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In this review, we highlight evidence that supports a role for the paraventricular
nucleus of the thalamus (PVT) in motivated behavior. We include a neuroanatomical
and neurochemical overview, outlining what is known of the cellular makeup of the
region and its most prominent afferent and efferent connections. We discuss how
these connections and distinctions across the anterior-posterior axis correspond to the
perceived function of the PVT. We then focus on the hypothalamic-thalamic-striatal circuit
and the neuroanatomical and functional placement of the PVT within this circuit. In this
regard, the PVT is ideally positioned to integrate information regarding internal states and
the external environment and translate it into motivated actions. Based on data that has
emerged in recent years, including that from our laboratory, we posit that orexinergic
(OX) innervation from the lateral hypothalamus (LH) to the PVT encodes the incentive
motivational value of reward cues and thereby alters the signaling of the glutamatergic
neurons projecting from the PVT to the shell of the nucleus accumbens (NAcSh). The
PVT-NAcSh pathway then modulates dopamine activity and resultant cue-motivated
behaviors. As we and others apply novel tools and approaches to studying the PVT we
will continue to refine the anatomical, cellular, and functional definitions currently ascribed
to this nucleus and further elucidate its role in motivated behaviors.

Keywords: paraventricular thalamus, lateral hypothalamus, nucleus accumbens, reward, motivation, associative
learning, incentive salience

INTRODUCTION

Behavioral neuroscience research has long been focused on unveiling the brain mechanisms
underlying motivated behavior. Olds and Milner (1954) were among the first to identify
brain structures involved in appetitive motivation and reinforcement learning. Their
pioneering experiments showed that rats would repeatedly press a lever for electrical
stimulation of brain regions that we now consider part of the mesocorticolimbic ‘‘reward’’
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system. Since these initial experiments, however, we have learned
that ascribing terms such as reward or reinforcement learning to
a specific brain mechanism or circuit is overly simplistic both in
terms of the semantics and the underlying neural mechanisms
(Milner, 1991). We now know that the classic ‘‘motive circuit’’
extends beyond those brain structures first identified by Olds
and Milner (1954; see also Milner, 1991), and more closely
resembles that put forth by Ann Kelley in the early 2000s
(Kelley et al., 2005).

Among the brain regions included on Ann Kelley’s maps
of motivated behavior is the paraventricular nucleus of the
thalamus (PVT). The PVT is a midline thalamic structure
that is ideally placed to integrate information from arousal,
limbic, cortical, and motor circuits in the brain (Figure 1).
Not long after the initial studies by Olds and Milner (1954),
Cooper and Taylor (1967) reported that rats with electrodes
implanted within the PVT and surrounding areas demonstrated
self-stimulation behavior. These findings were later supported by
the work of Clavier and Gerfen (1982), who showed that levels
of self-stimulation increased as electrodes became localized to
midline thalamic structures, including the PVT. In the decade
that followed, a number of studies demonstrated engagement
of the PVT in response to drugs of abuse and associated
stimuli (Deutch et al., 1995, 1998; Pierce and Kalivas, 1997;
Young and Deutch, 1998; Stephenson et al., 1999). Despite
this earlier research identifying a potential role for the PVT
in reward processing and reinforcement learning, and Ann
Kelley’s subsequent recognition of this nucleus as a primary
node of motivated behavior, only in recent years has the
PVT gained increasing attention in behavioral neuroscience
research (see reviews: Martin-Fardon and Boutrel, 2012; James
and Dayas, 2013; Haight and Flagel, 2014; Hsu et al., 2014;
Matzeu et al., 2014; Kirouac, 2015; Millan et al., 2017;
Matzeu and Martin-Fardon, 2018; Zhou and Zhu, 2019; Barson
et al., 2020; McGinty and Otis, 2020; Curtis et al., 2021;
McNally, 2021).

Here, we will review the literature that supports an integrative
role of the PVT in motivated behavior as first put forth by Kelley
and colleagues (Kelley et al., 2005). We will focus specifically
on the hypothalamic-thalamic-striatal axis, with a proposed role
for the PVT in encoding signals from the lateral hypothalamus
(LH) and, in turn, sending signals to the ventral striatum
to guide motivated behavior. We will highlight anatomical,
pharmacological, and behavioral studies that have aimed to
unmask the function of this circuit. Further, we include research
from our own laboratory which has revealed a specific role
for the PVT in encoding the incentive motivational value of
reward cues.

