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As chemically specialized forms of the extracellular matrix in the central nervous
system, polyanionic perineuronal nets (PNs) contain diverse constituents, including
chondroitin sulfate proteoglycans (CSPGs), hyaluronic acid, and tenascins. They are
detectable by various histological approaches such as colloidal iron binding and
immunohistochemical staining to reveal, for instance, the CSPGs aggrecan, neurocan,
phosphacan, and versican. Moreover, biotin, peroxidase, or fluorescein conjugates
of the lectins Vicia villosa agglutinin and soybean agglutinin enable the visualization
of PNs. At present, the N-acetylgalactosamine-binding Wisteria floribunda agglutinin
(WFA) is the most widely applied marker for PNs. Therefore, this article is largely
focused on methodological aspects of WFA staining. Notably, fluorescent WFA labeling
allows, after its conversion into electron-dense adducts, electron microscopic analyses.
Furthermore, the usefulness of WFA conjugates for the oftentimes neglected in vivo
and in vitro labeling of PNs is emphasized. Subsequently, we discuss impaired WFA-
staining sites after long-lasting experiments in vitro, especially in autoptic brain samples
with long postmortem delay and partial enzymatic degradation, while immunolabeling
of aggrecan and CSPG link proteins under such conditions has proven more robust.
In some hippocampal regions from perfusion-fixed mice, more PNs are aggrecan
immunoreactive than WFA positive, whereas the retrosplenial cortex displays many
WFA-binding PNs devoid of visible aggrecan immunoreactivity. Additional multiple
fluorescence labeling exemplarily revealed in ischemic tissue diminished staining of
WFA-binding sites and aquaporin 4 and concomitantly upregulated immunolabeling of
neurofilament, light chains, and collagen IV. Finally, we briefly discuss possible future
staining approaches based on nanobodies to facilitate novel technologies revealing
details of net morphology.
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INTRODUCTION

Lattice-like coatings around neurons were first revealed by Camillo Golgi and his Italian
colleagues at the end of the 19th century as summarized by Celio et al. (1998). In parallel,
such structures resembling honey webs were described by Ramón y Cajal and his coworkers as
reported by Brauer et al. (1982) when they introduced the designation “perineuronal nets” (PNs).
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Brückner et al. (1993) gave a first overview of PNs surrounding
certain highly active neurons and emphasized the complexity
of these polyanionic structures containing mainly chondroitin
sulfate proteoglycans (CSPGs) such as aggrecan as well as
hyaluronic acid and tenascins.

Functions of PNs as chemically specialized forms of the
extracellular matrix (ECM) in the brain are still not fully
elucidated but include their role in limiting the plasticity
during ontogenesis (Hockfield et al., 1990) and critical period
regulation (Reh et al., 2020), as cation exchangers (Härtig
et al., 1999) and diffusion barriers with ion sorting properties
(Morawski et al., 2015). Very recently, PNs were shown to
stabilize the grid network that supports navigation and spatial
memory (Christensen et al., 2021). The growing interest in
PNs as forms of the ECM is reflected by numerous reviews
focused, for instance, on PNs and perinodal ECM regulating
neuronal functions (Fawcett et al., 2019) and the control of
plasticity during CNS maturation (Sorg et al., 2016; Carulli and
Verhaagen, 2021). Disturbed or degraded PNs were observed
after experimentally induced focal ischemia (Härtig et al., 2017)
and affected PNs contribute to schizophrenia (Pantazopoulos
and Berretta, 2016). The steadily increased interest for PNs
under pathological conditions is documented by several reviews
(e.g., Testa et al., 2019; Wen et al., 2018; Reichelt et al.,
2019).

