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In the past, neuroscience was focused on individual neurons seen as

the functional units of the nervous system, but this approach fell short

over time to account for new experimental evidence, especially for what

concerns associative and motor cortices. For this reason and thanks to great

technological advances, a part of modern research has shifted the focus

from the responses of single neurons to the activity of neural ensembles,

now considered the real functional units of the system. However, on a

microscale, individual neurons remain the computational components of

these networks, thus the study of population dynamics cannot prescind from

studying also individual neurons which represent their natural substrate. In this

new framework, ideas such as the capability of single cells to encode a specific

stimulus (neural selectivity) may become obsolete and need to be profoundly

revised. One step in this direction was made by introducing the concept of

“mixed selectivity,” the capacity of single cells to integrate multiple variables in

a flexible way, allowing individual neurons to participate in di�erent networks.

In this review, we outline the most important features of mixed selectivity and

we also present recent works demonstrating its presence in the associative

areas of the posterior parietal cortex. Finally, in discussing these findings, we

present some open questions that could be addressed by future studies.

KEYWORDS

mixed selectivity, posterior parietal cortex, neural networks, motor control, neural

code, multisensory integration

Introduction

Historically, the “neuron doctrine” stated that the single neurons are not only the

structural but also the functional units of the nervous system. Tightly related to this view

is the concept of the receptive field defined as “a specific feature of the sensory world

that activates it [each neuron] and defines its function” (Yuste, 2015). The search for a

strictly quantifiable receptive field and optimal stimulus for each neuron led to a huge

expansion of knowledge about the functional organization of many brain regions and

the discovery of the columnar organization in several of them that culminated with the

emblematic “ice cube” model in the early visual cortex (Hubel andWiesel, 1962). A direct
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consequence of this view was the idea that a neural population

was necessarily divisible into sub-populations or cell categories

composed of cells specialized (selective) to code for a

different variable.

However, over the years, this approach could not fully

explain the neural activity of many associative and motor

cortices, and discrepancies started to emerge. For example,

the fact that motor neurons are tuned by either “high-level”

(trajectory, speed, etc.) and “low-level” (muscle force, join

torques, etc.) movement features or the non-stationarity of

the correlations between single-cell activity and motor output

parameters, represented strong challenges for the traditional

selectivity perspective (Scott, 2008; Omrani et al., 2017). Thanks

to technological advances that expanded the possibility to

record from multiple neurons simultaneously, a new view

shifted the attention from the single neurons to the neural

populations (Yuste, 2015; Kalaska, 2019). This new approach

has made significant advances so much so that the motor

cortical areas are now viewed as “dynamical systems” that exhibit

low-dimensional, rhythmic activity optimized to generate the

proper behavior, disregarding correlations between single cell

activity and movement parameters (Churchland et al., 2012;

Shenoy et al., 2013; Michaels et al., 2016; Omrani et al., 2017;

Gallego et al., 2018; Kalaska, 2019). It is evident that the

“traditional” selectivity principle needs to be revised considering

new evidence and conceptual advances.

The mixed selectivity

The concept of “mixed selectivity” has been put forward

over the last 10 years to reconcile old ideas with recent evidence

in a unique framework. This term, coined for the first time to

describe the activity of the prefrontal cortex (PFC) neurons in a

complex cognitive task, was defined as the neuron’s capacity to

encode a combination of internal and external variables (Rigotti

et al., 2013). Notably, in this perspective, how the information

is encoded by individual neurons matters (Fusi et al., 2016;

Parthasarathy et al., 2017; Johnston et al., 2020). In fact, it

has been shown that the integration of multiple variables is

carried out in a non-linear fashion from a mathematical point

of view and therefore the abbreviation NMS (Non-linear Mixed

Selectivity) is often used. On the contrary, a “linear mixed

selectivity” would not guarantee the advantageous properties

of NMS (see below) and it has been found only marginally

in neurophysiological data (Dang et al., 2022). For simplicity,

hereafter, we use the term “mixed selectivity” to intend the

NMS. The mixed selectivity implies the mixing of features

with “relative weights” that vary from cell to cell, resulting

functionally in cell-categories free neural populations and the

distributed encoding of information within the network (Raposo

et al., 2014; Blanchard et al., 2018). Accordingly, it assumes the

presence of a continuous spectrum of modulations from which

the emergence of a neuron highly selective only for one feature

is rare, but still a possible epiphenomenon (e.g., the “Jennifer

Aniston neuron,” Quiroga et al., 2005; for a graphical scheme,

see Figure 1).

Reasons to multiplex information

It has been shown that the nonlinear integration of multiple

inputs is the optimal way to either encode information about a

feature or decode it downstream (Rigotti et al., 2013; Fusi et al.,

2016).