NEUROANATOMICAL AND
NEUROCHEMICAL CHARACTERISTICS OF
THE PARAVENTRICULAR NUCLEUS OF
THE THALAMUS

Comprehensive tracing and anatomical studies have delineated
the afferent and efferent connections of the PVT (see

Figure 1), as well as the neurotransmitter and neuropeptide
profiles within the region (for review see, Kirouac, 2015;
Barson et al., 2020; Curtis et al., 2021). The PVT is
densely innervated by glutamatergic afferents from the medial
prefrontal cortex, with the most abundant population coming
from the prelimbic cortex (PrL; Li and Kirouac, 2012).
Although less dense relative to cortical inputs, the PVT
also receives afferents from a range of subcortical regions
including the hypothalamus, LH, hippocampus, and amygdala;
and from brainstem structures including the periaqueductal
gray and dorsal raphe (Van der Werf et al., 2002; Vogt
et al., 2008; Hsu and Price, 2009; Li and Kirouac, 2012).
The PVT has a number of reciprocal connections, with
primarily glutamatergic efferents terminating in both cortical
and subcortical structures including the PrL, hypothalamus,
hippocampus, and amygdala (Su and Bentivoglio, 1990; Li and
Kirouac, 2008, 2012; Vertes and Hoover, 2008). The PVT also
sends glutamatergic efferents to the nucleus accumbens core
(NAcC) and shell (NAcSh; Parsons et al., 2006; Vertes and
Hoover, 2008; Dong et al., 2017), making it ideally positioned
to integrate information regarding internal states and the
external environment and translate it into motivated actions
(Kelley et al., 2005).

As its afferents and efferents are primarily glutamatergic,
it is not surprising that glutamatergic markers, like vesicular
glutamate transporter 2 (vGLUT2) mRNA, are highly expressed
in the PVT (Barroso-Chinea et al., 2007). However, the
neurochemical composition of the PVT extends beyond
glutamate and is complex and heterogeneous. Other
neurotransmitter and neuropeptide systems that have been
observed within this thalamic nucleus include dopamine (DA),
gamma aminobutyric acid (GABA), opioids, cocaine-and
amphetamine-regulated transcript (CART), and orexin (Lindvall
et al., 1984; Koylu et al., 1997, 1998; Peyron et al., 1998).
Through retrograde labeling of tyrosine hydroxylase (TH)
neurons, it was shown that the majority of DA fibers in the
PVT originate in the hypothalamus and periaqueductal gray
(Li et al., 2014). Of the dopamine receptors, the D3 receptor,
known to play a role in drug-seeking behavior (Xi et al.,
2006; Peng et al., 2009; Khaled et al., 2010; Higley et al.,
2011; Rice et al., 2013), appears to be the most abundant in
the PVT (Mansour and Watson, 1995; Haight and Flagel,
2014). GABAergic neurons seem to be lacking within the PVT
(Ottersen and Storm-Mathisen, 1984; Feldblum et al., 1993; see
also Alamilla and Aguilar-Roblero, 2010). However, the PVT
receives dense GABAergic innervation from several brain
regions, including the reticular nucleus of the thalamus, the
brainstem, and a number of hypothalamic nuclei (Cornwall
and Phillipson, 1988; Chen and Su, 1990; Krout et al., 2002;
Zhang et al., 2006; Li and Kirouac, 2012). That arising from
the LH (Otis et al., 2019) and the zona incerta (Zhang and
van den Pol, 2017) seems to be particularly important for
motivated behaviors. Several neuropeptide systems are also
abundant in the PVT. From the opioid family, expression of
dynorphins and enkephalins are apparent, as are the kappa,
mu, and delta-opioid receptors (Marchant et al., 2010; Curtis
et al., 2021). CART-containing neuron fibers are also found
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FIGURE 1 | The PVT as a critical node of the hypothalamic-thalamic-striatal circuit. This graphic illustrates the afferents and efferents associated with the
paraventricular nucleus of the thalamus (PVT), with an emphasis on the hypothalamic-thalamic-striatal circuit. The purple neuron represents orexinergic (OX)
innervation from the lateral hypothalamus (LH)-PVT. The orange neuron is illustrating glutamatergic (Glu) innervation from the PVT-nucleus accumbens (NAc). The
blue circle depicts the NAc, which receives substantial innervation from the PVT. The gray circle represents the anatomical location of the prelimbic cortex (PrL),
which sends dense glutamatergic innervation to the PVT. The dotted black lines throughout the schematic depict neuronal connections, some of which are reciprocal
(double arrow). Amy, amygdala; BNST, bed nucleus of the stria terminalis; DR, dorsal raphe; Hipp, hippocampus; IL, infralimbic cortex; LH, lateral hypothalamus;
NAc, nucleus accumbens; PAG, periaqueductal gray; PrL, prelimbic cortex; PVT, paraventricular thalamic nucleus; SCN, suprachiasmatic nucleus; VP, ventral
pallidum; VTA, ventral tegmental area; DA, dopamine; Glu, glutamate; OX, orexin.