Polyanionic PNs were initially detected by histological
methods, such as multifaceted Golgi techniques (Brauer et al.,
1982; Celio et al., 1998), while later being frequently visualized
by colloidal iron binding (Brückner et al., 1993), Gömöris
ammoniacal silver, and Ehrlich’s methylene blue (Murakami
et al., 1999). Among the subsequently developed antibody-based
techniques to detect net components, the immunolabeling of
aggrecan, the predominantly found CSPG in PNs, is widely
used. Various aggrecan glycoforms contribute to the molecular
heterogeneity of PNs (Matthews et al., 2002; Miyata et al., 2018).

Starting in the 1980s, the N-acetylgalactosamine-binding
lectins such as Vicia villosa agglutinin (VVA) and soybean
agglutinin (SBA) were established as additional net markers
by applying their conjugates with peroxidase (Nakagawa et al.,
1986), biotin (Kosaka and Heizmann, 1989), and fluorescein
(Mulligan et al., 1992).

Subsequently, biotinylated Wisteria floribunda agglutinin
(WFA) was introduced as a robust and selective marker
for PNs predominantly surrounding GABAergic, parvalbumin-
containing neurons (Härtig et al., 1999). Recently, WFA was
shown to bind both non-reducing terminal and internal
N-acetylgalactosamine residues to recognize heparin and to
specifically interact with non-sulfated tetrasaccharides of the O–
O type (Nadanaka et al., 2020). WFA has been applied to reveal
PNs in numerous mammalian species and even in amphibians
(Edwards et al., 2021), chicken (Morawski et al., 2009) and
seasonally altered in canary birds (Cornez et al., 2020).

This short article is focused on the technical aspects of
lectin histochemistry with WFA. Thereby, newly established
triple fluorescence labeling is applied to reveal differences
between the staining patterns of WFA-binding sites and
aggrecan immunoreactivity (ir) around parvalbumin-containing

neurons. To consider disease-related effects regarding PNs,
analyses include not only naïve tissues but also ischemia-
affected brain regions. Moreover, aspects of conventional as
well as not commonly used approaches based on WFA
conjugates are discussed.

EXPERIMENTAL PROCEDURES

In general, experiments were performed following the
ethical guidelines as given by the European Union Directive
2010/63/EU and were approved by the locally responsible
authority (Regierungspräsidium Leipzig). Three-month-old
mice underwent permanent middle cerebral artery occlusion
(pMCAO) according to Hawkes et al. (2013) and were sacrificed
by perfusion with phosphate-buffered 4% paraformaldehyde
after a period of 24 h. After removal from the skulls, the whole
brains were post-fixed with the same fixative overnight and
equilibrated with 30% phosphate-buffered sucrose. Series of
30-µm-thick forebrain sections were then cut with a freezing
microtome (Leica SM 2000R, Leica Biosystems, Wetzlar,
Germany). Prior to use, all sections were stored at 4◦C in sealed
vials filled with 0.1 M Tris-buffered saline, pH 7.4 (TBS) with
sodium azide as an additive.

All staining experiments were started by extensive washing
with TBS followed by the blocking of potential non-specific
binding sites by treatment for 1 h with 5% normal donkey serum
in TBS containing 0.3% Triton X-100 (NDS-TBS-T).

For the detection of net components and parvalbumin-ir in
ischemia-free control regions, the sections were incubated for
20 h with a mixture consisting of biotinylated WFA (B-1355-2;
Vector Labs, Burlingame, CA, United States; 15 µg/ml NDS-TBS-
T), rabbit-anti-aggrecan (AB1031; Merck Millipore, Billerica,
MA, United States; 1:200), and guinea pig-anti-parvalbumin
(195004; Synaptic Systems, Göttingen, Germany; 1:300). The
sections were then rinsed with TBS and processed for 1 h
with a cocktail containing Cy2-tagged streptavidin, Cy3-donkey-
anti-rabbit IgG, and Cy5-donkey-anti-guinea pig IgG [all from
Jackson ImmunoResearch, West Grove, PA, United States;
20 µg/ml TBS containing 2% bovine serum albumin (TBS-BSA)].

