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Objective: This study aimed to investigate the possible molecular mechanisms
associated with ischemic stroke through the construction of a INcCRNA-miRNA-mRNA
network. miRNA expression profile in GSE55937, mRNA and IncRNA expression profiles
in GSE122709, and mRNA expression profile in GSE146882 were downloaded from
the NCBI GEO database. After the identification of the differentially expressed miRNA,
INcRNA, and mRNA using GSE55937 and GSE122709 in ischemic stroke vs. control
groups, a protein-protein interaction (PPl) network was constructed. The IncRNA-
mMIiRNA, IncRNA-mRNA, and miRNA-mRNA pairs were predicted, and a IncRNA-
miRNA-mRNA network was constructed. Additionally, the gene-drug interactions were
predicted. Characteristic genes were used to construct a support vector machine
(SVM) model and verified using quantitative reverse transcription polymerase chain
reaction. In total 38 miRNAs, 115 IncRNAs, and 990 mRNAs were identified between
ischemic stroke and control groups. A PPl network with 371 nodes and 2306
interaction relationships was constructed. The constructed INncRNA-miRNA-mRNA
network contained 7 mRNAs, 14 IncRNAs, such as SND1-IT1, NAPA-AS1, LINC01001,
LUCAT1, and ASAP1-IT2, and 8 miRNAs, such as miR-93-3p and miR-24-3p. The
drug action analysis of the seven differential MRNAs included in the INncRNA-miRNA-
MRNA network showed that four genes (GPR17, ADORAT, OPRM1 and LPARS3) were
predicted as molecular targets of drugs. The area under the curve of the constructed
SVM model was 0.886. The verification results of the relative expression of RNA by
gRT-PCR were consistent with the results of bioinformatics analysis. LPAR3, ADORAT,
GPR17, and OPRM1 may serve as therapeutic targets of ischemic stroke. INcCRNA-
mIiBNA-MRNA regulatory axis such as SND1-IT1/NAPA-AS1/LINC01001-miR-24-3p-
LPAR3/ADORA1T and LUCAT1/ASAP1-IT2-miR-93-3p-GPR17 may play important roles
in the progression of ischemic stroke.
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INTRODUCTION

Ischemic stroke, characterized by cerebral ischemia, represents
a leading cause of long-term disability and mortality around
the world (Barthels and Das, 2020), and its incidence has been
increasing. Globally, about 15 million people suffer from stroke
each year and ischemic stroke accounts for around 87% of these
cases (Bao et al, 2018). Ischemic stroke is a highly complex
disease with multiple risk factors, such as atherosclerosis,
hypertension, alcohol consumption, smoking, and type 2
diabetes (Tmoyan et al, 2020). Currently, thrombolysis is
the only effective treatment for ischemic stroke (Campbell,
2017). Despite the advances in the understanding of the
cause and treatment of this disease, its exact pathophysiologic
mechanism is still not completely understood. Thus, a better
understanding of the molecular mechanisms underlying the
pathological process of stroke may provide new methods for
ischemic stroke therapy.

Recently, it was reported that genetic factors are associated
with stroke risk and some genetic variations have been
discovered through genome-wide association studies (Chen
et al, 2019). Claudin-5, as a tight link protein in the blood-
brain barrier (BBB), is involved in regulating the integrity and
permeability of BBB. Increasing the expression of claudin-5
can play a protective role in neurological diseases, especially
in ischemic stroke (Lv et al., 2018). The brain after ischemia
is mainly characterized by severe inflammation. Interleukin
1 and tumor necrosis factor are elevated in peripheral
blood leukocytes within a few hours after ischemic stroke
(Rostevanov et al., 2020). In addition to coding RNAs, some
non-coding RNAs, including microRNAs (miRNAs) and long
non-coding RNAs (IncRNAs), also play critical roles in the
pathology of ischemic stroke. For instance, some miRNAs,
such as miR-155, miR-125a/b-5p, and miR-22, can regulate
blood pressure and therefore affect patients’ outcomes during
ischemic stroke therapy (Bulygin et al., 2020). Hyperglycemia
in patients with type 2 diabetes induces platelet activation
through miR-144 and miR-233. Low expression levels of
platelet and plasma miR-233 and high expression levels of
platelet and plasma miR-144 may be risk factors for ischemic
stroke in patients with type 2 diabetes (Yang et al, 2016).
The roles of IncRNAs in ischemic stroke have recently been
elucidated, and many aberrantly expressed IncRNAs have been
identified, such as MALAT1 (Zhang et al.,, 2017), MEG3 (Yan
et al, 2016), and H19 (Wang et al, 2017). It is necessary
to understand the effects of IncRNA-miRNA-mRNA axis on
ischemic stroke.

