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Recent technological advances greatly improved the possibility to study freely

behaving animals in natural conditions. However, many systems still rely on

animal-mounted devices, which can already bias behavioral observations.

Alternatively, animal behaviors can be detected and tracked in recordings of

stationary sensors, e.g., video cameras. While these approaches circumvent

the influence of animal-mounted devices, identification of individuals is much

more challenging. We take advantage of the individual-specific electric fields

electric fish generate by discharging their electric organ (EOD) to record and

track their movement and communication behaviors without interfering with

the animals themselves. EODs of complete groups of fish can be recordedwith

electrode arrays submerged in the water and then be tracked for individual

fish. Here, we present an improved algorithm for tracking electric signals of

wave-type electric fish. Our algorithm benefits from combining and refining

previous approaches of tracking individual specific EOD frequencies and spatial

electric field properties. In this process, the similarity of signal pairs in extended

data windows determines their tracking order, making the algorithm more

robust against detection losses and intersections.We quantify the performance

of the algorithm and show its application for a data set recorded with an

array of 64 electrodes distributed over a 12m2 section of a stream in the

Llanos, Colombia, where we managed, for the first time, to track Apteronotus

leptorhynchus over many days. These technological advances make electric

fish a uniquemodel system for a detailed analysis of social and communication

behaviors, with strong implications for our research on sensory coding.
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1. Introduction

Unraveling causal factors driving various animal behaviors

in experimental and in particular in observational studies is

challenging, since most behaviors result from an integration

of a broad range of social and environmental stimuli, internal

states, and past experiences (Chapman et al., 1995; Sapolsky,

2005; Boon et al., 2007; Markham et al., 2015). In laboratory

studies, environments and contexts are systematically simplified

in order to minimize the number of potential factors influencing

behaviors (e.g., Bastian et al., 2001; Pantoni et al., 2020).

Such studies are tailored to specific behaviors and well-defined

contexts. However, behaviors in such constrained settings often

deviate from behaviors in natural environments and thus have

to be interpreted with care (Cheney et al., 1995; Rendall et al.,

1999; Henninger et al., 2018). To discover behavioral traits of

interest in the first place, field studies or laboratory experiments

with complex, more naturalistic designs are needed. Recent

technological advances in remote recording techniques, tags,

and data loggers, as well as advances in data analysis, facilitate

the collection and evaluation of comprehensive and viable

data in naturalistic settings with freely moving and interacting

animals (Dell et al., 2014; Hughey et al., 2018; Mathis et al.,

2018; Jolles, 2021). These new big-data approaches open up

new opportunities in behavioral research in that they potentially

allow to quantitatively study animal behaviors in more complex

and naturalistic settings (Gomez-Marin et al., 2014; Egnor and

Branson, 2016).

A suitable recording technique can be selected from a
large variety of available devices and sensors to match the
requirements imposed by the model species, environmental

conditions, and the scientific question (Hughey et al., 2018). This

allows for studying various aspects of animal behaviors across

species (e.g., Nagy et al., 2010; Robinson et al., 2012; Strandburg-

Peshkin et al., 2015, 2018). A commonly used technique to study

animals in their natural habitats is the utilization of animal

mounted bio-loggers, e.g., small devices equipped with different

sensors like GPS-trackers or microphones (Nagy et al., 2010;

Strandburg-Peshkin et al., 2017; Hughey et al., 2018). However,

bio-loggers require frequent animal handling and animals are

required to carry devices, both inducing a potential bias (Saraux

et al., 2011). Furthermore, bio-loggers might miss relevant

information, since not all interacting animals might be equipped

with a logger (e.g., Strandburg-Peshkin et al., 2019), signal

detection range is limited, or data is recorded discontinuously to

extend the overall recording period (Strandburg-Peshkin et al.,

2017; Hughey et al., 2018).

Alternatively, behaving animals can be tracked by means of

remote sensing devices (Kühl and Burghardt, 2013; Theriault

et al., 2014; Henninger et al., 2018, 2020; Hughey et al., 2018;

Torney et al., 2018; Raab et al., 2019; Aspillaga et al., 2021).

In this approach, recorded signals can originate from small

micro-transmitters that get affixed to animals (e.g., acoustic

telemetry system for fish: Aspillaga et al., 2021) or from the

animals themselves (photography, video recordings: Sherley

et al., 2010; Lahiri et al., 2011; Theriault et al., 2014; Nourizonoz

et al., 2020; ultrasound vocalizations: Surlykke and Kalko, 2008;

Seibert et al., 2013; Hügel et al., 2017; electric signals: Henninger

et al., 2018; Raab et al., 2019; Fortune et al., 2020). These

methods benefit from minimal interference with the animals

themselves. On the other hand, covering large observation areas

is costly. Also, tracking animal identities can be quite challenging

and requires sophisticated and computationally demanding

pre-processing of the data (Lahiri et al., 2011; Kühl and

Burghardt, 2013; Hughey et al., 2018; Henninger et al., 2020).

Here, specific animal biometrics, certain aspects of an animal’s

appearance or signaling properties, have been shown to allow

for individual identification and tracking (Kühl and Burghardt,

2013). However, in order to enable reliable tracking, selected

animal biometrics need to be displayed universally throughout

the study population whilst showing sufficient variation between

single individuals (i.e., biometric profiles that allow for reliable

individual identification). If individuals do not have specific

invariant characteristics, like, for example, the stripes of a

zebra (Lahiri et al., 2011), then tracking algorithms need to

handle temporally changing biometric profiles that often overlap

in their characteristics (e.g., spatial position and orientation,

Madhav et al., 2018).

Electric fish are particularly well-suited for being tracked

in the laboratory and in their natural habitats based on

remote sensing (Jun et al., 2013; Henninger et al., 2018;

Madhav et al., 2018; Raab et al., 2019; Fortune et al., 2020).

These fish are capable of producing an electric field through

discharges of an electric organ (EOD, Turner et al., 2007) used

for electrolocation (Fotowat et al., 2013) and communication

(Albert and Crampton, 2005; Smith, 2013; Benda, 2020). The

EODs of many electric fish can be recorded by means of an

array of submerged electrodes without the need to catch and

tag the fish (Henninger et al., 2018). From these recordings,

electric signals of individual fish have to be identified and tracked

over time. Dependent on electric fish species, EODs are either

emitted in short and discrete pulses (pulse-type electric fish;

Hagedorn, 1988; Albert and Crampton, 2005; Smith, 2013) or

in a sinosoidal fashion (wave-type electric fish; Moortgat et al.,

1998). For pulse-type electric fish, tracking individual EODs is

rather challenging, since signal features largely overlap between

individual fish, i.e., EOD frequencies are highly variable and

context dependent (Hagedorn, 1988). In order to, nevertheless,

track electric behaviors of pulse-type fish, additional spatio-

tempoal tracking using video recordings and elaborate machine-

learning approaches are usually required (Jun et al., 2013;

Pedraja et al., 2021). In wave-type electric fish, however, the

frequency of EODs is individual specific and remarkably stable

over minutes to hours (Moortgat et al., 1998), providing a

characteristic biometric cue which facilitates individual signal

tracking. Previous tracking approaches were either based on
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EOD frequency (Henninger et al., 2020) or on spatial electric

field properties that can be reconstructed from signal powers

across recording electrodes (Madhav et al., 2018). However,

both signal features are sensitive to temporal changes. The

latter, spatial electric field properties, depends on the fish’s

spatial position and orientation. The former, EOD frequency,

is sensitive to temperature changes (Dunlap et al., 2000) and

is actively modulated for electrocommunication (Smith, 2013).

Accordingly, both tracking features might fail when fish are

close by, either in their EOD frequency or spatially, especially

in recordings of electric fish in high densities.

In the following, we describe and evaluate an improved

tracking algorithm for wave-type electric fish recorded with

electrode arrays. By combining, refining, and extending previous

approaches, our algorithm is capable of tracking EODs of

individual fish with unprecedented accuracy, i.e., tracking errors

occur less often in complex tracking scenarios (e.g., when EOD

frequency traces cross each other, Figure 5) which tremendously

reduces required post-processing time to manually correct

flawed connections. Since both movement behaviors (Madhav

et al., 2018; Henninger et al., 2020) and communication

(Smith, 2013; Henninger et al., 2018; Fortune et al., 2020)

can be analyzed based on EOD recordings, our algorithm is

a fundamental advancement for a wide range of behavioral

studies on freely moving and interacting electric fish (Raab et al.,

2019, 2021). Finally, we demonstrate the performance of our

tracking algorithm on recordings of Apteronotus leptorhynchus

taken with an array of 64 electrodes in a stream in the Llanos in

Colombia.

