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Working Memory (WM) is a cognitive mechanism that enables temporary

holding and manipulation of information in the human brain. This mechanism

is mainly characterized by a neuronal activity during which neuron populations

are able to maintain an enhanced spiking activity after being triggered by a

short external cue. In this study, we implement, using the NEST simulator,

a spiking neural network model in which the WM activity is sustained by a

mechanism of short-term synaptic facilitation related to presynaptic calcium

kinetics. Themodel, which is characterized by leaky integrate-and-fire neurons

with exponential postsynaptic currents, is able to autonomously show an

activity regime in which the memory information can be stored in a synaptic

form as a result of synaptic facilitation, with spiking activity functional to

facilitation maintenance. The network is able to simultaneously keep multiple

memories by showing an alternated synchronous activity which preserves

the synaptic facilitation within the neuron populations holding memory

information. The results shown in this study confirm that a WM mechanism

can be sustained by synaptic facilitation.

KEYWORDS

computational neuroscience, spiking neural networks, NEST simulation, working

memory, short-term plasticity (STP)

1. Introduction

Working memory (WM) is a cognitive process that is able to hold and manipulate

information for a short time. It is involved in a vast number of cognitive tasks (Miller

et al., 1960; Baddeley andHitch, 1974; Cowan, 1998; Golosio et al., 2015) which span from

speech to visual and spatial processing. However, theWM capacity, i.e., the ability to hold

multiple memories at the same time, is limited to a few items depending on the type of

information (Miller, 1956; Cowan, 2001, 2010). Different from long-term memory, WM

is a transient phenomenon, and it is also believed that it does not entail structural changes

to the network.

A classic procedure for studying WM relies on the so-called delay response tasks. In

such a framework, a stimulus is presented for a short time and the related execution

of the task can take place only after a delay period. During the delay period, it is

experimentally observed, especially in the prefrontal cortex (PFC), a neuronal selective
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spiking activity able to maintain the information previously

presented by the stimulus (Funahashi et al., 1989; Goldman-

Rakic, 1995; D'Esposito and Postle, 2015). When this activity is

somehow suspended (e.g., because of a noise stimulus during

the delay period or a too long delay), the task is not correctly

executed.

The first computational models assumed that this peculiar

activity could be entirely maintained with prior long-term

synaptic modifications so that when a stimulus was given to the

network, the population encoding for the presented stimulus

exhibited persistent spiking activity (Hebb, 1949; Hopfield, 1982;

Brunel, 2000). Thus, according to these models, the information

was only stored in the spiking activity. However, experimental

evidence shows that memory can be also maintained when the

enhanced activity is interrupted, suggesting that information is

not only stored in the population’s spiking activity (Stokes, 2015)

but also that WM processes can exhibit discrete periodic bursts

instead of a persistent activity (Honkanen et al., 2014; Lundqvist

et al., 2016).

In this framework, many studies were conducted to

enlighten the role of synaptic plasticity in WM (Barak and

Tsodyks, 2014), and some of the proposed models rely on short-

term synaptic plasticity, especially on short-term facilitation

(Barak and Tsodyks, 2007; Mongillo et al., 2008; Hansel and

Mato, 2013; Rolls et al., 2013). Indeed, it has been observed

that the PFC shows marked short-term facilitation (Wang

et al., 2006), suggesting that this form of plasticity can have a

significant link with WM tasks. The work of Rolls et al. (2013)

shows that employing synaptic facilitation enables a spiking

network to maintain a relevant number of memories at the same

time, whereas the same network lacking this kind of plasticity

can maintain far fewer memories. Moreover, in Hansel and

Mato (2013), it is described that the non-linearity of short-

term facilitation is essential for displaying a reasonable persistent

activity able to retain memory during a delay period. One of

the models that posit a dominant role for synaptic facilitation in

WM is Mongillo et al. (2008) model, which shows that a spiking

network with synaptic facilitation is able to exhibit a bi-stable

regime in which it can autonomously retain memories with

periodic spiking activity without a significant firing rate increase.