In this study, we conducted an integrated analysis of the
miRNA, mRNA, and IncRNA expression profiles of ischemic
stroke. After the identification of the differentially expressed
miRNAs, mRNAs, and IncRNAs in ischemic stroke group
vs. healthy group, the IncRNA-miRNA, IncRNA-mRNA,
and miRNA-mRNA pairs were predicted, and a IncRNA-
miRNA-mRNA network was constructed. The results may
further explain the regulatory mechanisms of miRNAs and
IncRNAs and provide new therapeutic strategies against
ischemic stroke.

MATERIALS AND METHODS

Expression Profile Data

Three expression profile datasets (GSE55937, GSE122709,
and GSE146882) were downloaded from the GEO database.!
GSE55937 is a miRNA expression profile, involving 48 plasma
samples (24 ischemic stroke patients vs. 24 healthy adults)
and was detected on the platform of GPL16384 [miRNA-
3] Affymetrix Multispecies miRNA-3 Array. GSE122709 is
an expression profile of mRNAs and IncRNAs, involving
5 ischemic stroke patients and 5 healthy adults, and the
detection platform was GPL20795 HiSeq X Ten (Homo sapiens).
GSE146882 is an expression profile of mRNAs, involving ten
patients with atherosclerosis-induced ischemic stroke and ten
healthy volunteers, and the detection platform was GPL23178
[OEIncRNAs520855F] Affymetrix Human Custom IncRNA
Array. GSE55937 and GSE122709 were selected to screen
differentially expressed mRNAs, IncRNAs, and miRNAs, while
GSE122709 and GSE146882 were selected to construct the
support vector machine (SVM) model.

Data Preprocessing

The expression matrixes of miRNA microarray at 24 h were
analyzed. The miRNA was reannotated using the platform
annotation file. For a miRNA corresponding to multiple
probes (expression values), the mean expression value of the
miRNA was considered. For the profile data of GSE122709,
the human reference genome [Release 32 (GRCh38.p13)]
annotations file (gencode.v32.annotation.gtf) was downloaded
from the GENCODE database (Frankish et al., 2018).> The
symbol with the annotation information of “protein_coding”
was reserved as mRNA, while the symbol with the annotation
information of “IncRNA” was reserved as IncRNA. For the
mRNA data of GSE146882, preprocessed and normalized matrix
of probe expression values and annotation information were
downloaded. Probes with no match to gene symbols were
eliminated. For different probes mapped to the same gene, we
considered the mean of the different probes as the final expression
value for this gene.

Identification of Differentially Expressed
MmRNAs, IncRNAs, and miRNAs

Using the linear regression and empirical Bayes method provided
by R (v3.6.1) and limma (v3.42.0) (Ritchie et al, 2015)
packages, the expression matrixes of miRNA microarray from
the Affymetrix platform were subjected to differential expression
analysis. The p values of corresponding expression differences
were determined. The differential expression thresholds of
miRNA were set as p value <0.05 and | log fold change (FC)|
> 0.263. The result has not been corrected. The trimmed mean
of M-values algorithm (Robinson and Oshlack, 2010) in R
package edgeR (v3.28.0) (Robinson et al., 2010) was used to

http://www.ncbi.nlm.nih.gov/geo/
Zhttps://www.gencodegenes.org/human/
3https://bioconductor.org/packages/limma/
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FIGURE 1 | Volcano plots for (A) differentially expressed miRNAs, (B) differentially expressed IncRNAs, and (C) differentially expressed mRNAs.

e

calculate the normalized factors, ordinary dispersion, and intra-
gene dispersion of mRNA and IncRNA expression profiles on
the Hiseq platform. Additionally, the exact test was performed
to obtain the differential expression results and p value. The
expression thresholds of IncRNA and mRNA were false discovery
rate (FDR) < 0.05 and | logFC| > 2.