2. Materials and equipment

2.1. Data acquisition

EODs of freely swimming fish were recorded with arrays of

monopolar electrodes at low-noise buffer headstages (1×gain,

10 × 5 × 5mm3, Figure 1B) arranged in grid-like structures

(Figures 1A,C,E). Electric signals are amplified (100×gain,

100Hz high-pass filter, 10 kHz low-pass), digitized at 20 kHz

with 16 bit resolution, and stored on external data storage

devices for later offline analysis. The custom-built recording

systems (npi-electronics GmbH, Tamm, Germany) were

powered by car batteries (12V, 80Ah). Various configurations

of the electrode arrays have been successfully used to record

populations of electric fish in the wild (Henninger et al.,

2018, 2020, unpublished field-trips: Colombia 2016, 2019,

Figures 1A,C,D), as well as in the laboratory (Raab et al., 2019,

2021, Figures 1E,F). The first 64-channel amplifier system

required an external computer with two data acquisition

boards (PCI-6259, National Instruments, Austin, Texas, USA)

for digitizing and storing the data (Henninger et al., 2018,

2020, Colombia 2016). For this first setup, data acquisition

was controlled by a C++ software (https://github.com/

bendalab/fishgrid). For the 2019 recordings in Colombia we

used a modular 16-channel system based on a Raspberry

Pi 3B (Raspberry Pi Foundation, UK) that stores the data

digitized by an USB data acquisition board (USB-1608GX,

Measurement Computing, Norton, MA, USA) on an 256GB

USB stick controlled by python software (https://whale.am28.

uni-tuebingen.de/git/raab/Rasp_grid.git) (Figure 1A).

2.2. Spectrograms

EODs of individual fish are identified and extracted from

the electric recordings based on their EOD frequency and

respective harmonic structure (Figure 2C). For each electrode

we compute power spectral densities (PSDs) of overlapping

data snippets shifted by 1t≈ 300ms (Figure 2A). The size

of fast Fourier transform (FFT) windows was set to nfft =

215 ≈ 1.64 s (e.g., Raab et al., 2021) or nfft = 216 ≈

3.28 s (e.g., Raab et al., 2019; field recordings displayed in

Figure 9) to result in frequency resolutions of 0.6 and 0.3Hz,

respectively, needed to resolve EOD frequencies in high

fish densities.

2.3. Extraction of EOD frequencies and
feature vector

In order to detect EOD frequencies of all recorded

fish, for each time point ti PSDs from all electrodes

were summed up (Figure 2B). The summed PSDs were

transformed to decibel levels, L(f ) = 10 log10(P(f )/P0),

relative to a power of P0 = 1mV2/Hz. In these logarithmic

power spectra, peaks were detected (Todd and Andrews,

1999) and groups of harmonics were assigned to their

corresponding fundamental frequencies (Figure 2C). See

Henninger et al. (2020) and the harmonics.py module in the

thunderfish package (https://github.com/bendalab/thunderfish)

for details.

Harmonic groups were extracted from the summed power

spectra in order to save computing time. Extracting fundamental

frequencies from each of n electrodes separately would take n-

times longer, but might be more advantageous for separating

distant fish that are close by in EOD frequency. We are therefore

working on improving the performance of the harmonic-group

extraction. The tracking algorithm described in the Section 3 is

independent of whether fundamental frequencies were obtained

from the individual spectra or the summed one.

For each time point ti and each signal indexed by k, a feature

vector

EXki = (fki , Lki (1), ..., Lki (n)) (1)

is assembled that includes the fundamental EOD frequency, fki ,

and the corresponding logarithmic powers, Lki (x), in the PSDs
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FIGURE 1

Recording systems, electrode arrangements, and corresponding signals of recorded electric fish. (A) Two of the Raspbery Pi-based 16-channel

amplifiers and recorders used for an array with 32 electrodes. (B) Monopolar stainless-steel electrode on headstage used for recordings in the

field and laboratory experiments (after Henninger, 2015). (C) Recording setup used to record a population of A. leptorhynchus in the Rio

Rubiano, Colombia, in 2016. Sixty-four electrodes were mounted on PVC-tubes and arranged in an 8× 8 grid covering an area of 3.5× 3.5m2.

(D) Snapshot of the electric signals recorded with the setup shown in (C). The top left panel corresponds to the most upstream electrode

mounted on the tube closest to the river bank. (E) Recording setup used to record electric signals of pairs of A. leptorhynchus during

competitions in a laboratory experiment (Raab et al., 2021). Fifteen electrodes were uniformly distributed at the bottom of the aquarium and one

electrode was placed in the central tube the fish compete for. (F) Snapshot of electric signals recorded during the competition experiment

shown in (E). The signal framed in gray is from the central electrode located in the optimal tube. The EOD waveform shows the characteristic

shoulder that is generic for EODs of A. leptorhynchus.

of all n recording electrodes x. Based on this feature vector the

individual fish are tracked as described in the followingmethods.

3. Methods

In the following we present an algorithm for tracking wave-

type electric fish in electrode-array recordings. The algorithm

merges and extends two complementary approaches that are

based on EOD frequency (Henninger et al., 2018, 2020) or on

primarily the spatial distribution of signal powers (Madhav et al.,

2018). We then test the performance of the tracking algorithm

against manually tracked data. Open-source Python scripts for

tracking and post-processing of analyzed data can be obtained

from https://github.com/bendalab/wavetracker.

3.1. Algorithm for tracking wave-type
electric fish

Both EOD frequency and the spatial distribution of EOD
power across electrodes change with time and potentially
overlap between fish. EOD frequencies can be actively altered
in the context of communication (Smith, 2013; Benda, 2020)
and the signal powers across electrodes change with the fish’s
motion (Madhav et al., 2018). This variability and potential

overlap in signal features challenges reliable tracking, especially

in recordings with many fish.

Furthermore, the existing algorithms track

signals in the order of their temporal detection,

i.e., signals detected in consecutive time steps are

directly assigned to already tracked EOD frequency
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FIGURE 2

EOD frequency extraction from recordings with an electrode array. As an example, a 3min snippet of a recording with the 8× 8 array from Rio

Rubiano, Colombia, taken during the day of April 10th, 2016 is shown. (A) Spectrograms from three di�erent electrodes. Warmer colors

represent increased power in respective frequencies. EOD frequencies of individual A. leptorhynchus remain rather stable, except during

electrocommunication (e.g., EOD frequency trace starting at ∼ 917Hz). A non-logarithmic PSD extracted at time 50 s indicated by the dotted

line is shown at the side of each panel. (B) The summed up spectrogram over all electrodes contains distinct traces from many di�erent fish. (C)

Peaks are detected in the summed up power spectra that are then clustered into frequency groups of a fundamental frequency and at least two

of its harmonics, corresponding to a specific fish (Henninger et al., 2020). Fundamental EOD frequencies, their corresponding powers in each

electrode and their detection times are stored for subsequent tracking.

traces (Madhav et al., 2018; Henninger et al., 2020).

Potentially this leads to tracking errors, because even with

the utilization of an electrode array, EODs of freely moving

and interacting electric fish are rarely detected continuously,

i.e., consecutively in subsequent time steps. Low signal-to-noise

ratios, resulting from large distances between fish and recording

electrodes or objects like rocks or logs distorting or even

blocking electric fields, frequently lead to detection losses.

When multiple fish with similar EOD frequencies are recorded

simultaneously, EOD frequency traces can potentially cross each

other (e.g., in the context of emitted communication signals,

Benda, 2020). It is in these occasions in particular, that detection

losses frequently result in tracking errors.