throughout the PVT (Koylu et al., 1998; Kirouac et al., 2006),
and have been implicated in drug-seeking behavior (Dayas et al.,
2008; James et al., 2010; Choudhary et al., 2018). Similarly,
orexin signaling within the PVT has been shown to play a role
in drug-seeking and other reward-related behaviors (Choi et al.,
2010, 2012; Matzeu et al., 2016; Meffre et al., 2019; Matzeu and
Martin-Fardon, 2020, 2021), with both isoforms of orexin and
the associated orexin receptors apparent throughout the nucleus
(Marcus et al., 2001).

The PVT is often divided into anterior (aPVT) and
posterior (pPVT) subregions based on anatomical boundaries
that correspond with observational differences in cellular
organization and function. The entire axis of the PVT is tightly
linked to the limbic system via both afferent and efferent
connections (Li and Kirouac, 2008, 2012; Kirouac, 2015), and
some to a different degree in the aPVT vs. pPVT. Compared to
the pPVT, the aPVT receives more dense neuronal projections
from areas including the hypothalamus, ventral hippocampal
subiculum, and infralimbic cortex (Canteras and Swanson, 1992;
Li and Kirouac, 2012); and has reciprocal connections with a
number of brain regions, including the suprachiasmatic nucleus
(Moga and Moore, 1997; Novak et al., 2000; Li and Kirouac,
2008; Vertes and Hoover, 2008). These connections support the
proposed role of the aPVT in reward-seeking behavior (Do-
Monte et al., 2017; Cheng et al., 2018) and arousal (Kolaj
et al., 2012; Gao et al., 2020). The pPVT is more heavily
innervated by neurons from the hypothalamus and prelimbic,
infralimbic, and insular cortices (Li and Kirouac, 2012), and

sends more projections to the bed nucleus of the stria terminalis
and central nucleus of the amygdala (Li and Kirouac, 2008).
These neuroanatomical connections support a proposed role
for the pPVT in stress-responsivity (Bhatnagar and Dallman,
1998, 1999; Bhatnagar et al., 2002, 2003; Heydendael et al.,
2011) and anxiety-like behaviors (Li et al., 2010a,b; Barson
and Leibowitz, 2015). Both the aPVT and pPVT project to
the nucleus accumbens (NAc), with the densest projections
to the NAcSh (Li and Kirouac, 2008; Vertes and Hoover,
2008). The aPVT projects more heavily to the dorsomedial
NAcSh, and the pPVT to the ventromedial NAcSh (Dong
et al., 2017). In line with the presumed functional distinctions
between the aPVT and pPVT, the dorsomedial NAcSh has
been implicated in positive emotional valence (e.g., appetitive
and reward-related behaviors; Peciña et al., 2006; Reed et al.,
2015), whereas the ventromedial NAcSh has been implicated in
encoding negative emotional valence (e.g., defensive behaviors;
Reynolds and Berridge, 2008; Berridge and Kringelbach, 2015).
Further, as comprehensively outlined in a recent review article
(Curtis et al., 2021), neuropeptides involved in arousal (e.g.,
galanin and proenkephalin) are apparent in the aPVT, while
those involved in depressive- and anxiety-like behaviors (e.g.,
tachykinin 2, cholecystokinin, corticotropin-releasing hormone)
are apparent in the pPVT. Neuropeptides associated with
reward-related behaviors (e.g., tachykinin 2 and CART) are
most abundant in the middle portion of the PVT (for review
see Curtis et al., 2021). While much of the existing literature
focuses on aPVT vs. pPVT, new technologies are pushing
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many in the field to study this nucleus based on molecular
and cellular indicators. For example, recent work in mice
identified two major classes of PVT neurons based on genetic
markers (Gao et al., 2020). These Type I (Drd2) and Type
II (Gal) PVT neurons were shown to differ in anatomy and
function, representing a novel approach to characterizing the
PVT along anterodorsal and posteroventral gradients (Gao
et al., 2020). Anatomical, cellular, and functional characterization
of the PVT is complex, often ambiguous, and sometimes
conflicting; yet, there is clearly a role for this nucleus in
motivated behaviors. If one were to assign functions based
on anatomical boundaries and connectivity, the aPVT appears
to play a predominant role in positive emotional valence
and appetitive motivation (Barson et al., 2015; Do-Monte
et al., 2017; Cheng et al., 2018), whereas the pPVT may
be more involved in negative emotional valence and aversive
motivation (Bhatnagar and Dallman, 1998, 1999; Bhatnagar
et al., 2002, 2003; Li et al., 2010a,b; Heydendael et al., 2011;
Barson and Leibowitz, 2015).