PPI Network and Module Analyses of
Differentially Expressed mRNAs

The interaction between differentially expressed mRNA was
predicted using String database (v11) (Szklarczyk et al., 2018),*
and the relationship with confidence score > 0.9 (highest
confidence) was determined. The network was built using
Cytoscape v3.7.2 (Shannon et al.,, 2003).> The degree values of
nodes were counted and the connections between nodes were
observed. The functional modules were predicted using plug-in
MCODE (v1.5.1) (Bader and Hogue, 2003),° and the module with
score >10 was selected for gene ontology-biological processes
(GO-BP) enrichment analysis.

Co-expression Analysis of IncRNAs and
mRNAs

Based on the expression data and Pearson correlation coefficient
method, the co-expression relationship between differentially
expressed IncRNAs and mRNAs was determined, and the
correlation test was conducted to screen the IncRNA-mRNA
relationship with a co-expression threshold of | r|] > 095
and a p value <0.05. According to all the selected positive co-
expression relationships, the IncRNAs that had co-expression
relationships with differentially expressed mRNAs in the
functional modules were selected for GO-BP enrichment analysis
using clusterProfiler R package (v3.14.0) (Yu et al., 2012).7

*https://string-db.org/

>https://cytoscape.org/
Shttp://apps.cytoscape.org/apps/mcode
“https://bioconductor.org/packages/clusterProfiler/

Prediction of Target Genes for

Differentially Expressed miRNAs

The miRNA target gene prediction tool miRWalk v3.0 (Sticht
et al., 2018) was used to predict the differentially expressed
mRNAs that were related to differentially expressed miRNAs
and existed in the functional module predicted by MCODE.
The miRNA regulatory network was established, and the target
genes were all differentially expressed mRNAs. Additionally, the
miRNA-mRNA regulatory relationships must also be validated in
at least one of the following databases: mirdb release 6.0 (Wong
and Wang, 2014), mirtarbase release 7.0 (Chou et al., 2017), and
TargetScan release 7.2 (Agarwal et al.,, 2015). To study the BP
regulated by these miRNAs, the differentially expressed miRNAs
that regulated the mRNAs in functional modules were extracted.
Besides, the differentially expressed mRNAs in the PPI network
that were regulated by the aforementioned differential miRNAs
were also selected. According to the mRNA regulated by each
miRNA, BP terms regulated by miRNA were predicted through
GO-BP enrichment analysis.

Prediction of IncRNA-miRNA
Relationship and IncRNA-miRNA-mRNA

Network Analysis

DIANA-LncBase (v2) database (Agarwal et al., 2015) was used
to identify differentially expressed IncRNAs related to miRNAs
that regulated the module genes. The IncRNA-miRNA regulatory
relationships with thresholds greater than 0.7 were screened.

The obtained IncRNA-miRNA, IncRNA-mRNA (positive co-
expression), and miRNA-mRNA interactions were integrated
to construct the IncRNA-miRNA-mRNA regulatory network of
IncRNA, miRNA, and mRNA using Cytoscape.

Drug and Transcription Factor (TF)

Prediction
For mRNAs in the IncRNA-miRNA-mRNA network, drug
prediction was performed using DGIgb (v3.0) (Cotto et al,
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FIGURE 2 | Four PPI networks and biological processes enrichment results. Size of node represents degrees. Nodes with blue are downregulated, and those with
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2017).® Moreover, the TFs that regulated the expression levels of
differentially expressed mRNAs were predicted through TRUSST
v2 (Han et al.,, 2017).°

SVM Model Prediction

In order to determine whether the gene can be used as
biomarker in clinic. GSE122709 and GSE146882 including 15
ischemic stroke patients and 15 healthy participants were selected
to construct the SVM model. The expression values of four
characteristic genes (LPAR3, ADORAI, GPR17, OPRM]I) in two
groups of samples were used as the characteristic values for
classification prediction using SVM classifier of R package 1071
(v1.7-3) (Paraskevopoulou et al., 2015). The classification and
prediction efficiencies of the model were evaluated through
receiver operating characteristic (ROC) curve.