Next, ischemia-affected sections underwent the concomitant
staining of biotinylated WFA and goat-anti-collagen IV as
described earlier (Härtig et al., 2017) and combined either with
the immunodetection of neurofilament, light chain (NF-L) as
reported by Härtig et al. (2016) or aquaporin 4 (AQP4) according
to Hawkes et al. (2013). In brief, sections were first incubated
for 20 h with mixtures of biotinylated WFA (15 µg/ml NDS-
TBS-T), goat-anti-collagen IV (AB769; Merck Millipore; 1:100),
and either rabbit-anti-NF-L (171002; Synaptic Systems; 1:200)
or guinea pig-anti-AQP4 (429004; Synaptic Systems; 1:200). The
markers were then reacted for 1 h with a mixture consisting
of Cy2-streptavidin, AlexaFluor647-donkey-anti-goat IgG, and
either Cy3-donkey-anti-rabbit IgG or Cy3-donkey-anti-guinea
pig IgG (all from Jackson ImmunoResearch; 20 µg/ml TBS-BSA).

After extensive rinses with TBS, all sections were briefly
washed with distilled water, mounted onto fluorescence-free
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FIGURE 1 | Triple fluorescence labeling of the net markers WFA and aggrecan
(ACAN) combined with the immunodetection of parvalbumin (PARV)
exemplarily shown for the retrosplenial cortex (A–A′′) and the hippocampal
CA3 region (B–B′′) in non-affected control tissue from young adult mice. In
(A), the lectin-histochemical Cy2 staining of WFA reveals numerous PNs in the
retrosplenial cortex, which also displays considerable ACAN-ir in (A′). The
overlay in (A′′) elucidates several net-like structures with lectin-binding sites
but devoid of visible ACAN-ir, frequently around PARV-containing neurons. In
parallel and as expected, many PNs are positive for both markers.
WFA-positive structures in the CA3 region appear sparsely scattered (B),
whereas more ECM structures exhibit ACAN-ir (B′). The overlay elucidates
that net components with ACAN-ir outweigh those with WFA binding and are
associated with PARV-immunoreactive structures. Scale bars (A′′) (also valid
for A,A′ ), 75 µm, (B′′) (also valid for B,B′ ), 75 µm.

glass slides, air-dried, and coverslipped with Entellan in toluene
(Merck, Darmstadt, Germany).

In histological control experiments, the omission of WFA
and antibodies resulted in the expected absence of any cellular
and ECM staining.

Micrographs were made with a microscope Biorevo BZ-
9000 (Keyence, Neu-Isenburg, Germany) and processed with
PowerPoint for Mac (Office 365, version 2021; Microsoft Corp.,
Redmond, WA, United States). The contrast and brightness of
micrographs were slightly adjusted while avoiding the creation or
deletion of fluorescence signals.

RESULTS AND DISCUSSION

The Toolbox (on page 4) summarizes the 30-year-long
experience with WFA as a marker for PNs. While some
listed points deserve no additional comments, it should be

FIGURE 2 | Concomitant fluorescence staining of WFA and collagen IV (Coll
IV) in the ischemia-affected neocortex 24 h after ischemia onset combined
with the immunolabeling of NF-L (A–A′′) or AQP4 (B–B′′’). The green
fluorescent WFA staining of PNs is diminished or erased in the ischemic
tissue, which becomes obvious for the presented border zone (A,B). In
parallel, affected tissue displays a heavily upregulated NF-L-ir in the upper
cortical layers and frequently in pyramidal cells with long apical dendrites (A′).
In the first overlay (A′′), ischemic areas are additionally pronounced by
strongly enhanced collagen (Coll) IV-ir color-coded in blue. Next, panel (B′)
elucidates that in the infarcted region AQP4, as a marker for astrocytic endfeet
visualizing vessels under physiological conditions, is drastically altered (as
visible in the lower right part of the micrograph) or even abolished. The second
overlay also shows that Coll IV-ir is upregulated in areas devoid of PNs and
AQP4-ir, and also in tissue with damaged PNs and diffuse AQP4-ir. Scale bars
(A′′) (also valid for A,A′ ), 100 µm, (B′′) (also valid for B,B′ ), 100 µm.

emphasized that most of them are in line with recently
published general protocols for lectin histochemistry from
Rebelo et al. (2021). However, it should be accentuated that
preferable WFA concentrations strongly differ between sensitive
immunoperoxidase staining (0.5–1 µg/ml) and detection with
fluorescent streptavidin conjugates (10–20 µg/ml).