THE PVT AS A CRITICAL NODE OF THE
HYPOTHALAMIC-THALAMIC-STRIATAL
CIRCUIT

The PVT has been postulated to mediate motivated behavior
via its placement in the hypothalamic-thalamic-striatal circuit
(Kelley et al., 2005). Kelley and colleagues recognized that
the PVT is a key node of this subcortical circuit, acting to
encode information about energy and arousal states from the
hypothalamus while sending this information to the striatal
complex to guide motivated behavior. Specifically, it was
hypothesized that the PVT integrates orexinergic input from the
LH and, in turn, sends information via glutamatergic projections
to the nucleus accumbens to elicit actions (see Figure 1).
These glutamatergic terminals from the PVT interface with DA
neurons in the NAcSh (Pinto et al., 2003) and can alter DA
release, independent of the VTA (Parsons et al., 2007). Despite
these provocative neuroanatomical and neurochemical findings,
relatively little behavioral neuroscience research has focused
on the LH-PVT-NAc circuit; but that which has supports its
proposed role in motivated behaviors.

The LH, the primary source of orexin neurons in the
brain, was originally studied for its role in feeding behaviors
(Anand and Brobeck, 1951; Hoebel and Teitelbaum, 1962),
and subsequently in other homeostatic functions, such as sleep
regulation and circadian rhythms (Kolaj et al., 2007; Colavito
et al., 2015). The two orexin peptides, orexin-A, and orexin-
B, are synthesized from the same mRNA transcript, prepro-
orexin (de Lecea et al., 1998), found in the LH (Tsujino and
Sakurai, 2013). Orexinergic neurons in the LH project to a wide
variety of areas, including the cerebral cortex, hippocampus,
and thalamus, with a large percentage terminating in the PVT
(Peyron et al., 1998; Kirouac et al., 2005). The density of LH
orexinergic input is stronger in the pPVT compared to aPVT
(Goto and Swanson, 2004; Kirouac et al., 2005). It is known that
orexin is excitatory (de Lecea et al., 1998), orexinergic neurons

can co-release glutamate (Torrealba et al., 2003; Schöne et al.,
2014), and that LH orexinergic inputs can have an excitatory
effect on postsynaptic neurons in the PVT (Ishibashi et al.,
2005; Huang et al., 2006). It should be noted, however, that
a recent report suggests that LH-PVT neurons are primarily
GABAergic (Otis et al., 2019). This finding is based largely on
electrophysiological recordings, and possibly due to the relatively
low numbers of PVT-projecting orexinergic neurons (Kirouac
et al., 2005), which would preclude the ability to detect an
electrophysiological signature of these neurons. Indeed, there
is likely a disconnect between electrophysiological evidence
and function, as there are several studies demonstrating that
orexinergic signaling within the PVT plays a predominant role
in appetitive motivated behaviors (e.g., Li et al., 2009; Stratford
and Wirtshafter, 2013; Barson et al., 2015). Notably, stimulation
of GABAergic neurons in the LH-PVT pathway also elicits
consummatory and reward-seeking behaviors (Wu et al., 2015;
Zhang and van den Pol, 2017). Given the characteristics and
temporal dynamics of GABA- vs. orexinergic signaling, the
influence of these systems on PVT function and motivated
behaviors likely occurs via distinct mechanisms, which warrant
further investigation.