Thus, according to this model, memories are stored in a synaptic

fashion, with spiking activity functional for synaptic facilitation

upkeep. The model is further developed by Mi et al. (2017)

to study how WM capacity can be modulated by short-term

synaptic plasticity and the network’s external excitation.

In addition, Mongillo et al. (2008) presented a simple

mean-field model describing the firing rate behavior of an

excitatory population modulated by short-term plasticity. This

model has also been explored in Cortes et al. (2013), in

which the short-term synaptic plasticity can lead to irregular

and chaotic dynamics, facilitating transitions between network

states and thus being one possible mechanism responsible

for complex dynamics in cortical activity. Furthermore, Taher

et al. (2020) developed a neural mass model with short-term

synaptic plasticity based upon the dynamics of a network of

quadratic integrate and fire (QIF) neurons. Interestingly, this

study was able to qualitatively reproduce the results of Mongillo

et al. (2008) using facilitated synapses. Also, the maintenance

of multiple memories was explored and presented an analytic

expression for the WM capacity based on the work of Mi et al.

(2017), in agreement with the value observed in the simulations

of the network of QIF neurons.

Recently, Fiebig and Lansner (2016) (refer to also Fiebig

et al., 2020) proposed a spiking network model based on

a fast expression of Hebbian plasticity, in which memory

is retained by oscillatory bursts. The authors of the above-

mentioned study proposed a synaptic plasticity model based

on a Hebbian learning rule supplemented by a short-term

plasticity mechanism. This kind of implementation can enable

a network to learn new memory representations, whereas using

non-Hebbian plasticity needs prior long-term network training.

In this work, we implement the spiking network model

described in Mongillo et al. (2008) using the NEST simulator.

We show that the network exhibits totally comparable results

with respect to the original article, underlining the role of short-

term synaptic plasticity in WM tasks. The memory specific

response of the network can be regulated by modulating the

spontaneous activity. Moreover, the network is capable of

maintaining multiple items at the same time and the number

of items that can be maintained can be tuned by changing the

short-term plasticity parameters.

2. Materials and methods

2.1. Short-term synaptic plasticity

In this section, short-term plasticity and its

phenomenological description are introduced. For further

details, please refer to Markram et al. (1998), Tsodyks et al.

(1998, 2000), Barak and Tsodyks (2007), and Barri and Mongillo

(2022).

Short-term plasticity (STP) is a mechanism in which the

synaptic efficacy temporarily changes with a timescale on

the order of hundreds or thousands of milliseconds. This

phenomenon is regulated by the amount of synaptic resources

(i.e., the neurotransmitters) available in the synapse at the

moment of spike emission and by the calcium levels in the

presynaptic terminal.

Indeed, the amount of neurotransmitters a synapse can

contain is limited, and the emission of a spike diminishes

the number of neurotransmitters available in the presynaptic

terminal for further stimulation. Without synaptic activity,

the amount of available neurotransmitters in the presynaptic

terminal returns to its baseline level. This mechanism is called

short-term depression (STD). Moreover, the spike arrival at
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the presynaptic terminal elicits an influx of calcium ions

that is responsible for the release of the vesicles in which

neurotransmitters are stored. Higher calcium concentration in

the terminal leads to a higher fraction of neurotransmitters

released. This mechanism is called short-term facilitation (STF).

The neurotransmitter release is then followed by a mechanism

of calcium removal from the presynaptic terminal to restore its

baseline concentration.

The coupling of these two phenomena leads to a temporary

modulation of the synaptic efficacy (i.e., short-term plasticity),

which can show STD-dominated or STF-dominated behaviors.

The former can be observed when the mechanism of

neurotransmitter restoration is slower with respect to the

mechanism of residual calcium removal after spike emission

and vice versa. To give a phenomenological description of

STP, we can define τd as the time constant of the process

of neurotransmitter restoration and τf the time constant for

the calcium removal mechanism. Thus, we can observe STD-

dominated dynamics when τd > τf and STF-dominated

dynamics when τd < τf .