In order to improve on these issues, we developed a

tracking algorithm which, first, is based on feature vectors that

include both EOD frequency and signal power across electrodes

(Figure 3) and, second, is less constrained by the temporal

sequence of detected signals (Figure 5).
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FIGURE 3

Frequency and field errors. (A) Summed spectrogram of a 30 s long part of the recording shown in Figure 2B. For each electric fish signal,

potential connection partners are limited by a time di�erence threshold, 1tthresh = 10 s, and a frequency di�erence threshold, 1fthresh = 2.5Hz.

For a given signal α with EOD frequency fαi at time step i (dark blue dot), potential connection candidates β at di�erent times j (light blue dots)

need to be within these thresholds (box), whereas signals beyond these thresholds (black dots) are not considered. (B) Absolute frequency

di�erences, 1f Equation (2), are mapped (red lines) to frequency errors, εf , using a logistic function, Equation (4) (line), favoring small frequency

di�erences. (C) The field error as the second tracking parameter is based on spatial profiles, Equation (5), of signal powers over all electrodes

(black dots). The field di�erence, 1S, is computed as the Euclidean distance, Equation (6), between the spatial profiles, Equation (5), of potential

signal pairs (columns). With decreasing similarity (columns left to right) the field di�erence increases. Displayed signal pairs (columns) were

selected to illustrate the full range of possible field di�erences and are unrelated to (A). Spatial profiles were interpolated with a gaussian-kernel

for illustrative purposes. (D) To obtain normalized field errors, εS, in a range similar to the one of the frequency errors, εf , each field di�erence is

set into perspective to a representative cumulative distribution [Equation (7), black line] of field di�erences obtained by collecting all potential

field di�erences of a manually selected 30 s window in the recording. The cumulative distribution of potential field di�erences is computed only

once per recording for a 30 s window where fish are active (night time). This way we incorporate a broad distribution of possible field di�erences

when determining field errors. The examples from (C) are marked by respectively colored dots.

3.1.1. Distance measure

We start out with extracting feature vectors EXki , Equation

(1), containing an EOD frequency, fki , and its powers, Lki (x), on

all electrodes x, for all signals k and each time step i. In a first step

the distance between all pairs of feature vectors, EXαi and EXβj , of

signals α and β at times i 6= j are quantified. Only pairs within

a time difference of |tj − ti| ≤ 1tthresh = 10 s and a maximum

difference

1fαi,βj = |fαi − fβj | (2)

≤ 1fthresh = 2.5Hz between the two EOD frequencies of the

feature vectors are considered (Figure 3A).

Frontiers in IntegrativeNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnint.2022.965211
https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org


Raab et al. 10.3389/fnint.2022.965211

The distance between the two signals αi and βj

εαi,βj =
1

3
εf +

2

3
εS (3)

is computed as a weighted sum of the frequency error, εf , and the

field error, εS. Both errors range from 0 to 1 and are explained

in the following sections. The field error gets twice the weight

of the frequency error, because tracking issues usually arise in

spite of low frequency errors. Nevertheless, the frequency error

remains a relevant tracking feature, especially when fish are in

close proximity resulting in low field errors.

3.1.2. Frequency error

The frequency error is based on the difference in EOD

frequencies, Equation (2) and has been used previously to

track signals of electric fish (Henninger et al., 2018, 2020). We

transform the EOD frequency difference, Equation (2), into the

frequency error

εf (1f ) =
1

1+ e
−

1f−f0
df

(4)

via a logistic function, that maps the EOD frequency difference,

1f , onto the interval from zero to one. The turning point of the

logistic function at f0 = 0.35Hz and the corresponding inverse

slope, df = 0.08Hz ensure a maximum frequency error already

at small EOD frequency differences of about 0.8Hz (Figure 3B).

This transformation mitigates very small frequency differences

and equalizes larger frequency differences in the assessment of

whether two signals α and β originate from the same or different

fish.

3.1.3. Field error

EOD frequency traces of electric fish occasionally cross

each other, e.g., when individuals actively alter their EOD

frequency in the context of communication (e.g., Zupanc, 2002;

Triefenbach and Zakon, 2008; Raab et al., 2021, Figure 3A). In

these situations, frequency as a tracking feature fails. This is

where the spatial properties of a signal, i.e., signal powers across

recording electrodes that reflect the position and orientation of a

fish, come into play (Madhav et al., 2018, Figure 3C). The signal

powers, Lki (x), are rescaled to the spatial profile

Ski (x) =
Lki (x)−min

x
Lki (x)

max
x

Lki (x)−min
x

Lki (x)
, (5)

ranging between 0 and 1, for the smallest and largest power of

that signal, respectively.

FIGURE 4

Distance cube containing all distances, εα,β Equation (3), for

possible signal pairs α and β within the current tracking window.

Each layer, referring to a time step i, contains the distances

between all signals αi detected at this time and their potential

signal partners βj detected maximally 10 s after signal αi (1I

time-steps after i). Distances in gray layers correspond to signal

pairs where one signal partner could potentially have a smaller

distance to a signal outside the error cube. Only connections

based on the distances in the central black layers can be

assumed to be valid, since all potential connections of both

signal partners are within the error cube. Connections

established for the black layers are assigned to signal traces

obtained in previous tracking steps in a second step.

The field difference 1S, i.e., the difference between the

spatial profiles of two signals α and β at times i and j, is

computed as their Euclidean distance according to

1Sαi,βj =

√

√

√

√

n
∑

x=1

(Sαi (x)− Sβj (x))
2 (6)

However, the magnitude of this difference depends on

the configuration of the electrode array, especially on the

number of recording electrodes. To obtain field errors, εS, that

are independent of electrode configuration, we map the field

differences through a cumulative distribution of field differences

extracted from a manually selected and representative 30 s

window:

εS(1Sαi,βj ) =

∫ 1Sαi ,βj

0
p(1S) d1S (7)

The distribution of field differences, p(1S), is estimated from

the field differences between potential signal pair (1ti,j ≤ ± 10 s,

any frequency difference) within a 30 s data snippet where fish

can be assumed to be active, i.e., during night time (Figure 3D).

This way we incorporate a broad distribution of possible field

differences when determining field errors.

3.1.4. Tracking within a data window

Now that we have a quantification for the distance ε,

Equation (3), between to signals we can proceed with the
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actual tracking algorithm. Based on the distances, the algorithm

decides which signal pairs belong together in order to track

individual fish throughout a recording. Computing the distances

between all pairs of signals of a recording at once, however, is

not feasible. Instead we break down the tracking into tracking

windows of 30 s at a time (Figure 5). Within these tracking

windows, we first compute the distances, ε, between each

potential signal pair αi and βj and store them in a three-

dimensional distance cube, where the first two dimensions refer

to signals αi and βj and the third dimension to the time steps i

where signals αi have been detected (Figure 4). Accordingly, we

have different numbers of signals αi for each time step i and,

consequently, the number of elements in the second dimension,

referring to signals βj from all time steps j > i is also variable.

Note that, each signal considered in the distance cube is only

referred to as α once, but potentially multiple times as β . For

example, a signal that is referred to as βj = βi+1 in the first layer

of the distance cube (see Figure 4) is referred to as αi+1 in the

next layer of the distance cube.

For the actual tracking step, signal pairs are connected

and assigned to potential fish identities based on the values

in the distance cube. The algorithm described in the following

(Figure 5) is a kind of clustering algorithm that has a notion of

temporal sequence. The resulting clusters are traces of different

fish identities (“labels”) tracked over time.

The signal pairs are traversed in order of ascending

distances. If one of αi or βj have already been assigned to a

fish identity, then this pair is added to this fish identity. If αi

coincides with one fish identity and βj with another one, then

the two fish identities are merged. If neither αi nor βj match an

existing fish identity, the pair is assigned to a new fish identity.

Assignment to or merging of fish identities are only possible

in the absence of temporal conflicts, i.e., a fish identity cannot

have more than one signal at the same time. In case of temporal

conflicts, the signal pair is ignored and the algorithm proceeds

with the next one. As a result, we obtain signal traces built upon

minimal signal errors within a 30 s tracking window (Figure 5).

Since signals within the first and last 10 s of a tracking

window could have lower distances to signals outside the current

tracking window, these connections are potentially flawed (gray

layers in Figure 4; gray bars in Figure 5). Only connections

established within the central 10 s take all other potential

signal partners into account. Accordingly, only the section of

assembled signal traces corresponding to these central 10 s of the

current tracking window is considered for further processing,

where the signal traces are appended to already validated,

previously detected ones (Figure 6).