First, the information encoding recalls the concept of “neural

representation” according to which salient and measurable

features of the external environment are directly correlated with

the neurons’ activity (Vilarroya, 2017). Neural representations

based on a non-linear mapping between stimulus and firing

rate can prevent the response saturation that occurs when a

neuron reaches its maximum physiological limit and is not able

to transmit further information. This is not guaranteed with

linear encoding. Moreover, the interaction between multiple

features in the framework of mixed selectivity could produce

different responses to the same stimulus in different contexts

(Rigotti et al., 2013). In this regard, for example, parietal and

prefrontal neurons were recently found to exhibit spatial tuning

for the location of a visual stimulus depending on the context

(i.e., as a cue or the match stimulus; Dang et al., 2022). Finally, a

mixed code provides a better tradeoff of information channeled

vs. energy cost, requiring more neurons, but the same number of

spikes to be transmitted with respect to a “pure,” selective code

(Johnston et al., 2020).

Second, the information encoded in the firing activity

must be decoded by the downstream structures for further

computations. The mixed selectivity expands the processing

capabilities of the network by creating more heterogeneous

activity patterns. Indeed, the dimensionality of a neural

representation does not necessarily coincide with the mere

number of neurons, but rather with the intrinsic complexity

of the data structure. It has been shown that, given a constant

number of units, the neural representations produced by NMS

neurons are much more complex (high-dimensional) and they

can support many more readouts rather than populations of

linear selective cells (Fusi et al., 2016). Even if a linear encoding

scheme can still carry relevant information for a specific context,

its low-dimensional neural representation of the input prevents

a simple readout in other contexts. Moreover, the latter encoding

type would require precise, hard-wired connections between

units, whereas a circuit with distributed information (such as

in the case of NMS) allows the estimation of the relevant

parameters by any arbitrary group of units (Ganguli and

Sompolinsky, 2012; Raposo et al., 2014). Another advantage of

mixed selectivity is the reliability of the neural code which is less
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FIGURE 1

Schematic representation of neural populations with di�erent types of encoding. Left: a population composed of neurons selective for one

feature of the stimulus (blue circles) or responding to a fixed combination of features (yellow/red circles). In this situation, two cell categories

can be identified. Right: a population characterized by mixed selectivity for the three features: a few units are strictly selective for a specific

feature (e.g., the wide red circle), but most of them respond to di�erent combinations of features. In this case, it is not possible to identify cell

categories and the information is distributed across the network.

affected by noise resulting in much fewer decoding errors than a

“pure” selective coding (Johnston et al., 2020).

Mixed selectivity in posterior parietal
cortex

The numerous advantages in encoding and decoding explain

the fact that the mixed selectivity seems now widely present

in the cortex, encompassing sensory (Walker et al., 2011;

Rentzeperis et al., 2014; Finkelstein et al., 2018), prefrontal

(Rigotti et al., 2013; Fusi et al., 2016; Parthasarathy et al., 2017),

and motor areas (Churchland and Shenoy, 2007; Hatsopoulos

et al., 2007). Nevertheless, only a few studies directly addressed

this issue in other associative cortical regions and the posterior

parietal cortex (PPC) in particular.

For simplicity, the several PPC functions can be grouped

into three domains (Krumin et al., 2018). The first one regard

visuomotor coordination during eye and limb movements

(Andersen and Mountcastle, 1983; Andersen and Buneo, 2002;

Filimon, 2010; Caminiti et al., 2015; Pisella et al., 2017; Galletti

and Fattori, 2018; Hadjidimitrakis et al., 2019). Second, the PPC

is involved in decision-making, especially when the choice is

guided by vision (Andersen and Cui, 2009; Erlich et al., 2015;

Latimer et al., 2015; Goard et al., 2016; Katz et al., 2016; Licata

et al., 2017; Krumin et al., 2018). Finally, this cortical region

plays an important role in spatial navigation (Nitz, 2006, 2012;

Save and Poucet, 2009; Whitlock et al., 2012; Wilber et al.,

2014). In this regard, most of the navigation studies have been

conducted in rodents, but reports about primates can also be

found (Sato et al., 2006; Vass and Epstein, 2013). Given the

richness of the information processed by PPC, it is reasonable to

assume that its areas present mixed selectivity rather than having

subpopulations (i.e., classes or categories) of highly selective

neurons. Furthermore, the idea that parietal neurons are non-

linearly modulated by multiple stimuli is not completely new.

For example, the old concept of “gain field,” a multiplicative

interaction between visual receptive field response and eye

position, can be thought of in this perspective (Andersen et al.,

1985). However, many past works considered the conjunctive

tuning for only very few features, and they often did not

explicitly try to model the heterogeneity of more complex neural

responses, picking as representative the rare “pure” selective

units for which something similar to a “receptive field” could

be identified.

Here, we present studies that directly addressed the issue of

mixed selectivity in PPC in various animal species to provide a

brief overview of the ongoing research on this topic.