The synaptic efficacy modulation led by STP can be

described by the following phenomenological model: let x be the

normalized amount of available resources into the presynaptic

terminal and let u be the fraction of resources used in a

spike emission. The spike arrival to the synaptic terminal rises

the variable u by a quantity U(1 − u) (so that u remains

normalized), and the amount of resources released is equal to

ux. Considering a synapse connecting the presynaptic neuron i

and the postsynaptic neuron j, this dynamics can be described

by the following equations (Mongillo et al., 2008):

dui,j

dt
= −

ui,j − U

τf
+ U(1− ui,j)

∑

s

δ(t − t
(i)
s )

dxi,j

dt
=

1− xi,j

τd
− ui,jxi,j

∑

s

δ(t − t
(i)
s )

(1)

where δ(·) is the Dirac delta function and the sum is over

the spike times t
(i)
s of the presynaptic neuron i. The synaptic

modulation takes place during the spike emission, so that

Ji,j(t) = J
(abs)
i,j ui,j(t − δ̂i,j)xi,j(t − δ̂i,j) (2)

where J
(abs)
i,j is the absolute synaptic efficacy for the synapse

connecting neurons i to neuron j and δ̂i,j is the synaptic delay.

Thus, when a spike is fired, the synaptic efficacy is described by

the product Jux.

2.2. Spiking network model

This section describes the spiking network model

implemented in this work, following the Supplementary

material of Mongillo et al. (2008).

The network is composed ofNE excitatory andNI inhibitory

leaky integrate-and fire (LIF) neurons with exponential

postsynaptic currents. The sub-threshold dynamics of the LIF

neuron model is described by the differential equation

τm
dVj

dt
= −Vj + Rm(I

exc
j + Iinhj + Iext,j) (3)

where τm is the membrane time constant, Vj is the neuron’s

membrane potential, Rm is the membrane resistance, Iexcj and

Iinhj represent the excitatory and inhibitory synaptic currents

received as input from the connections within the other neurons

of the network and Iext,j represents the external input to

the network.

The network external input is modeled with Gaussian white

noise currents defined by the following

Iext,j(t− δ̂j) = µext+σextGk for k1tng ≤ (t− δ̂j) ≤ (k+1)1tng

(4)

In particular, the noise is approximated by a piecewise

constant current with mean µext and standard deviation σext ,

with constant current during time intervals of length 1tng =

1ms. Denoting the index of the time interval with k, for each

interval, the current is given byµext+σextGk, withGk a random

number extracted from a standard Gaussian distribution. The

term δ̂j indicates the delays.

The synaptic current shown in Equation (3) is the sum of

the contributions given by the connections with the neurons of

the network, and it is characterized by excitatory and inhibitory

contributions defined as Iexcj (t) and Iinhj (t), respectively. Thus,

the synaptic input for a neuron j of the network, with

exponential postsynaptic currents, is given by the following

equations for excitatory and inhibitory currents, respectively:

τexc

dIexcj

dt
= −Iexcj +

∑

i

αJi,j(t)
∑

s

δ(t − t
(i)
s − δ̂i,j)

τinh

dIinhj

dt
= −Iinhj +

∑

i

αJi,j
∑

s

δ(t − t
(i)
s − δ̂i,j)

(5)

where i is the index of the presynaptic neurons targeting

the neuron j. τexc and τinh represent the time constant of

the excitatory and inhibitory synaptic currents, respectively.

In this model, τexc = τinh = 2ms. δ̂i,j is the synaptic

delay for the synapse connecting neurons i and j. All the

delays are uniformly distributed between 0.1 and 1.0ms. The

time dependence of the synaptic efficacy Ji,j is only due

to short-term plasticity modulation, and it is described in

Equation (2), whereas synapses not modulated by the STP

dynamics have fixed values of Ji,j. Since in this model, only

the connections between excitatory neurons employ short-

term plasticity, the connections with inhibitory neurons do

not show a time dependent synaptic efficacy. In addition,

since the synaptic efficacies J
(abs)
i,j are expressed in mV, a

factor α is needed in order to be consistent with the

units of Equation (5). This term derives the variation of

current input needed to elicit a unit of variation of the
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postsynaptic potential (refer to Supplementary material for its

derivation).