The orexin peptides, and their two G-protein coupled
receptors, orexin-1 (OX1) and orexin-2 (OX2) (Sakurai et al.,
1998), are found throughout the PVT (Marcus et al., 2001;
Parsons et al., 2006). Each receptor has a different binding
affinity for each neuropeptide, with OX-1 having a higher
affinity for orexin-A, and OX-2 having similar affinities for
orexin-A and orexin-B (Marcus et al., 2001). Orexin signaling
within the PVT has been implicated in behavioral responses
to both natural rewards and drugs of abuse (Li et al., 2009;
Stratford and Wirtshafter, 2013; Barson et al., 2015). For
example, microinjections of orexin-A into the PVT elicits food-
and drug-seeking behavior (Barson et al., 2015; Matzeu et al.,
2018); whereas antagonism of OX-1 in the PVT decreases
cue-induced reward-seeking behavior (Cole et al., 2015). Other
reports have demonstrated the involvement of OX-2 (Matzeu
et al., 2016), but not OX-1 (James et al., 2011), receptors
in the PVT in cocaine-seeking behavior. Regardless of the
mechanism, these findings highlight comparable roles for both
the LH-PVT pathway and orexin signaling within the PVT in
motivated behaviors (Barson et al., 2015; Matzeu et al., 2016,
2018).

Given the data reviewed above, it is perhaps not surprising
that manipulations of the orexin system within the PVT
are known to impact DA transmission in the NAc, a
critical component of reward processing. For example, in vivo
administration of orexin-A into the PVT significantly increases
dopamine levels in the NAc (Choi et al., 2012). Further, it
was recently shown that infusion of orexin-A into the pPVT
facilitates cue-elicited behavioral responses for a food reward
and concurrent neuronal activity in the NAcC in sated rats
(Meffre et al., 2019). In the same report, it was shown that
optogenetic stimulation of the pPVT elicits similar behavioral
and neuronal results (Meffre et al., 2019). Others have reported
that targeted optogenetic stimulation of the aPVT-NAcSh
pathway also enhances motivation to consume food in hungry
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mice (Cheng et al., 2018), presumably via dopamine release
in the NAcSh. These findings are consistent with those of
Choudhary et al. (2018), who reported that food-seeking
behavior in sated rats was impacted by CART signaling in
LH-PVT projection neurons and, in turn, by glutamatergic
PVT-NAcSh neurons. Similarly, activation of neurons in the
PVT that express glucose transporter 2 and project to the
NAc results in increased sucrose-seeking behavior, highlighting
a potential role for this neuronal pathway in maintaining
a balance between homeostatic and hedonic control of food
intake (Labouèbe et al., 2016). More recently, it was shown
that optogenetic stimulation of the PVT-NAcSh pathway is
itself reinforcing; yet inhibition of the same pathway elicits
responding for a food reward even when it is not available
(Lafferty et al., 2020). Thus, the PVT-NAcSh pathway appears
to promote efficient reward-seeking behavior. Taken together,
these findings support the notion that the PVT acts to
integrate information about intrinsic motivational states and the
external environment, and, in turn, communicate with the NAc
to guide consummatory and reward-seeking behaviors in an
adaptive manner.

Beyond a specified role in reward-seeking behaviors,
a number of reports suggest a more general role for the
hypothalamic-thalamic-striatal circuit, and the PVT in
particular, in mediating adaptive responses to both appetitive
and aversive stimuli. In support, neurons in the PVT were
found to respond similarly to stimuli associated with reward
or punishment, with the neural response dependent on the
intensity of the stimulus rather than the valence (Zhu et al.,
2018). Further, PVT activity during Pavlovian cue presentation
was shown to be required for both associative reward and
aversive learning, as inhibition of PVT neurons decreases
behavioral indices of a learned response to both positive and
negative stimuli (Zhu et al., 2018). The seemingly indiscriminate
encoding of the value of appetitive and aversive stimuli within
the PVT supports the proposed role for this nucleus as a
mediator of motivational conflict (McNally, 2021). McNally
and colleagues have demonstrated that the PVT is necessary
for enabling adaptive responses under conflicting behavioral
tendencies toward danger and reward (Choi and McNally, 2017;
Choi et al., 2019). Specifically, chemogenetic inhibition across
the anterior-posterior axis of the PVT disrupts cue-elicited
appetitive behavior and increases cue-elicited aversive behavior
under conditions of motivational conflict (Choi et al., 2019).
More recently, it was shown that a subpopulation of neurons
in the aPVT that express corticotropin-releasing factor (CRF)
is particularly important for regulating responses during
motivational conflict (Engelke et al., 2021). Inactivation
of these neurons biases an animal’s response toward food,
whereas activation enables suppression of food-seeking behavior
during conflict. Further, it was determined that input from
the ventromedial hypothalamus to aPVT CRF neurons, and
output from aPVT CRF neurons to the NAc, are critical
components of the circuit that modulates reward-seeking
behavior under competing demands of avoiding threats
(Engelke et al., 2021). These studies collectively support a
role for the PVT as an arbitrator that encodes the value of