An applicable, but rarely used option is the labeling with
fluorescein-tagged WFA (FITC-WFA) which can be enhanced
by Cy2-anti-fluorescein or converted by using anti-fluorescein-
horseradish peroxidase (HRP) into a light microscopic visible,
electron-dense DAB adduct in an analogous manner as reported
for FITC-albumin (Michalski et al., 2010).

Notably, PNs are well detectable even in living mammalian
tissues. For example, Brückner et al. (1996a) injected biotinylated
WFA into rat brains and revealed PNs 6 days later in fixed
tissue sections by a streptavidin/biotin technique. Moreover,
these authors demonstrated that Cy3-tagged WFA was applicable
in living tissues, and pre-labeling of PNs with Cy3-WFA in living
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tissues has been used to facilitate subsequent electrophysiological
analyses within roughly 1 h of labeling (Hoppenrath et al., 2016).

While Yamada and Jinno (2017) found that the vast majority
of aggrecan-immunoreactive PNs were colocalized with WFA-
binding sites, they counted a substantial population of PNs
devoid of WFA labeling in the stratum oriens. Ueno and

coworkers had described numerous WFA-positive, but aggrecan-
immunonegative PNs in the mouse cerebral cortex (Ueno
et al., 2018). Aggrecan immunolabeling can be enhanced by the
pretreatment of fixed tissues with chondroitinase ABC (Carulli
et al., 2010; Madinier et al., 2014), which would concomitantly
prevent the WFA staining (Köppe et al., 1997). Focusing on

Preferentially applied buffers: Tris buffers; recommendation according to Rebelo et al. (2021)  

Preferential reagent: Biotinylated WFA (in the past from Sigma, St. Louis, MI, USA; L-1766 and L-1516; 

currently from Vector Labs; B-1355-2) 

Useful concentrations of biotinylated WFA (considering the different sensitivity of detection systems): 

0.5-1 µg/ml for immunoperoxidase staining with nickel-enhanced DAB  

1-2 µg/ml for immunoperoxidase staining with plain DAB 

10 µg/ml for the visualization with carbocyanine (Cy)3-conjugated streptavidin 

15-20 µg/ml for the subsequent detection with Cy2-and Cy3 streptavidin 

20-30 µg/ml for the visualization with AMCA (7-amino-4-methylcoumarin-3-acetyl)-streptavidin 

Blocking solutions for single lectin-histochemistry: contain 2% purified bovine serum albumin (for instance 

from Serva, Heidelberg, Germany; grade V) in line with Rebelo et al. (2021). However, albumin has not 

additionally periodate-treated prior to clean WFA-staining. 

WFA for multiple fluorescence staining: Prolonged incubation times for concomitantly applied antibodies and 

lectins (for 20 h at room temperature or up to 3 days at 4°C) causes no problems.  

Causing no apparent background, the concomitantly applied markers can be diluted in TBS containing 5% 

normal donkey serum and 0.3% Triton X-100. 

WFA for electron microscopic staining:  

Omission of detergents such as Triton X-100 during whole staining procedures. 

Conventional detection of PNs with biotinylated WFA, preformed streptavidin/biotinyl-peroxidase complexes 

and plain diaminobenzidine (DAB) as chromogen.  

Alternatively, biotinylated WFA can be processed with Cy3-streptavidin followed by photoconversion (Brückner 

et al., 1996b; Kacza et al., 1997).  

Stability of net staining: Largely dependent on the applied fluorophores, mounting media and storage 

preferentially at 4°C.  