3.1.5. Assembly of tracking results over data
windows

The assignment of the 10 s long signal traces obtained by

the tracking algorithm from 30 s long data windows (Figure 6A)

FIGURE 5

Tracking within a data window. Signals detected in a 30 s data

window are connected to each other and assigned to fish

identities according to their distance ε, Equation (3). Signal pairs

with smaller distances are connected first. With increasing

distance values, more connections and identities are formed,

complemented, or merged, ensuring no temporal overlap.

Di�erent stages of this tracking step are displayed in (A–C). (A)

Twenty percent of all possible connections of the displayed

tracking window are formed. At this tracking stage a multitude

of separate signal traces (di�erent colors) are still present. (B)

Forty percent of all possible connections of the displayed

tracking window are formed. (C) Final output of the tracking

step. All possible connections of the displayed tacking window

are formed. The remaining three EOD frequency traces (in the

displayed time and frequency segment) correspond to three

di�erent fish identities. Only signal pairs within the central 10 s

of an 30 s tracking window (vertical lines) are assigned to already

established fish identities from previous tracking windows. The

summed spectrogram of a 30 s long part of the recording

shown in Figure 2B is shown in the background.

to preceding tracking steps (Figure 6B) proceeds, similar to

the algorithm described above, based on the smallest distances

between them.

First, the distance between those signals α within the first

10 s of the current tracking window of already established fish

identities and new signals β from the central 10 s of the current

tracking window are computed. Then, starting with the pair

with the smallest distance, the new signal trace containing

signal β (for example the green dot in Figure 6C), is connected
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FIGURE 6

Assembly of tracking results over data windows. (A) New fish identities established within the current tracking window (gray and black bar on

top). Only the central 10 s of these EOD frequency traces (solid traces; black bar) can be assumed to be valid since signals before and after

(transparent traces; gray bars) have potential signal partners outside the tracking window. (B) Additional display of EOD frequency traces

established in previous iterations of the tracking algorithm. (C) Signal traces are connected according to the smallest possible distance measure

between any signal between the last 10 s of the established fish identities (10 s < t < 10 s) and the central 10 s of the new fish identities

(10 s < t < 20 s). In the example shown, the distance between the origin signal (black dot) and the target signal (green dot) is the smallest

between these two signal traces, accordingly the two signal traces are merged (green and orange lines). An alternative signal (red dot) has a

larger distance to the origin signal. (D) Final result of the tracking algorithm that will be used for the next iteration.

to the established signal trace (from previous tracking steps)

containing signal α (for example, the black dot in Figure 6C).

This step is repeated with signal pairs of increasing distance until

all possible connections are established (Figure 6D).

The described tracking within a data window and the

subsequent assignment to previously established fish identities

is repeated with data windows shifted by 10 s until the end of

the recording is reached. In each iteration, the distance cube

is updated. The first layers corresponding to the first 10 s of

the previous tracking window are removed (frontal gray layers

in Figure 4) and new layers for the next 10 s beyond the last

tracking window are extended to the error cube in preparation

for the next iteration of tracking.

3.2. GUI for checking and correcting
tracking results

Even though the introduced algorithm is capable of

resolving most tracking conflicts correctly when tracking EODs

of wave-type electric fish, occasional tracking errors still remain.

We developed a GUI that allows to visually inspect and validate

tracked EOD frequency traces and to fix flawed connections

(Figure 7). Flawed connections can easily be identified by

their clear deviation from the spectrogram displayed in the

background. Furthermore, signal traces with a detection gap

beyond the temporal threshold of 1tthresh = 10 s of the tracking

algorithm can be manually connected based on visual cues from

the spectrogram. The resulting validated signal traces are then

stored and further analyzed (e.g., Raab et al., 2019, 2021).

4. Results

The complexity of the data set we recorded in Colombia

in 2016 led us to the development of the presented tracking

algorithm. The high density of fish in this data set (about

25 fish within 3.5 × 3.5m2) results in many individual

EOD frequency traces, where EOD frequencies were often

very similar and frequently cross each other, in particular

in the context of communication (Figure 9). This severely

challenged previous tracking approaches (Madhav et al., 2018;
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FIGURE 7

Graphical user interface for validating and fixing tracking results. The user is presented with the tracked signal traces (EOD frequency traces)

displayed on top of a spectrogram summed up across recording electrodes. The user can delete, cut, and connect signal traces or delete signals

not originating from electric fish.

Henninger et al., 2020), thus a better tracking algorithm

was required. The improved algorithm resolves many

tracking issues resulting from crossing EOD frequency

traces and facilitates the evaluation of wave-type electric fish

recordings even in abundant populations. In the following

we evaluate the performance of the developed algorithm

and highlight how it can be used to advance our knowledge

about the behavior of freely moving and interacting electric

fish by facilitating laboratory studies as well as natural

field observations.

4.1. Performance of the tracking
algorithm

In order to quantify the performance of the presented

tracking algorithm, we evaluate potential tracking conflicts that

occur during the analysis of a datasets we recorded with an

8 × 8 electrode array in Colombia during the day of April

10th, 2016 for 10 h:50m. First, we tracked the fish with the

presented algorithm and then visually inspected, corrected,

and validated the tracking results using the GUI (Figure 7).

Second, we run the tracking algorithm again and compared

the connections made by the algorithm with the manually

improved ones. That is, for each signal αi we inspected all

possible connections with a signal βj (one row in the distance

cube) within the central 10 s of the current tracking window. If

all the βj for a given αi were assigned to the same fish identity

in the visually corrected tracking results, we have no potential

conflict and these connections were not further considered for

quantifying the performance of the algorithm, because these are

the simple cases with a single fish within the maximum EOD

frequency difference,1fthresh, of 2.5Hz. If, however, the possible

connections involved two or more fish identities, a tracking

conflict was possible. For each such potential tracking conflict,

we extracted the EOD frequency difference 1f , Equation (2),

field difference 1S, Equation (6), frequency error εf , Equation

(4), field error εS, Equation (7), and resulting distance measure

ε, Equation (3), between the signal αi and the best signal partner

βj, the one with the smallest distance ε, associated with the

same fish identity as in the visually corrected signal traces (true

connection), as well as between the signal αi and the best
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FIGURE 8

Performance of the tracking algorithm. Conflicts appear if

signals could be connected to multiple di�erent fish identities,

that have been manually corrected and checked post-hoc

(Figure 7). In most but not all cases, correct connections have

smaller signal di�erences or errors (blue) than wrong

connections (red). Shown are kernel density estimates (KDE) for

the various signal di�erences, errors, and distances. The overlap

of the distributions was quantified by the AUC of an

ROC-analysis as indicated in the right column. (A) EOD

frequency di�erences, 1f Equation (2). A logistic function,

Equation (4) (black line), translates EOD frequency di�erences to

frequency errors, εf . (B) Field di�erences, 1S, Equation (6). The

cumulative distribution (black line) of field di�erences of all

pairings, not only from conflicts, translates field di�erences to

field errors, εS, Equation (7). (C) Frequency error, εf , Equation (4).

(D) field error, εS, Equation (7). (E) Combined distance measure,

ε, Equation (3). Note, that frequency and field errors (C,D) are

mapped via monotonically increasing functions from signal

di�erences (A,B) and thus result in the same fraction of correct

connections and AUC values. However, the distance measure

combining both field and frequency error performs best.

signal partner βj belonging to a different fish identity (false

connection). Further fish identities of the βj with larger distances

were ignored.

In order to assess the performance of each signal feature

difference (1f & 1S) and distance measure (εf , εS, ε) in

separating true from false connections, we computed the

fraction of signal differences or errors of true connections

being smaller than those of the corresponding false connections.

If this fraction would be 100% then the tracking algorithm

would always have connected the right signals. In addition we

quantified the overlap of the two distributions by the area under

the curve (AUC) of a receiver-operating characteristic (ROC).

Despite an overlap (low AUC values) in principle 100% correct

connections would be possible, but an overlap demonstrates that

fixed decision thresholds are not feasible.