external stimuli and internal states and, in turn, facilitates
adaptive behavior.

A PROPOSED ROLE FOR THE LH-PVT-NAc
CIRCUIT IN INCENTIVE MOTIVATIONAL
PROCESSES

Many studies implicating the PVT in motivated behavior have
relied on associative learning paradigms. In fact, Ann Kelley
and colleagues (Schiltz et al., 2007) identified the PVT as a
‘‘hot spot’’ as indexed by immediate early gene expression in
response to stimuli associated with food reward (Schiltz et al.,
2007), and a number of subsequent studies demonstrated that
reward-associated cues and contexts similarly engage the PVT
(Hamlin et al., 2009; Choi et al., 2010; Igelstrom et al., 2010).
Recently, Otis and colleagues exploited new technologies to
elucidate the circuits that facilitate cue-reactivity in the PVT
(Otis et al., 2019). Their findings suggest that cue-reward
information is transmitted via inhibitory responses in the
PVT-NAc pathway and that this information is differentially
encoded by input to the PVT from the prefrontal cortex (PFC)
and LH. Specifically, they report that information about the
cue-reward association is carried by glutamatergic axons from
the PFC, whereas consummatory (i.e., licking) information
is carried by GABAergic input from the LH (Otis et al.,
2019). These findings support the hypothesis put forth by
Ann Kelley and colleagues (Kelley et al., 2005) regarding the
role of the LH-PVT-NAc axis in motivated behavior, and
allow us to refine it. One caveat to such elegant technical
approaches, however, is the inability to exploit behavioral output
as an index of neural activity and function. That is, such
approaches often require head-fixed animals or restraint in
some manner that impedes behavior. Further, in this (Otis
et al., 2019) and in fact, most studies assessing associative
cue-reward relationships, it is difficult, if not impossible,
to parse the value attributed to the cue. To circumvent
this issue and better study the neural processes underlying
cue-reward learning, we have exploited natural variation in
cue-motivated behavior using a rat model, as described below
[see also: Flagel and Robinson (2017) and Robinson and Flagel
(2009)].

When rats are exposed to a Pavlovian conditioned approach
(PavCA) paradigm, wherein presentation of a discrete cue (e.g.,
appearance of a lever) is followed by delivery of a food reward,
distinct conditioned responses emerge (Robinson and Flagel,
2009). Upon cue presentation, some rats, sign-trackers (STs),
learn to approach and interact with the cue itself; whereas
others, goal-trackers (GTs) learn to go to the food cup and
await reward delivery. The cue acquires predictive value for
both STs and GTs, as it elicits a conditioned response for both
(Robinson and Flagel, 2009). However, for STs, the cue also
acquires incentive value (i.e., incentive salience) and is thereby
transformed into a ‘‘motivational magnet’’ that is in and of
itself attractive and desirable (Robinson and Berridge, 2001;
Berridge and Robinson, 2003; Robinson and Flagel, 2009). Thus,
the ST/GT model provides a unique opportunity to dissociate
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FIGURE 2 | The PVT differentially mediates sign- and goal-tracking behavior. Schematic illustrating the paraventricular nucleus of the thalamus (PVT) as a central
locus that acts to differentially regulate sign-tracking and goal-tracking behavior. Sign-tracking is a result of incentive cue-reward learning, whereas goal-tracking is
the result of predictive cue-reward learning. We hypothesize that the incentive value of reward cues is encoded in the LH-PVT-NAc circuit (as indicated by thick
purple and orange arrows), which is engaged to a greater degree in sign-trackers. In contrast, goal-trackers rely on top-down cortical control mechanisms (as
indicated by thick green arrow) to encode the predictive value of reward cues and inhibit incentive motivational processes. LH, lateral hypothalamus; NAc, nucleus
accumbens; PrL, prelimbic cortex; PVT, paraventricular thalamic nucleus; VTA, ventral tegmental area; DA, dopamine; Glu, glutamate; OX, orexin.