Notably, the Cy3-staining of PNs (and of other markers including parvalbumin, calretinin and GFAP) appears 

long-term stable after embedding in Entellan and is robust even after up to 25 years.

FIGURE 3 | Toolbox: Prerequisites for successful WFA-staining.
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naïve brain regions, this study shows the retrosplenial cortex
as a mouse brain region displaying several PNs with strong
WFA staining, but devoid of aggrecan-ir, at least under the
applied imaging conditions (Figures 1A–A′′). While WFA-
stainable N-acetylgalactosamine moieties are known as parts of
aggrecans and contribute to the complexity of aggrecan forms
(Matthews et al., 2002; Miyata et al., 2018), it might be possible
that such moieties are also coupled with other components of
nets with no or low amounts of aggrecan. Having in mind
the lower molecular weight of biotinylated WFA (less than
70 kDa) in comparison with rabbit-anti-aggrecan IgG molecules
(ca. 150 kDa), a different penetration depth of both markers
might be considered. Conversely, we found in the CA3 region
more aggrecan-immunoreactive PNs than WFA-positive PNs
(see Figures 1B–B′′). This finding is in line, for instance, with
quantitative data on the molecular heterogeneity of aggrecan-
based PNs in the mouse hippocampus (Yamada and Jinno, 2017).

Figure 2 displays representative examples of altered,
diminished, and erased PNs in neurological disease. Twenty-
four hours after ischemia onset induced by pMCAO in mice,
neocortical WFA-stained PNs are strongly affected in ischemic
areas, which concomitantly show upregulated collagen IV-ir (in
line with Härtig et al., 2017). Figures 2A–A′′ show additional
staining of strongly enhanced NF-L-ir in the ischemic tissue,
whereas Figures 2B–B′′ are completed by the simultaneous
detection of a further highly sensitive marker, AQP4. In
ischemia-affected areas, AQP4-ir was either abolished or
diffusely distributed.

Notably, the WFA staining is compromised and often
impossible to detect PNs in autoptic tissues and even after
long-lasting electrophysiological approaches with living tissues
as reported by Wegner et al. (2003). As demonstrated by
Morawski et al. (2012), after prolonged postmortem delay, WFA
binding declined while aggrecan-ir remained largely unaffected.
Furthermore, WFA staining might also be diminished in autoptic
tissues by premortem history and pathology and, in general,
by long-term storage in conventional buffers at 4–6◦C for
several years. N-Acetylgalactosamine moieties are obviously
more susceptible to enzymatic degradation than the protein
components of aggrecan and the link proteins that are targeted by
CSPG-cleaving enzymes (Levy et al., 2015; Rossier et al., 2015).

Recently provided detailed protocols for the visualization of
PNs (Souter and Kwok, 2020) and automated analyses of net
staining intensities (Slaker et al., 2016; Venturino and Siegert,
2021) might be extended to reveal a larger fraction of all
nets. Thereby, mixtures of biotinylated WFA and rabbit-anti-
aggrecan could be visualized by the same color (e.g., Cy2) or
by differing fluorophores. Considering brevican as the main
component of perisynaptic axonal coats (Morawski et al., 2012)

and the importance of tenascins, brevican, and neurocan for
the formation of complete net structures (Brückner et al.,
2000; Gottschling et al., 2019), such approaches might be
extended by the concomitant detection of the aforementioned
net constituents.

Future studies of PNs should comprise the use of nanobodies
with lower molecular weight and easier penetration of
tissues than conventional antibodies. Nanobodies recognizing
aggrecan and WFA (fragments) could be applied as mixtures
or as conjugates.

Novel staining technologies might support the super-
resolution imaging of maturing PNs (Sigal et al., 2019) and
sophisticated techniques for the fine structure analyses of PNs,
for instance, in animal models of schizophrenia (Kaushik et al.,
2021) and in focal cerebral ischemia and mild hypoperfusion
(Dzyubenko et al., 2018).
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