RNA Extraction and Quantitative

Real-Time Polymerase Chain Reaction
(QRT-PCR)

The extraction of total RNA from the peripheral blood of
10 ischemic stroke patients (ischemic stroke group) and 10
volunteers (normal control group) was carried out using
the Trizol reagent (10296-010, Invitrogen, United States).
PrimeScript Rt reagent Kit with gDNA Eraser (RR047A, Takara,
Japan) was used to synthesize cDNA. We performed qPCR
using TB Green® Premix Ex TalqTM IT (RR820A, Takara, Japan),
according to the specification provided by the manufacturer, on
Applied Biosystems 7500 quantitative PCR instrument (Applied
Biosystems, United States). The relative expression levels of RNAs
were calculated using the 2722 method. Two-tailed Student’s
t test was used to significance of differences between two groups.
Statistical significance was set at p < 0.05. GAPDH and RNU6B
(U6) were set as internal control. The primer sequences are listed
in Supplementary Table 1.

The studies involving human participants were reviewed
and approved by Ethics Committee of Shanxi Provincial
People’s Hospital (2021-17). The participants provided their
informed consent.

Shttp://www.dgidb.org/
“https://www.grnpedia.org/trrust/

RESULTS

Differential Expression Analysis

After reannotation, a total of 1733 miRNAs, 2258 IncRNAs, and
18,669 mRNAs were obtained. Using | logFC| > 0.263 and
p < 0.05 as the thresholds, 38 miRNAs (31 upregulated and 7
down-regulated miRNAs) were selected; at | logFC| > 2 and
p < 0.05, 115 IncRNAs (37 upregulated and 78 downregulated)
and 990 mRNAs (547 upregulated and 443 downregulated) were
identified. Volcano plots of differentially expressed miRNAs,
IncRNAs, and mRNAs are shown in Figure 1.

PPl Network Analysis
The PPI network of differentially expressed mRNAs obtained
from String had a total of 371 nodes and 2306 interaction
relationships. After the functional module analysis of MCODE,
four clusters were suggested as functional modules (scores >10)
(Figure 2). In cluster 1, there were 38 upregulated and one
downregulated mRNAs; in cluster 2, there were 15 upregulated
and seven downregulated mRNAs; in cluster 3, there were 19
upregulated and one downregulated mRNAs; and in cluster 4,
there were 14 upregulated and four downregulated mRNAs.
Function analysis showed that genes in cluster 1 were
significantly associated with chromatin silencing at rDNA; those
in cluster 2 were significantly enriched in chemokine-mediated
signaling pathway and response to chemokine; those in cluster
3 were significantly enriched in SRP-dependent cotranslational
protein targeting to membrane and protein targeting to ER; and
those in cluster 4 were significantly enriched in nucleosome
assembly and chromatin assembly (Figure 2).

Prediction of IncRNA-mRNA

Co-expression Relationships

There were 1947 differentially expressed IncRNA-mRNA pairs,
of which 1387 were positively correlated, including 94 IncRNAs
and 563 mRNAs. In addition, 36 IncRNAs had co-expression
relationships with 79 mRNAs in the functional modules. Based
on all the positively correlated co-expression relationships of
IncRNA and mRNA, the functions of the 36 differentially
expressed IncRNAs were predicted. As shown in Figure 3,
the BP terms nucleosome assembly, chromatin assembly, DNA
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packaging, protein-DNA complex subunit organization, etc.,
were significantly enriched.

miRNA-Target Gene Prediction

A total of 80 miRNA-target gene relationship pairs were identified
by miRWalk v3.0, including 29 differentially expressed miRNAs
and 53 differentially expressed mRNAs (Figure 4A). Among the
80 miRNA-target gene relationship pairs, nine pairs comprised
seven differentially expressed mRNAs in functional modules. The
nine miRNA-target gene pairs included eight miRNAs, which
were significantly enriched in lipid homeostasis, cranial nerve
morphogenesis, and programmed cell death involved in cell
development (Figure 4B).

IncRNA-miRNA-mRNA Network Analysis
The constructed IncRNA-miRNA-mRNA network contained
seven mRNAs, 14 IncRNAs, and eight miRNAs (Figure 5).
Additionally, the network included four positively correlated
IncRNA-target (mRNA), 24 IncRNA-miRNA interactions, and
nine miRNA-mRNA interactions.

Drug and TF Prediction for mRNA in
IncRNA-miRNA-mRNA Network

Drug action analysis was performed for seven differential mRNAs
included in the IncRNA-miRNA-mRNA network, and four genes
were predicted as molecular targets of drugs, involving 213
drug-target pairs (Figure 6). We found that lysophosphatidic
acid receptor 3 (LPAR3) and G protein-coupled receptor 17
(GPR17) were targeted by seven drugs. Adenosine Al receptor

(ADORALI) was targeted by 71 drugs and opioid receptor Mu
1 (OPRM1) was targeted by 128 drugs. Among the drugs, 76
acted as antagonists, which may have inhibiting effect on the
related biological processes of OPRM1, ADORA1, and LPAR3.
TF prediction of the seven mRNAs identified only one TF
[nuclear factor kappa B subunit 1 (NFKB1)], which regulated the
transcription of OPRM1 and ADORAL.