Several studies reported evidence consistent with the mixed

selectivity framework, both at the single-neuron (encoding of
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FIGURE 2

Mixed selectivity studies in the posterior parietal cortex across di�erent animal species. (A–C) In rodents; (D–F) in macaques; and (G) in humans.

Due to the heterogeneity of this region, the features tested in each work depended on the parietal area of interest. Mixed selectivity has been

found in all studies, but not in the human AIP (“partially mixed selectivity”). (A) Navigation-based decision task. (B) Decision-making task. (C)

Pursuit vs. foraging navigation task. (D) Dot motion discrimination task. (E) Delayed match-to category task. (F) Delayed foveated reaching task.

(G) Delayed movement task.

multiple information) and at the population level (lack of

cell categories, high-dimensional responses) in rodents. For

example, Harvey et al. (2012) investigated whether PPC activity

could be described in terms of cell categories, or by a more

complex structure in mice during a navigation-based decision

task. They did not encounter cell classes with homogeneous

activity patterns, but, on the contrary, the information about

the cue, delay period, and movement choice was carried by

the population dynamics through sequential activation patterns

(Figure 2A). Similarly, Raposo et al. (2014) recorded from rat

PPC during a multisensory decision-making task (Figure 2B).

The animals had to discriminate the frequency of stimuli that

could be either visual (a series of flashes), auditory (a series of

“clicks”) or combined visuo-auditory and respond by selecting

between two ports. Neurons only rarely exhibited pure choice

or pure sensory modality selectivity, and, in most cases, they

showed mixed responses to the task features. However, the

population responses were clearly structured and they could be

easily decoded by a linear classifier. Recently, individual PPC

neurons in rats were found to encode different combinations

of spatial position, self-motion, and egocentric target position

during a navigation task that included pursuit and free

foraging phases (Alexander et al., 2022; Figure 2C). Moreover,

neural responses were found to be modulated nonlinearly by
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context and able to adapt to different distributions of encoded

features.

Regarding primates, the macaque PPC has been extensively

studied, given the highly similar manual dexterity and

brain morphology of this species to humans (Goldring and

Krubitzer, 2020). Within PPC, the lateral intraparietal area

(LIP) exhibits functions related to saccades planning and

execution, visual stimuli processing, decision-making, and

evidence accumulation (Andersen and Cui, 2009; Premereur

et al., 2011; de Lafuente et al., 2015). Interestingly, Meister

et al. (2013) trained macaques to perform a motion direction-

discrimination task and make a saccade in the direction cued

by the dot motion (relevant information) toward a target that

could be visible within the receptive field or not (irrelevant

information). The authors reported that single neurons mixed

both relevant and irrelevant information (Figure 2D). Moreover,

the neural correlates of evidence accumulation were evident

only in the population activity as mixed selectivity predicts. In

another work, LIP neurons showed modulations both for non-

spatial and spatial features (“abstract” categories and saccade

targets; Rishel et al., 2013; Figure 2E). Here, an independent

encoding for the different features was found in the firing

rate of individual cells (categories and saccades), in line with

the distributed information expected in the context of the

mixed selectivity.

Similarly to LIP, a multitude of different inputs

converges to the medial parietal area V6A. V6A is

particularly involved in arm-reaching movements both

during the planning and execution phases (Hadjidimitrakis

et al., 2014; Fattori et al., 2017; Diomedi et al., 2021).

Recently, we found that, during foveated delayed reaching

movements, spatio-temporal information about the target

and task phase was distributed across the network and

the population did not cluster in well-defined categories

of selective units, according to the mixed selectivity

scheme (Diomedi et al., 2020; Vaccari et al., 2021; see also

Figure 2F).

Finally, also in the human PPC, it was reported the presence

of mixed selectivity (Zhang et al., 2017, 2020; Figure 2G). The

authors recorded the neural activity with a multielectrode array

implanted in the anterior intraparietal area (AIP) of a tetraplegic

patient. The patient was instructed to perform imagined or

attempted movements (cognitive strategy) with left or right

(body side) different body parts (hand or shoulder). The authors

found a particular structure in the combined encoding of

the various task variables that they termed “partially mixed

selectivity:” different body parts were represented by different

subpopulations of cells, but within these subpopulations, the

strategy and body side information was randomly distributed.

Notably, the mixed representations were preserved by passing

from an open-loop experiment to a close-loop control task

involving a brain-machine interface (Zhang et al., 2020).