The excitatory neurons are organized into five selective

populations, each of which includes a fixed fraction of

neurons, and a non-selective population that includes

the rest of the excitatory neurons of the network. In

the base model, the selective populations of excitatory

neurons have no overlap, so a neuron cannot belong to

different selective populations. However, in an extension

of the model, it is possible to simulate it with overlapping

selective populations. In such a framework, the neurons

belonging to each selective population are randomly

chosen from the whole excitatory population, enabling the

possibility of having neurons belonging to more than one

selective population.

Regarding network’s connectivity, short-term plasticity is

implemented in all the excitatory-to-excitatory connections

using the same time constants in order to show synaptic

facilitation. These connections are thus characterized by the

STP variables x and u and a weight J, which represents the

absolute synaptic efficacy. The weights of the connections

within excitatory neurons belonging to the same selective

population assume a potentiated value Jp, emulating the

result of prior long-term Hebbian learning. On the other

hand, connections between excitatory neurons belonging to

different selective populations, or linking a selective population

with the non-selective one, are set to a baseline value Jb.

The rest of the excitatory-to-excitatory connections have the

baseline synaptic efficacy except for the 10% of them that

show the potentiated value. While the excitatory-to-excitatory

connections show STP dynamics, the other connections are

static connections with hard-coded synaptic weights. The overall

connectivity is structured so that each neuron of the network

receives a fixed amount of connections from the network’s

populations, both excitatory and inhibitory, with non-specific

inhibitory connectivity. The possibility of having more than

one synapse with the same two neurons is also enabled. A

simplified scheme of the spiking network architecture is depicted

in Figure 1.

Such a network is able to store memories by exploiting the

STP mechanism of the excitatory-to-excitatory connections. In

fact, when a signal targets a selective population increasing its

spiking activity, the synapses connecting neurons of the targeted

population remain facilitated for a time in the order of τf . The

connections between neurons inside the pre-stimulated selective

population are potentiated because J(abs) is relatively large due

to prior long-term Hebbian learning (having J(abs) = Jp) and

also because of the STP modulation driven by u and x. In

particular, the variable u shows a slow decay to its baseline

value, whereas x grows rapidly toward its asymptotic value.

On the other hand, connections between neurons belonging to

other selective populations are relatively weaker because they

lack short-term potentiation, while the connections between

neurons belonging to different selective populations are weaker

because they have not been previously potentiated by long-term

Hebbian learning (with J(abs) = Jb in this case). A similar effect

could be driven by a random fluctuation of neuron activity,

inducing an autonomous winner-take-all (WTA) mechanism,

according to which the selective excitatory population with

the highest firing rate stimulates the inhibitory population

eliciting a suppression of the spiking activity of the other

excitatory populations (Coultrip et al., 1992) due to the global

inhibition. Indeed, the global inhibition is granted by the non-

specific inhibitory connectivity, in agreement with experimental

observations (Fino and Yuste, 2011). This mechanism decreases

the amount of available resources x and increases the value of u

across the pre-stimulated selective population. When x returns

close to its baseline value, since the value of u is still relatively

high, the connection strength becomes large enough to trigger

again the WTA mechanism. This process can be reactivated

periodically, and the period of reactivation is related to the

dynamics of x and in particular to the time constant of the

synaptic depression τd.

All the parameters used for the spiking network simulations,

together with an in-depth description of the network

connectivity, are reported in the Supplementary material.

3. Results

In this section, we present the results of the spiking network

simulations performed using the NEST simulator (version 3.1)

(Deepu et al., 2021).

The network is composed of 8,000 excitatory and 2,000

inhibitory LIF neurons with exponential postsynaptic currents,

whose dynamics are described by Equations 3, 4, and 5 [refer to

also Equations 1, 2, 4, and 5 in Burkitt (2006) and Equation 3

in Hanuschkin et al. (2010)]. The neuron model differs from the

one employed in the original work, as in Mongillo et al. (2008)

a LIF neuron model with the instantaneous rise and decay times

for postsynaptic currents is employed. As discussed in Section

2.2, the excitatory population is further divided into five selective

populations of 800 neurons each and a non-selective population

that includes the rest of the excitatory neurons. All excitatory-

to-excitatory connections follow an STP dynamics whereas the

rest of the connections have fixed synaptic efficacies.