SVM Model Prediction

In order to determine whether the molecular targets of drugs can
be used as biomarkers for clinical application. Four genes, LPAR3,
ADORALI, GPR17, and OPRMI, were identified by SVM model
prediction as molecular targets of drugs and ROC curve was used
to predict the efficiency of the model. As shown in Figure 7, the
area under the curve (AUC) was 0.886.

qRT-PCR Verification
The relative expression level of four genes used for the
construction of the SVM model was verified using qRT-PCR. As
predicted, the relative expression level of GPR17 in the ischemic
stroke group was significantly lower than that in the normal
group (p < 0.01), whereas the relative expression of LPAR3
(p < 0.05), ADORAI (p < 0.05), and OPRMI (p < 0.01) in the
ischemic stroke group was significantly higher than that in the
normal group (Figure 8).

qRT-PCR was also used to verity the relative expression
level of RNAs related with that four RNAs which were used to
construct SVM model (Figure 9). These RNAs included three
IncRNAs (SNHG5, NAPA-AS1, SND1-IT1) and three miRNAs
(miR-3135B, miR-24-3p, miR-93-3p). As shown in Figure 9,
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the relative expression of SNHG5, NAPA-AS1, miR-24-3P, and
miR-93-3p in the ischemic stroke group was significantly higher
than that in the control group (p < 0.05), whereas the relative
expression of SND1-IT1 and miR-3135b in the ischemic stroke
group was significantly lower than that in the control group
(p < 0.05).

DISCUSSION

In this study, based on the differentially expressed miRNAs,
mRNAs, and IncRNAs obtained from the plasma of ischemic

stroke patients, a IncRNA-miRNA-mRNA network was
constructed. Among the seven mRNAs in the network, four genes
(LPAR3, ADORAI, GPRI17, and OPRM1) were predicted to have
interactions with drugs. They were associated with the regulatory
axis, such as SNDI1-IT1/NAPA-AS1/LINC01001-miR-24-3p-
LPAR3/ADORAI and LUCAT1/ASAP1-IT2-miR-93-3p-GPR17,
which may play important roles in the progression of
ischemic stroke.

Both LPAR3 and ADORA1 were regulated by miR-24-3p in the
network. Additionally, miR-24-3p interacted with four IncRNAs,
including KCNQ1OT1, SND1-IT1, NAPA-AS1, and LINC01001.
LPARS3 is a receptor for lysophosphatidic acid (LPA), which is a
multi-functional glycerophospholipid. LPA affects six G protein-
coupled receptors (Gaire et al., 2019). Among these receptors,
LPAI and LPA5 have been identified as the pathogenic factors
of acute ischemic injury (Gaire et al., 2019; Sapkota et al., 2020).
It has been reported that LPA5 is upregulated in the injured
brain after acute ischemic stroke, and inhibiting its activity can
reduce acute brain injury by reducing the inflammatory response
in the injured brain (Sapkota et al., 2020). In this study, the
expression of LPAR3 increased in patients with ischemic stroke,
but there has been no prior report on the relationship between
LPAR3 and ischemic stroke. The progression of asymptomatic
carotid artery stenosis (ACAS) in patients with luminal stenosis
>50% is considered a potential risk factor for ischemic stroke.
A study reported that the expression of miR-24-3p significantly
increased in patients with ACAS progression (Dolz et al., 2017),
which is consistent with our result that the expression of miR-
24-3p was clearly upregulated in patients with ischemic stroke
compared with healthy control. Intracranial atherosclerosis is a
common cause of ischemic stroke and has a high recurrence rate
(Hurford and Rothwell, 2021). In a prospective study, miR-24-
3p was identified to be significantly associated with angiogenic
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factors, which are associated with intracranial atherosclerosis
(Jiang et al., 2019).