We start with evaluating the 464 tracking conflicts from

a 5min snippet being especially challenging to track, because

of several crossings of EOD frequency traces (Figure 8). A

small frequency range of this 5min data snippet is displayed

in Figure 7. The least reliable tracking feature appears to be

the difference in EOD frequency (1f and εf ). Frequency

differences of true connections were smaller than the ones

of false connections in only 94.83% (440/464) of the cases

(Figures 8A,C). Better results can be achieved based on the field

error (1S and εS) as a tracking feature. The field differences

of true connections were smaller in 99.57% (462/464) of the

cases (Figures 8B,D). However, this performance can even be

improved when using the distance measure, ε, that combines

both the frequency error, εf , and field error, εS. In 99.87%

(462/464) of the tracking conflicts, true connections had smaller

distances than false connections (Figure 8E). The AUC values for

all measures were similar to the fractions of correct connections

(1f and εf : AUC= 95.16%, 1S and εS: AUC= 99.77%, ε: AUC

= 99.86%), indicating a small but existing overlap between the

two distributions.

The 261 344 tracking conflicts of the whole recording

yield similar results. However, the higher proportion of “easy”

tracking conflicts increased the performance of the various

features in general and differences between them were less

pronounced. Nevertheless, EOD frequency still performed

worse (99.73% correct connections) than field difference

(99.81% correct connections). Again, combining both into the

distance measure, Equation (3), resulted in the best performance

(99.95% correct connections). Correspondingly, the overlap

between the two distributions was reduced (1f and εf : AUC

= 99.79%, 1S and εS: AUC= 99.85%, ε: AUC= 99.98%).

In order to put these high numbers in perspective,

we estimate the time required to post-process signal traces

obtained for the whole dataset recorded during the day of

April 10th, 2016, in Colombia (including 261, 344 potential

tracking conflicts) when using (i) only frequency difference,

(ii) only electric field difference, or (iii) the combined signal

error εS as tracking parameter. Finding and correcting single

tracking errors using our GUI (Figure 7) requires about 15 s

each (personal experience). Accordingly, post-processing signal

traces of the whole recording would require about 3 h when
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solely frequency is used as tracking feature, 2 h when the field

difference alone is used for tracking, and only about 30min

when our combined signal error εS is used. However, note

that the dataset used here to illustrate the performance of the

algorithm is the most complex ever recorded to our knowledge.

With decreasing complexity, i.e., less fish in a recording, the

amount of potential tracking conflicts, and thereby the required

post-processing time, rapidly decreases.

Furthermore, a major advancement of the presented

algorithm is represented by the tracking process itself, i.e.,

tracking signals in discrete tracking windows according to the

similarity of signal pairs (Figure 5). However, this advancement

is only validated by human observers, since the recreation of

previous tracking approaches is too demanding for the sole

purpose of accuracy comparison.

4.2. Applications of the developed
algorithm

By means of the developed algorithm we were able, for the

first time, to track electric signals of individual fish for multiple

consecutive days in a natural, high density population of A.

leptorhynchus recorded in a stream in Colombia (Figure 9). This

allowed for novel insights into the natural behavior of these

fish in the wild, including their communication and movement

behaviors. A preliminary analysis of the tracked fish indicates

that many fish stay pretty stationary within distinct areas for

multiple days (Figure 10). Other fish, especially during the night,

can only be tracked for short time periods, suggesting these

fish only transit through the area covered by the electrode

array (Figure 9A). Furthermore, fish seem to interact with each

other by modulating their EOD frequency in various ways and

on many different time scales ranging from seconds to many

minutes, if not even hours. This includes not only distinct

communication signals like rises (Raab et al., 2021, Figure 9B),

but also other not yet classified EOD frequency modulations, for

example multiple EOD frequency traces entwining each other

(Figure 9C).

Such natural observations are invaluable since only in

the wild, the whole scope of an animal’s behavior can

be observed in the context of all relevant stimuli and

conditions that shaped these behaviors through evolutionary

adaptations. Accordingly, such natural observations yield the

unique opportunity to discover novel and unexpected behavioral

traits and associated causalities. For example, Fortune et al.

(2020) described behavioral and physiological adaptations of

Eigenmannia vicentespelea, another gymnotiform wave-type

electric fish, in response to living in a constantly dark cave.

E. vicentespelea developed increased territoriality and enhanced

EOD amplitudes in comparison to Eigenmannia trilineata, not

living in caves, to face the challenges of their specific habitat.

If not for the corresponding field study, these behavioral and

physiological adaptations probably never would have been

discovered.

Furthermore, field studies are also essential to validate

conclusions drawn form laboratory experiments, which is

especially important since behaviors observed in the laboratory

often deviate from those observed in the wild (Cheney et al.,

1995; Rendall et al., 1999; Henninger et al., 2018). In our case,

the preliminary behavioral observations we made in Colombia

and described above fit to and support the conclusions of

our recent laboratory experiments (Raab et al., 2019, 2021).

In these experiments we used the algorithm presented here to

track individual electric signals of A. leptorhynchus in different

behavioral contexts. This includes the evaluation of individual

spatio-temporal movement behaviors in a freely moving and

interacting group of 14 A. leptorhynchus (Raab et al., 2019) as

well as the communication behavior of pairs of A. leptorhynchus

competing over a shelter during staged competitions (Raab et al.,

2021). In both laboratory and field observations, fish produce

the majority of rises as electrocommunication signals during the

night (Raab et al., 2021, Figure 9A), are more stationary during

the day compared to the night (Raab et al., 2019, Figure 10),

and seem to not remain completely stationary for the whole

inactive day-phase but rather show short periods of activity

(Raab et al., 2019, Figure 10). The observed stationarity of fish

observed in our field recordings also fit to our suggestion of A.

leptorhynchus establishing a dominance hierarchy to regulate an

individual’s access to resources (Raab et al., 2021). Due to the

fish’s stationarity, repetitive conflicts with the same individuals

are presumably inevitable and the establishment of a dominance

hierarchy can be assumed to be the most economic way to

resolve these conflicts (Sapolsky, 2005).

Finally, the evaluation of natural recordings very accurately

illustrate the advantages and limitations of the presented

algorithm. While crossing EOD frequency traces can usually

be resolved accurately (Figure 9B), reliable tracking usually

fails when too many signals traces are of similar EOD

frequency and entwine in diffuse EOD frequency alterations

(Figure 9C). In these occasions the signals of multiple fish

superimpose in the spectrogram analysis (Figure 9C) for longer

time periods. As a consequence, the corresponding detected

signals comprise signal powers of multiple fish. Accordingly,

their clear assignment to one of the involved identities is usually

impossible after the EOD frequency traces disentangle.

5. Discussion

Previous approaches on tracking wave-type EODs of

individual wave-type electric fish either utilized their

EOD frequency (Henninger et al., 2020) or the spatial

profile of their electric fields (Madhav et al., 2018) as

tracking features. We assessed the performance of both
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FIGURE 9

Long-term field recording of A. macrostomus, a member of the A. leptorhynchus species group, in Colombia, 2016. EODs were recorded with a

64 channel electrode array covering 3.5× 3.5m3. (A) Eight days of detected and tracked EOD frequencies. Successfully tracked and validated

signal traces of di�erent fish are indicated in di�erent colors. Signal traces that could not be clearly validated are indicated in white. Dark gray

areas indicate night time, light gray areas day time. (B) Signal traces of three fish where the crossing EOD frequency traces of the upper two fish

could reliably be resolved by the tracking algorithm. (C) Too many signal traces with similar frequencies compromise the tracking algorithm

(670− 672Hz). Frequency peaks in PSDs belonging to multiple fish temporally overlay and prevent successful tracking.

signal features alone as well as a combination of both,

based on tracking conflicts occurring while processing

a recording of a natural, high density population of A.

leptorhynchus in a stream in Colombia. The comparison

of spatial field properties clearly performs better than

a comparison of EOD frequencies. Certainly, the EOD

frequency of A. leptorhynchus can be remarkably stable

over minutes to hours (Moortgat et al., 1998). However,

EOD frequency changes with various magnitudes on various

time scales can regularly be observed, because of its strong

temperature dependence (Dunlap et al., 2000), actively

produced electrocommunication signals (e.g., Zupanc, 2002;

Triefenbach and Zakon, 2008; Smith, 2013; Benda, 2020; Raab

et al., 2021), and also as an artifact of the EOD frequency

extraction from the PSDs (Figure 2). Accordingly, the suitability

of EOD frequency as tracking feature decreases the more

fish are recorded and analyzed simultaneously, since EOD

frequency differences between fish are potentially smaller and

interactions between fish involving active EOD frequency

modulations can be assumed to be more frequent. Therefore,

spatial field properties reflecting a fish’s spatial position

and orientation represent a more robust tracking feature,

especially when only those signal pairs with small EOD

frequency differences are considered for comparison and

tracking.