the neurobiological mechanisms that underlie predictive vs.
incentive cue-reward learning; the latter of which is thought to
be especially relevant to addiction and related disorders (Stewart
et al., 1984; Childress et al., 1993; Robinson and Berridge, 1993).
Using this model, we have identified the PVT as a critical node
that mediates the propensity to attribute incentive motivational
value to reward cues (Haight and Flagel, 2014; Haight et al.,
2015, 2017; Kuhn et al., 2018a,b; Campus et al., 2019). Relative
to GTs, STs show greater neuronal activity (c-Fos) in the PVT
in response to both food- and drug-associated cues (Flagel
et al., 2011a; Yager and Robinson, 2013). Cue-induced c-Fos
mRNA levels in the PVT are correlated with those in a number
of subcortical regions for STs, and cortical regions for GTs
(Flagel et al., 2011a; Haight and Flagel, 2014). Further, there
is greater cue-induced neuronal activity (c-Fos) specifically in
LH-PVT and PVT-NAc projection neurons in STs relative to
GTs (Haight et al., 2017). To further investigate the role of the
LH-PVT pathway in incentive learning, we examined the effects
of lesioning the LH and blocking orexinergic activity in the PVT.
We found that LH lesions block the development of sign-tracking
behavior, and administration of OX-1 or OX-2 antagonists into
the PVT attenuates the expression of sign-tracking behavior
(Haight et al., 2020). Together, these data led us to develop a
neural model of sign-tracking (Figure 2); whereby orexinergic
transmission from the LH-PVT encodes the incentive value of
cues, altering communication in the PVT-NAcSh pathway, and
subsequently, dopamine activity, which we know is critical for
incentive learning (Flagel et al., 2011b). In contrast, we have
data to suggest that goal-tracking behavior is facilitated via
a cortico-thalamic-striatal pathway (see Figure 2), with input

from the PrL to the PVT encoding the predictive value of
reward cues and thereby modulating output from the PVT-NAc
to promote goal-directed behavior (Campus et al., 2019).
Together, these findings point to the PVT as a critical node in
the regulation of distinct cue-reward learning strategies, with
the LH-PVT-NAc circuit playing a specific role in incentive
motivational processes.

CONCLUSION

In merging the last decade of behavioral neuroscience research
surrounding the PVT, we have provided an outline of how this
midline thalamic nucleus acts as a critical node in motivated
behavior. The PVT was appropriately interwoven within the
classic reward circuitry by Kelley and colleagues almost 20 years
ago (Kelley et al., 2005). Various anatomical, pharmacological,
and behavioral studies have since implicated the PVT in
emotional valence, appetitive and aversive motivation, and
behavioral regulation. As such, the PVT has earned its spot
in the motive circuit, acting to multiplex interoceptive and
exteroceptive cues to adaptively guide motivated behavior.
Using state-of-the-art technology, we can now probe the role
of the PVT and its associated circuitry more deeply and
more precisely than ever before. Indeed, such approaches
have allowed us to refine the original hypothesis put forth
by Kelley and colleagues, and ascribe more specific roles
to targeted pathways and neurotransmitter systems within
PVT circuitry. Further, we have highlighted how behavioral
approaches, like those exploiting inherent individual variability,
allow us to parse the role of the PVT in specific forms of
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cue-reward learning. Together, this body of work has led us
to postulate that the PVT dynamically regulates individual
differences in associative learning processes, with the LH-PVT-
NAc circuit acting to encode the incentive value of reward-cues.
This latter process enables environmental stimuli to attain
inordinate control over behavior and lead to maladaptive
behavior reminiscent of that which characterizes addiction
and impulse control disorders. Thus, in conjunction with its
role in ‘‘motivated behavior’’, we believe the PVT—via its
connections to both cortical and subcortical regions—plays
a critical role in modulating the affective and behavioral
patterns that underlie shared facets of these and other
psychiatric conditions.
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