensen, 2015). In sum, cortical areas that have multimodal
convergence zones accomplish crossmodal integration of
projections from visual and auditory primary cortices. Neural
oscillations coordinate the temporal synchronization between
the visual and auditory modality.

5.2. Computational Models Simulating
Human Crossmodal Selective Attention
In robotics, crossmodal research focuses mainly on multisensory
binding to make robots interact with the environment with
higher robustness and accuracy. Compared with unimodal
information, crossmodal information is more beneficial to
model complex behaviors or achieve high-level functions on
artificial systems, such as object detection (Li et al., 2019),
scene understanding (Aytar et al., 2017), lip reading (Mroueh
et al., 2015; Chung et al., 2017), etc. In psychology, crossmodal
research focuses on how crossmodal information helps humans
to recognize objects or events by integrating multimodal
information and eliminating the crossmodal ambiguity (Calvert,
2001). In computer science, crossmodal research focused on
recognizing one modality by using a multimodal dataset or
making use of the data from one single modality and retrieve
relevant data of other modalities (Skocaj et al., 2012; Wang
et al., 2017). However, compared with unimodal, computational
modelings based on crossmodal attention remains lacking.
In this section, we particularly introduce the undeveloped
computational modeling work on selective attention from the
audiovisual crossmodal perspective.
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Many studies focus on multimodal fusion (Ramachandram
and Taylor, 2017), but research about crossmodal selective
attention in computer science is limited. Parisi et al. conducted a
series of audiovisual crossmodal conflict experiments to explore
human selective attention mechanisms in complex scenarios
(Parisi et al., 2017, 2018; Fu et al., 2018). During human
behavioral tasks, visual and auditory stimuli were presented in
an immersive environment. Four loudspeakers were set behind
the corresponding positions on a 180-degree screen, where
four human-like avatars with visual cues (lip movement or
arm movement) were shown. The visual cue and the sound
localization could be congruent or incongruent (e.g., the left-
most sound with the right-most avatar’s lip movement). During
each trial, human participants were asked to determine where
the sound was coming from. Participants had to pay attention
to the sound localization and suppress the attentional capture
by any visual stimuli. Analyses of human behavior results
showed that even though arm moving was visually more salient
than lip moving, humans had higher error rates of the sound
localization when viewing lip movement. This suggests that lip
moving might contain more speech or semantic information
so it is more difficult to be ignored. Besides, the magnitude
of the visual bias was also significant when the incongruent
AV stimuli were coming from the two avatars at the extreme
right and left sides of the screen. This indicated a wider
integration window than other simplified scenes. Based on
the bio-inspired cortico-collicular architecture, deep and self-
organizing neural networks consisting of visual and auditory
neuron layers and crossmodal neuron layers were used to learn
crossmodal integration and selective attention (see Figure 5B).
In this way, human-like responses were modeled and embedded
in an iCub robot.

The work above shows that computational models can
simulate human selective attention on audiovisual sound
localization and semantic association. Due to the limited
resources and sensory modules, the future exploration of
modeling and simulating the attention module is desirable in
crossmodal robotics. Besides, selective attention mechanisms can
boost the applicability and accuracy of robots in real human-
robot interaction scenarios. Robots can select more reliable
modalities and reduce distraction and errors.

6. CONCLUDING REMARKS AND
OUTSTANDING QUESTIONS

The current review summarizes experimental findings, theories,
and model approaches of audiovisual unimodal and crossmodal
selective attention from psychology, neuroscience, and computer
science perspective. Currently, psychologists and neural scientists
are working toward computational modeling, standardizing,
and replication. In parallel, computer scientists are trying
to design and make agent systems more intelligent with
higher-level cognitive functions, meta-learning abilities, and
lower learning costs. Some advantages, unresolved problems,
and future directions of collaborative research in psychology,
neuroscience, and computer science are summarized as follows:

6.1. How Psychology, Neuroscience, and
Computer Science Benefit From Each
Other
One the one hand, findings and methods from psychology and
neuroscience can interpret and improve models’ performance
(Hohman et al., 2018). For instance, representational similarity
analysis (RSA) is nowadays also used to compare the responses
recorded in fMRIs and artificial systems like deep learning
CNNs. RSA analyzes the similarity of fMRI responses and
brain representations by a set of stimuli (Kriegeskorte et al.,
2008). Dwivedi and Roig (2019) found that RSA shows
good performance on transfer learning and task taxonomy
by computing correlations between the models on certain
tasks. On the other hand, the-state-of-the-art approaches offer
tools to analyze big data of neural findings. For example,
the SyConn framework used deep CNNs and random forest
classifiers to accelerate data analyses on animal brains to compute
the synaptic wiring of brain areas (Dorkenwald et al., 2017).
Another application of computational modeling is examining
theories and interpreting mechanisms in human behaviors or
neural responses (O’Reilly, 2006). The key idea is to examine
crucial cognitive function in hidden layers of the modal.
Models can be built to simulate normal behaviors and then
mimic the “damage” by changing parameters of sub-units. If
the “damage” causes similar abnormal behaviors as psychiatric
patients do, the changed units may be the corresponding
mechanisms to the behaviors. For instance, Wang and Fan
(2007) collected human behavioral data by the ANT and used
leabra (local, error-driven, and associative, biologically realistic
algorithm) model (O’Reilly, 1998) to explore the potential
interaction between each functional network (alerting, orienting,
and executive control). Their model successfully simulated
healthy human behavior. After changing one parameter of
the executive control module, their model could simulate the
behavior of schizophrenic patients, suggesting the crucial role of
executive control.

6.2. Limits Remain in Current
Interdisciplinary Research
Even though we have reviewed and summarized a number of
findings from psychology and computer science, lots of unsolved
issues of attention processing remain to be disclosed. The
simulation work of crossmodal attention and conflict processing
is insufficient on robots. Besides, the problem of perceptual
constancy has not been deeply addressed in computer science.
For humans, it is easy to recognize one object from different
perspectives, such as finding an open door in a dim room.
Moreover, humans can transfer the intrinsic knowledge to learn
and infer new objects or concepts with a small number of learning
samples. However, artificial intelligent systems cannot reach
humans’ performance yet. For example, even though the scale-
invariant feature transform (SIFT) algorithm (Lowe, 1999) can
extract features from variant shapes of the same object, it cannot
recognize the variant objects when only colors exist without any
structural patterns. Current deep learning approaches like the
VGG net (Simonyan and Zisserman, 2015) has shown better

Frontiers in Integrative Neuroscience | www.frontiersin.org 13 February 2020 | Volume 14 | Article 10

https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/integrative-neuroscience#articles


Fu et al. Selective Attention Mechanisms and Modeling

performance on object recognition than traditional approaches.
However, such deep networks rely on the training dataset and
need substantial computational resources.

6.3. Future Directions for Interdisciplinary
Research
There is a lot of potential for psychologists and computer
scientists to work together to investigate both human cognition
and intelligent systems. On the one hand, psychologists can
focus on designing paradigms to diagnose and remedy shortages
of current models to improve the model accuracy. Besides,
neural studies are still needed to understand human brain
mechanisms better. It will be insightful to develop bio-inspired
computational models with a better interpretability. On the
other hand, for computer science, enhancing the complexity
of models to increase the adaptivity and flexibility to the
environment is required. At last, to balance the computational
complexity and biological plausibility is also crucial, because
humans’ behavioral patterns are limited by their capacity and
energy load, even though the properties of machines will keep
improving. In summary, deepening the understanding of each
processing mechanism rather than only describing phenomena
is the direction for research from both sides to endeavor.
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