The best tracking performance is achieved by using

both EOD frequency differences and field differences.

This combined signal distance implements a tracking bias

that helps to resolve tracking conflicts in at least two

scenarios, where tracking solely based on field differences

fail. First, if two fish swim close to each other with

similar orientations, then their spatial profiles are similar

but they can be still differentiated based on their EOD

frequencies. Second, in the event of crossing EOD frequency
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FIGURE 10

Spatial behavior of a single A. macrostomus detected and tracked consecutively for 4 days. Heat-maps and contour lines show the fish’s

probability of presence across the monitored 3.5×3.5m2 area of the river during the night (top) and day (bottom). The observation area ranged

from the river bank (x = 0) to the center of the river (x = 3.5) with similar extend in the flow direction of the river (see Figure 1C). Heat-maps of

signal powers over electrodes are interpolated using a gaussian-kernel for illustrative purposes. Orange contour lines include the area in which

the fish spends more than 50% of the time, the red lines more than 75% of the time respectively. Even though the fish certainly shows movement

behaviors, especially during the night, it remains remarkably stationary in a specific location of the obervation area for four consecutive days.

traces, temporarily only one signal can be extracted by

detecting peaks in the PSD (Figure 3A). So neither the

EOD frequency difference nor the difference in spatial

profiles provide a meaningful hint for tracking in the

moment of the intersection. Adding EOD frequency

difference to the distance measure then slightly favors

connections of signal pairs with more similar EOD frequencies,

resulting in a bias for superimposed signals detected at

the intersection to be connected to the EOD frequency

trace of the fish with a more constant EOD frequency

(Figure 5, grey trace in bottom panel). The other signal traces,

accordingly, remain to be connected across the intersection

afterwards.

More important for the improved performance of the

presented tracking algorithm is the algorithm itself, in

addition to the combined distance measure. The tracking

algorithm establishes connections within an extended tracking

window based on smallest distances (Figure 5). This is in

contrast to existing tracking algorithms (Henninger et al.,

2018, 2020; Madhav et al., 2018), that immediately connect

the signals detected in a given time step to known fish

identities.

When studying animals and their behaviors by means

of evaluating external recordings, we rely on the detection

of sensory cues emitted actively or passively by the animals

themselves (Dell et al., 2014; Hughey et al., 2018). In

cluttered environments or when signals are weak (low signal-

to-noise-ratio), reliable signal detection is often impaired

and detection losses frequently occur. These detection gaps

complicate reliable tracking, especially when signals are tracked

according to their temporal occurrence. In recordings of

electric fish, detection losses frequently result from fish being

too far away from recording electrodes, from the electric

fields being blocked by any objects between a fish and

recording electrodes, or by intersections of EOD frequencies.

The resulting tracking failures can be avoided with the

presented algorithm, since it relies less on the temporal

sequence of detected signals. Rather, connections are established

according to the smallest distances within extended tracking

windows.
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Despite the high fractions of correct connections (Figure 8),

the resulting EOD frequency traces need to be corrected

manually. This is in particular necessary in sections with

close by EOD frequencies or when EOD frequency traces

cross each other due to active modulations. Recordings

of only a few fish with well-separated EOD frequencies

require much less or even no manual interventions. With

the current state of the presented algorithm we push the

limits to more complicated signal interactions, but the

performance still is not perfect for interesting scenes with a

lot of interactions (Figure 9). Deep neural networks that are

successfully used to track animal pose (e.g., Mathis et al.,

2018), or to annotate acoustic signals from various animals

(e.g., Steinfath et al., 2021), might be an interesting option

to further improve tracking performance. Such approaches,

however, require extensive training data sets. Our tracking

algorithm and evaluated data sets might set the basis

for developing and training of deep neural networks in

the future.

6. Conclusion

The self-generated electric fields of electric fish offer

an unique opportunity for studying natural movement and

communication behaviors of nocturnal fish in freely interacting

populations. The EODs of whole groups can be recorded

simultaneously by means of electrode arrays submerged in

the water—without the need to catch and tag the fish.

The presented algorithm for tracking wave-type electric fish

combines previous approaches based on either their individual-

specific EOD frequencies (Henninger et al., 2020) or the

spatial profiles of electric fields resulting from a fish’s location

and orientation (Madhav et al., 2018). The algorithm uses

a compound signal distance, that incorporates both EOD

frequencies and spatial profiles. We developed a new temporal

clustering method that assembles fish identities from all

signals within a large tracking window according to ascending

signal distances. With this approach, our algorithm improves

in resolving tracking issues mainly resulting from crossing

EOD frequency traces or detection losses, which tremendously

reduces required post-processing time and makes this technique

more feasible even in long-term observational studies on

freely moving electric fish. Since tracked EOD traces allow

insights into both movement and communication behaviors, a

reliable tracking algorithm is key to many behavioral studies,

both in the laboratory and in the field, that have not been

possible before. From such big-data behavioral studies we

expect many novel insights into the sensory ecology and into

social and communication behaviors of these fascinating fishes

(Henninger et al., 2018; Raab et al., 2019, 2021; Fortune

et al., 2020), that also impact the way we study sensory

processing.
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in the presented algorithm originated from collaborations

and numerous discussion of TR with other authors. All

authors contributed to the article and approved the submitted

version.

Funding

This work was supported by Deutsche

Forschungsgemeinschaft, Open Access Publishing Fund of

University of Tübingen, the Center of Integrative Neuroscience

at the University of Tübingen through the mini RTG Sensory

Flow Processing across Modalities and Species, and the National

Frontiers in IntegrativeNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fnint.2022.965211
https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org


Raab et al. 10.3389/fnint.2022.965211

Science Foundation under grand no. 1557858 to NC a Kavli

NDI Distiguished Postdoctoral Fellowship to MM.

Acknowledgments

We thank Eric Fortune for important discussions and

improvements to the tracking system.

Conflict of interest

The authors declare that the research was conducted in

the absence of any commercial or financial relationships

that could be construed as a potential conflict of

interest.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those

of their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

References

Albert, J. S., and Crampton, W. G. R. (2005). “Diversity and phylogeny of
neotropical electric fishes (gymnotiformes),” in Electroreception, eds T. H. Bullock,
C. D. Hopkins, A. N. Popper, and R. R. Fay (New York, NY: Springer), 360–409.
doi: 10.1007/0-387-28275-0_13

Aspillaga, E., Arlinghaus, R., Martorell-Barceló, M., Follana-Berná, G., Lana,
A., Campos-Candela, A., et al. (2021). Performance of a novel system for
high-resolution tracking of marine fish societies. Anim. Biotelemetry 9, 1–14.
doi: 10.1186/s40317-020-00224-w

Bastian, J., Schniederjan, S., and Nguyenkim, J. (2001). Arginine
vasotocin modulates a sexually dimorphic communication behavior in the
weakly electric fish Apteronotus leptorhynchus. J. Exp. Biol. 204, 1909–1923.
doi: 10.1242/jeb.204.11.1909

Benda, J. (2020). “The physics of electrosensory worlds,” in The Senses: A
Comprehensive Reference, Vol. 7, eds B. Fritzsch and H. Bleckmann (Cambridge:
Elsevier; Academic Press), 228–254. doi: 10.1016/B978-0-12-805408-6.00016-6

Boon, A. K., Réale, D., and Boutin, S. (2007). The interaction between
personality, offspring fitness and food abundance in north American red squirrels.
Ecol. Lett. 10, 1094–1104. doi: 10.1111/j.1461-0248.2007.01106.x