Discussion

Nowadays, there is increasing interest in the characterization

of the role of neural ensembles leveraging the possibility to

record large datasets, the extensive use of analytical tools to

extract population dynamics (such as dimensionality reduction

techniques), and the capacity of artificial neural networks to

mimic many features of the real brain (Cunningham and Yu,

2014; Kalaska, 2019). Within this framework dominated by

population approaches, the mixed selectivity concept represents

an important conceptual advance, since it can reconcile the

traditional idea of single neurons’ “neural selectivity” with their

functioning as units embedded in populations with dynamic

interactions. Recent evidence suggests that while this property

is widespread in the cortex, its computational benefits are

well-grounded in theoretical work (see “Reasons to multiplex

information” paragraph).

Since many areas of the posterior parietal cortex exhibit

mixed selectivity (see “Mixed selectivity in posterior parietal

cortex” paragraph), it is tempting to speculate that the entire

PPC is characterized by such computations. However, some

results partially disagree (Zhang et al., 2017), suggesting caution

in generalizing. Regarding PPC motor functions, further studies

should assess if the body part segregation that characterizes

the human AIP (Zhang et al., 2017) can be found also in

non-human primate AIP and other parietal areas. In this

regard, it has been proposed that PPC is organized in intention

maps/matching movements regions (Kaas, 2012; Andersen

et al., 2014), resembling the organization proposed for motor

cortices (Graziano and Aflalo, 2007). If it were the case, the

mixed selectivity could be accordingly limited, with specific

areas showing NMS only within a type of action, but not

responding to other actions. However, in overt contrast to

such clear segregation of actions in the PPC, several studies

reported the presence of grasping-related signals in areas

traditionally associated with reaching (Fattori et al., 2009,

2010; Galletti and Fattori, 2018), as well as reaching-related

signals in areas traditionally associated with grasping (Lehmann

and Scherberger, 2013). Medendorp and Heed (2019) tried to

conceptualize these ideas in a unique framework proposing

the existence in PPC of a medio-lateral gradient dominated by

action classes but involving tightly interconnected networks and

often the same units. These neurons may encode information

with a mixed selective mechanism, being able to participate in

the various networks in a flexible, context-dependent way.

The complexity of the problem (whether and how mixed

selectivity is implemented in PPC) increases when considering

the involvement of PPC in all the functional domains that

we already mentioned (motor control, decision-making, and

navigation). Notably, besides motor control, navigation can

also be included in Medendorp and Heed (2019); similarly,

all three functions are considered by Kravitz et al. (2011).
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From these organizing schemes, new hypotheses can be derived

regarding which variables are encoded (and eventually mixed)

by the neurons of different PPC areas. For example, an open

question is whether primate and rodent systems have undergone

a differentiation of functions, with primates more specialized

in moving eyes, head, and limbs and rodents more specialized

in tracking the path traveled and orienting the body in the

environment, or whether the disparity in the literature (motor

control predominant in primate studies, navigation in rodents)

could have produced biased results (Wilber et al., 2014).

Supporting the idea of functional differentiation, neurons in

rat PPC encode the posture of the entire animal body (Mimica

et al., 2018), but similar findings have not been reported yet

for primate PPC. Since these aspects have a direct impact on

the encoding of single neurons, they should be addressed in

future studies.

Very recent reports are highlighting dissimilarities regarding

the mixed selectivity of prefrontal and parietal cortices. Zhou

et al. (2021) found that PFC neurons exhibited a higher NMS

with respect to parietal neurons during a sequential match/non-

match task. Similarly, a working memory task modulated a

significantly lower amount of NMS units in PPC with respect

to the prefrontal cortex (Dang et al., 2022). The authors

suggest that these differences could be grounded in anatomical

dissimilarities: PFC pyramidal neurons are endowed with the

most extended dendritic trees of any other cortical neuron, thus

they could represent a perfect substrate to implement NMS. In

addition, some task variables (e.g., reward) were less affected by

NMS than others both in PFC and PPC, suggesting an influence

of the hierarchical rank of the features on their encoding type

(Dang et al., 2022).

Finally, future studies that aim to characterize the encoding

scheme of parietal neurons should take into consideration two

important aspects. First, it is possible that a neuron apparently

selective for a single feature during a task (erroneously classified

as “selective”) can show responsiveness for other features in

different contexts. In other words, at least some selective units

could only consist of insufficiently tested mixed neurons, thus

task complexity should be adequate to maximize NMS neural

modulations. Second, the terms “feature”/“variable” themselves,

although they are useful to define neural selectivity, can be quite

vague and hide spurious correlations with multiple parameters.

In addition, we might be biased to define as selective a neuron

that encodes a complex variable which can be decomposed

into multiple variables with a similar “semantic meaning” (i.e.,

cartesian position and its x-y components) and, conversely,

to define as mixed a neuron that encodes a complex variable

which, however, can be decomposed into multiple variables

with a different “semantic meaning” (i.e., cartesian position and

context). It is beyond the scope of this review to deal with these

issues in detail, but in the future, defining these concepts in

formal terms will be necessary to make research on these topics

more homogeneous and consistent.
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