The relative expression levels of SND1-IT1 in the ischemic
stroke group was significantly lower than that in the control
group, whereas the relative expression of NAPA-AS1 in the
ischemic stroke group was significantly higher than that in the
control group. The result of qRT-PCR verification is consistent
with the result of our bioinformatic analysis. In this study, NAPA-
AS1, KCNQIOT1 and LINCO01001 were identified as possibly
involved in chromatin and nucleosome assembly. A previous
study revealed that prothymosin o could stimulates cell
proliferation and differentiation through chromatin remodeling
and was shown to be protective against ischemic stress (Krishna
et al., 2015). Extracellular nucleosomes were recently shown
to promote coagulation and intravascular thrombus formation

(Massberg et al., 2010). Elevated concentrations of DNA and
nucleosomes have also been found in stroke patients (De Meyer
etal.,2012). These results indicated that NAPA-AS1, KCNQI1OT1
and LINC01001 may also involved in the process of ischemic
stress by regulating the chromatin and nucleosome assembly.
More experiments are needed in the future. Thus, we speculated
that KCNQ1OT1, SND1-IT1, NAPA-AS1, and LINC01001 may
interact with miR-24-3p and facilitate the regulation of LPAR3
and ADORAI in ischemic stroke.

GPRI17 was regulated by miR-93-3p, which interacted with
four IncRNAs, such as LUCAT1 and ASAP1-IT2. GPR17 belongs
to a G protein-coupled receptor superfamily, which is the largest
and most diverse cell surface receptors (Marucci et al.,, 2019).
It has been reported that GPR17 mediates immune response
and ischemic/inflammatory states, including stroke and some
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and ** represents p < 0.01.

neurodegenerative diseases (Zhao et al., 2018) GPR17 receptor
may be a target for stroke, brain and spinal cord injury, and
diseases characterized by neuronal and myelin dysfunctions
(Bonfanti et al., 2017, 2020; He et al., 2018). We found that the
relative expression level of GPR17 in ischemic stroke patients was
significantly lower than that in normal participants (p < 0.01).
Bonfanti et al. reported that GPR17 is transiently expressed
on early oligodendrocyte precursors, and has emerged as a
target for implement stroke repair through the stimulation of
oligodendrocyte precursors maturation (Bonfanti et al., 2017).
The verification result of the expression level of miR-93-3p is
consistent with the result predicted by bioinformatics. Thus, we
speculated that miR-93-3p may be involved in the progression of
ischemic stroke by regulating GPR17.

Additionally, OPRM1 and ADORAI were predicted to be
regulated by TF NFKB1. NFKB is a main transcription regulator
of apoptosis, cell growth, and genes associated with immune
response control, and it plays a key role in the modulation of
inflammation (Zhang et al.,, 2016). Interestingly, evidence has
indicated that inflammation plays a critical role in ischemic
stroke (Shekhar et al., 2018). After an ischemic stroke, secondary
neuroinflammation occurs, and specifically, pro-inflammatory
signals from immune mediators quickly cause a large number
of inflammatory cells to infiltrate the ischemic area, thereby

aggravating brain damage (Jayaraj et al, 2019). NFKBI gene
encodes a 105 kD non-DNA-binding protein of NFKB, which
undergoes cotranslational processing to produce a 50-kD DNA-
binding protein (p50) (Cartwright et al., 2016). The p50 subunit
has both pro- and anti-inflammatory properties. A recent study
has indicated that the polymorphisms in NFKB1 promoter can
modulate the susceptibility to ischemic stroke (Kim et al., 2018).
Moreover, OPRM1 and ADORA1I were involved in cluster 2, and
this cluster was associated with some inflammatory functions
(De Gregori et al.,, 2015; Borea et al.,, 2018). Taken together,
OPRM1 and ADORAI may be associated with the susceptibility
of ischemic stroke through the inflammatory pathway.

There were some limitations in this study. On the one hand,
we only used qRT-PCR to verify the expression level of RNA,
and research on the mechanism requires more experiments in the
future study. On the other hand, the data sets included in this
study came from different testing platforms, which may cause
our results to deviate from the results produced by using the
same platform data.

In conclusion, LPAR3, ADORAI, GPR17, and OPRMI may
serve as therapeutic targets of ischemic stroke. Regulatory
axis, such as SNDI1-IT1/NAPA-AS1/LINC01001-miR-24-3p-
LPAR3/ADORA1 and LUCAT1/ASAPI-IT2-miR-93-3p-GPR17
may play important roles in the progression of ischemic stroke.
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