Chapman, C., Chapman, L., and Wrangham, R. (1995). Ecological constraints
on group size: an analysis of spider monkey and chimpanzee subgroups. Behav.
Ecol. Sociobiol. 36, 59–70. doi: 10.1007/BF00175729

Cheney, D. L., Seyfarth, R. M., and Silk, J. B. (1995). The role of grunts in
reconciling opponents and facilitating interactions among adult female baboons.
Anim. Behav. 50, 249–257. doi: 10.1006/anbe.1995.0237

Dell, A. I., Bender, J. A., Branson, K., Couzin, I. D., de Polavieja, G.
G., Noldus, L. P., et al. (2014). Automated image-based tracking and its
application in ecology. Trends Ecol. Evol. 29, 417–428. doi: 10.1016/j.tree.2014.
05.004

Dunlap, K., Smith, G., and Yekta, A. (2000). Temperature dependence
of electrocommunication signals and their underlying neural rhythms in the
weakly electric fish, Apteronotus leptorhynchus. Brain Behav. Evol. 55, 152–162.
doi: 10.1159/000006649

Egnor, S. E. R., and Branson, K. (2016). Computational analysis of behavior.
Annu. Rev. Neurosci. 39, 217–236. doi: 10.1146/annurev-neuro-070815-013845

Fortune, E. S., Andanar, N., Madhav, M., Jayakumar, R. P., Cowan,
N. J., Bichuette, M. E., et al. (2020). Spooky interaction at a distance in
cave and surface dwelling electric fishes. Front. Integr. Neurosci. 14, 561524.
doi: 10.3389/fnint.2020.561524

Fotowat, H., Harrison, R. R., and Krahe, R. (2013). Statistics of the
electrosensory input in the freely swimming weakly electric fish Apteronotus
leptorhynchus. J. Neurosci. 33, 13758–13772. doi: 10.1523/JNEUROSCI.09
98-13.2013

Gomez-Marin, A., Paton, J. J., Kampff, A. R., Costa, R. M., and
Mainen, Z. F. (2014). Big behavioral data: psychology, ethology and the
foundations of neuroscience. Nat. Neurosci. 17, 1455–1462. doi: 10.103
8/nn.3812

Hagedorn, M. (1988). Ecology and behavior of a pulse-type electric fish,
hypopomus occidentalis (gymnotiformes, hypopomidae), in a fresh-water stream
in panama. Copeia 1988, 324–335. doi: 10.2307/1445872

Henninger, J. (2015). Social interactions in natural populations of weakly electric
fish (Ph.D. thesis). Eberhard Karls Universität, Tübingen, Germany.

Henninger, J., Krahe, R., Kirschbaum, F., Grewe, J., and Benda, J. (2018).
Statistics of natural communication signals observed in the wild identify important
yet neglected stimulus regimes in weakly electric fish. J. Neurosci. 38, 5456–5465.
doi: 10.1523/JNEUROSCI.0350-18.2018

Henninger, J., Krahe, R., Sinz, F., and Benda, J. (2020). Tracking activity
patterns of a multispecies community of gymnotiform weakly electric fish
in their neotropical habitat without tagging. J. Exp. Biol. 223, jeb206342.
doi: 10.1242/jeb.206342

Hügel, T., van Meir, V., Munoz-Meneses, A., Clarin, B.-M., Siemers, B. M., and
Goerlitz, H. R. (2017). Does similarity in call structure or foraging ecology explain
interspecific information transfer in wild Myotis bats? Behav. Ecol. Sociobiol. 71,
168. doi: 10.1007/s00265-017-2398-x

Hughey, L. F., Hein, A. M., Strandburg-Peshkin, A., and Jensen, F. H. (2018).
Challenges and solutions for studying collective animal behaviour in the wild.
Philos. Trans. R. Soc. Lond. B Biol. Sci. 373, 20170005. doi: 10.1098/rstb.2017.0005

Jolles, J. W. (2021). Broad-scale applications of the Raspberry Pi:
a review and guide for biologists. Methods Ecol. Evol. 12, 1562–1579.
doi: 10.1111/2041-210X.13652

Jun, J. J., Longtin, A., and Maler, L. (2013). Real-time localization of moving
dipole sources for tracking multiple free-swimming weakly electric fish. PLoS ONE
8, e66596. doi: 10.1371/journal.pone.0066596

Kühl, H. S., and Burghardt, T. (2013). Animal biometrics: quantifying
and detecting phenotypic appearance. Trends Ecol. Evol. 28, 432–441.
doi: 10.1016/j.tree.2013.02.013

Lahiri, M., Tantipathananandh, C., Warungu, R., Rubenstein, D. I., and
Berger-Wolf, T. Y. (2011). “Biometric animal databases from field photographs:
identification of individual zebra in the wild,” in Proceedings of the 1st
ACM International Conference on Multimedia Retrieval, New York, 1–8.
doi: 10.1145/1991996.1992002

Madhav, M. S., Jayakumar, R. P., Demir, A., Stamper, S. A., Fortune, E. S.,
and Cowan, N. J. (2018). High-resolution behavioral mapping of electric fishes in
Amazonian habitats. Sci. Rep. 8, 5830. doi: 10.1038/s41598-018-24035-5

Markham, A. C., Gesquiere, L. R., Alberts, S. C., and Altmann, J. (2015).
Optimal group size in a highly social mammal. Proc. Natl. Acad. Sci. U.S.A. 112,
14882–14887. doi: 10.1073/pnas.1517794112

Mathis, A., Mamidanna, P., Cury, K. M., Abe, T., Murthy, V. N., Mathis, M. W.,
et al. (2018). DeepLabCut: markerless pose estimation of user-defined body parts
with deep learning. Nat. Neurosci. 21, 1281–1289. doi: 10.1038/s41593-018-0209-y

Moortgat, K., Keller, C., Bullock, T., and Sejnowski, T. (1998). Submicrosecond
pacemaker precision is behaviorally modulated: the gymnotiform electromotor
pathway. Proc. Natl. Acad. Sci. U.S.A. 95, 4684–4689. doi: 10.1073/pnas.95.8.4684

Frontiers in IntegrativeNeuroscience 16 frontiersin.org

https://doi.org/10.3389/fnint.2022.965211
https://doi.org/10.1007/0-387-28275-0_13
https://doi.org/10.1186/s40317-020-00224-w
https://doi.org/10.1242/jeb.204.11.1909
https://doi.org/10.1016/B978-0-12-805408-6.00016-6
https://doi.org/10.1111/j.1461-0248.2007.01106.x
https://doi.org/10.1007/BF00175729
https://doi.org/10.1006/anbe.1995.0237
https://doi.org/10.1016/j.tree.2014.05.004
https://doi.org/10.1159/000006649
https://doi.org/10.1146/annurev-neuro-070815-013845
https://doi.org/10.3389/fnint.2020.561524
https://doi.org/10.1523/JNEUROSCI.0998-13.2013
https://doi.org/10.1038/nn.3812
https://doi.org/10.2307/1445872
https://doi.org/10.1523/JNEUROSCI.0350-18.2018
https://doi.org/10.1242/jeb.206342
https://doi.org/10.1007/s00265-017-2398-x
https://doi.org/10.1098/rstb.2017.0005
https://doi.org/10.1111/2041-210X.13652
https://doi.org/10.1371/journal.pone.0066596
https://doi.org/10.1016/j.tree.2013.02.013
https://doi.org/10.1145/1991996.1992002
https://doi.org/10.1038/s41598-018-24035-5
https://doi.org/10.1073/pnas.1517794112
https://doi.org/10.1038/s41593-018-0209-y
https://doi.org/10.1073/pnas.95.8.4684
https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org


Raab et al. 10.3389/fnint.2022.965211

Nagy, M., Ákos, Z., Biro, D., and Vicsek, T. (2010). Hierarchical group dynamics
in pigeon flocks. Nature 464, 890–893. doi: 10.1038/nature08891

Nourizonoz, A., Zimmermann, R., Ho, C. L. A., Pellat, S., Ormen,
Y., Prevost-Solie, C., et al. (2020). EthoLoop: automated closed-loop
neuroethology in naturalistic environments. Nat. Methods 17, 1052–1059.
doi: 10.1038/s41592-020-0961-2

Pantoni, M. M., Herrera, G. M., Van Alstyne, K. R., and Anagnostaras, S. G.
(2020). Quantifying the acoustic startle response in mice using standard digital
video. Front. Behav. Neurosci. 14, 83. doi: 10.3389/fnbeh.2020.00083

Pedraja, F., Herzog, H., Engelmann, J., and Jung, S. N. (2021). The
use of supervised learning models in studying agonistic behavior and
communication in weakly electric fish. Front. Behav. Neurosci. 15, 718491.
doi: 10.3389/fnbeh.2021.718491

Raab, T., Bayezit, S., Erdle, S., and Benda, J. (2021). Electrocommunication
signals indicate motivation to compete during dyadic interactions of an electric
fish. J. Exp. Biol. 224, jeb242905. doi: 10.1242/jeb.242905

Raab, T., Linhart, L., Wurm, A., and Benda, J. (2019). Dominance in habitat
preference and diurnal explorative behavior of the weakly electric fish Apteronotus
leptorhynchus. Front. Integr. Neurosci. 13, 21. doi: 10.3389/fnint.2019.00021

Rendall, D., Seyfarth, R. M., Cheney, D. L., and Owren, M. J. (1999). The
meaning and function of grunt variants in baboons. Anim. Behav. 57, 583–592.
doi: 10.1006/anbe.1998.1031

Robinson, P. W., Costa, D. P., Crocker, D. E., Gallo-Reynoso, J. P., Champagne,
C. D., Fowler, M. A., et al. (2012). Foraging behavior and success of a mesopelagic
predator in the northeast pacific ocean: insights from a data-rich species, the
northern elephant seal. PLoS ONE 7, e36728. doi: 10.1371/journal.pone.0036728

Sapolsky, R. M. (2005). The influence of social hierarchy on primate health.
Science 308, 648–652. doi: 10.1126/science.1106477

Saraux, C., Le Bohec, C., Durant, J. M., Viblanc, V. A., Gauthier-Clerc, M.,
Beaune, D., et al. (2011). Reliability of flipper-banded penguins as indicators of
climate change. Nature 469, 203–206. doi: 10.1038/nature09630

Seibert, A.-M., Koblitz, J. C., Denzinger, A., and Schnitzler, H.-U.
(2013). Scanning behavior in echolocating common pipistrelle bats (Pipistrellus
pipistrellus). PLoS ONE 8, e60752. doi: 10.1371/journal.pone.0060752

Sherley, R. B., Burghardt, T., Barham, P. J., Campbell, N., and Cuthill, I. C.
(2010). Spotting the difference: towards fully-automated population monitoring
of African penguins Spheniscus demersus. Endangered Species Res. 11, 101–111.
doi: 10.3354/esr00267

Smith, G. T. (2013). Evolution and hormonal regulation of sex differences in the
electrocommunication behavior of ghost knifefishes (apteronotidae). J. Exp. Biol.
216, 2421–2433. doi: 10.1242/jeb.082933

Steinfath, E., Palacios-Munoz, A., Rottschofer, J. R., Yuezak, D., and Clemens, J.
(2021). Fast and accurate annotation of acoustic signals with deep neural networks.
eLife 10, e68837. doi: 10.7554/eLife.68837

Strandburg-Peshkin, A., Clutton-Brock, T., and Manser, M. B. (2019). Burrow
usage patterns and decision-making in meerkat groups. Behav. Ecol. 31, 292–302.
doi: 10.1093/beheco/arz190

Strandburg-Peshkin, A., Farine, D. R., Couzin, I. D., and Crofoot, M. C. (2015).
Shared decision-making drives collective movement in wild baboons. Science 348,
1358–1361. doi: 10.1126/science.aaa5099

Strandburg-Peshkin, A., Farine, D. R., Crofoot, M. C., and Couzin, I. D.
(2017). Habitat and social factors shape individual decisions and emergent group
structure during baboon collective movement. eLife 6, e19505. doi: 10.7554/eLife.
19505

Strandburg-Peshkin, A., Papageorgiou, D., Crofoot, M. C., and Farine, D. R.
(2018). Inferring influence and leadership in moving animal groups. Philos. Trans.
R. Soc. B Biol. Sci. 373, 20170006. doi: 10.1098/rstb.2017.0006

Surlykke, A., and Kalko, E. K. V. (2008). Echolocating bats cry out loud to detect
their prey. PLoSONE 3, e2036. doi: 10.1371/journal.pone.0002036

Theriault, D. H., Fuller, N. W., Jackson, B. E., Bluhm, E., Evangelista,
D., Wu, Z., et al. (2014). A protocol and calibration method for accurate
multi-camera field videography. J. Exp. Biol. 217, 1843–1848. doi: 10.1242/jeb.
100529

Todd, B. S., and Andrews, D. C. (1999). The identification of
peaks in physiological signals. Comput. Biomed. Res. 32, 322–335.
doi: 10.1006/cbmr.1999.1518

Torney, C. J., Lamont, M., Debell, L., Angohiatok, R. J., Leclerc, L.-M., and
Berdahl, A. M. (2018). Inferring the rules of social interaction in migrating
caribou. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170385. doi: 10.1098/rstb.2017.
0385

Triefenbach, F., and Zakon, H. (2008). Changes in signalling during
agonistic interactions between male weakly electric knifefish, Apteronotus
leptorhynchus. Anim. Behav. 75, 1263–1272. doi: 10.1016/j.anbehav.2007.
09.027

Turner, C. R., Derylo, M., de Santana, C. D., Alves-Gomes, J. A., and Smith,
G. T. (2007). Phylogenetic comparative analysis of electric communication signals
in ghost knifefishes (gymnotiformes: Apteronotidae). J. Exp. Biol. 210, 4104–4122.
doi: 10.1242/jeb.007930

Zupanc, G. K. (2002). From oscillators to modulators: behavioral and neural
control of modulations of the electric organ discharge in the gymnotiform fish,
apteronotus leptorhynchus. J. Physiol. 96, 459–472. doi: 10.1016/S0928-4257(03)
00002-0

Frontiers in IntegrativeNeuroscience 17 frontiersin.org

https://doi.org/10.3389/fnint.2022.965211
https://doi.org/10.1038/nature08891
https://doi.org/10.1038/s41592-020-0961-2
https://doi.org/10.3389/fnbeh.2020.00083
https://doi.org/10.3389/fnbeh.2021.718491
https://doi.org/10.1242/jeb.242905
https://doi.org/10.3389/fnint.2019.00021
https://doi.org/10.1006/anbe.1998.1031
https://doi.org/10.1371/journal.pone.0036728
https://doi.org/10.1126/science.1106477
https://doi.org/10.1038/nature09630
https://doi.org/10.1371/journal.pone.0060752
https://doi.org/10.3354/esr00267
https://doi.org/10.1242/jeb.082933
https://doi.org/10.7554/eLife.68837
https://doi.org/10.1093/beheco/arz190
https://doi.org/10.1126/science.aaa5099
https://doi.org/10.7554/eLife.19505
https://doi.org/10.1098/rstb.2017.0006
https://doi.org/10.1371/journal.pone.0002036
https://doi.org/10.1242/jeb.100529
https://doi.org/10.1006/cbmr.1999.1518
https://doi.org/10.1098/rstb.2017.0385
https://doi.org/10.1016/j.anbehav.2007.09.027
https://doi.org/10.1242/jeb.007930
https://doi.org/10.1016/S0928-4257(03)00002-0
https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org

	Advances in non-invasive tracking of wave-type electric fish in natural and laboratory settings
	1. Introduction
	2. Materials and equipment
	2.1. Data acquisition
	2.2. Spectrograms
	2.3. Extraction of EOD frequencies and feature vector

	3. Methods
	3.1. Algorithm for tracking wave-type electric fish
	3.1.1. Distance measure
	3.1.2. Frequency error
	3.1.3. Field error
	3.1.4. Tracking within a data window
	3.1.5. Assembly of tracking results over data windows

	3.2. GUI for checking and correcting tracking results

	4. Results
	4.1. Performance of the tracking algorithm
	4.2. Applications of the developed algorithm

	5. Discussion
	6. Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