The simulations are performed using a time step of 0.05ms,

with the system of Equations (3) and (5) integrated following

the exact integration scheme of Rotter and Diesmann (1999)

and assuming that the external current Iext,j is a piecewise

constant over time intervals of width 1tng . This is an additional

difference with respect to Mongillo et al. (2008), in which both

Equation (3) describing the neuron sub-threshold dynamics and

Equation (1) describing the STPmechanism are integrated using

the Euler scheme. In the NEST implementation presented here,

Equation (1) is not integrated at every time step, but the values

Frontiers in IntegrativeNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnint.2022.972055
https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org


Tiddia et al. 10.3389/fnint.2022.972055

FIGURE 1

Schematic representation of the network. Colored circles represent excitatory neurons of di�erent selective populations, whereas the black

open circles represent excitatory neurons of the non-selective population. Black circles represent inhibitory neurons. Strengthened connections

are represented by thicker black lines.

of the variables xi,j and ui,j are analytically obtained whenever a

spike is emitted by the presynaptic neuron i. In particular, having

two consecutive spikes emitted at times ts and ts+1 and knowing

x(ts) and u(ts), the evolution of variables is computed as follows:

x(t−s+1) = 1+
(

x(t+s )− 1
)

e−(ts+1−ts)/τd

u(t−s+1) = U +
(

u(t+s )− U
)

e−(ts+1−ts)/τf

u(t+s+1) = u(t−s+1)+ U
(

1− u(t−s+1)
)

x(t+s+1) = x(t−s+1)− u(t+s+1)x(t
−
s+1)

(6)

where ts represents the spike time, while t−s and t+s represent

the times immediately before and immediately after the spike

emission, respectively. More formally, x(t−s ) and u(t−s ) can be

intended as the left-side limits:

x(t−s ) = lim
ǫ→0

x(ts − ǫ) with ǫ ∈ R
+

u(t−s ) = lim
ǫ→0

u(ts − ǫ) with ǫ ∈ R
+

(7)

while x(t+s ) and u(t+s ) can be intended as the right-side limits:

x(t+s ) = lim
ǫ→0

x(ts + ǫ) with ǫ ∈ R
+

u(t+s ) = lim
ǫ→0

u(ts + ǫ) with ǫ ∈ R
+

(8)

Because of the discontinuity due to the spike emission,

in general, the left-side and right-side limits differ from

each other for the variables x and u. On the other hand,

the exponential functions appearing in the first two lines of

Equation (6) are continuous everywhere; therefore, the left

and right limits are equal to each other for these functions.

Therefore, the modulation led by short-term plasticity shown

in Equation (2) is given by u(t+s+1)x(t
−
s+1), thus considering

variable x immediately before the spike emission and the

variable u updated at the time of the spike emission as

described in Tsodyks et al. (1998). Only after spike emission,

the variable x is decreased because of neurotransmitter release.

This order of update stems from the fact that the presynaptic

spike triggers facilitation (i.e., the increase of the variable u)

just before the spike emission to the postsynaptic neuron.

Equation (6) is implemented in the NEST simulator with the

tsodyks3_synapse model, a modified version of the NEST

synapse model tsodyks2_synapse model, which describes

the STP dynamics according to Equation (1) as well but

modulates the synaptic efficacy using the term u(t−s+1)x(t
−
s+1).

Indeed, such a difference in the implementation can be relevant,

especially with neurons having low firing rates (Gast et al., 2021),

with tsodyks3_synapse model showing higher modulated

synaptic efficacies than tsodyks2_synapse model (refer

to Supplementary material for a comparison between the two

synaptic models). In this model, the STP timescales are set so

that the network shows synaptic facilitation, in fact, τd = 200ms

and τf = 1, 500ms in agreement with the parameters chosen in

Mongillo et al. (2008).

Frontiers in IntegrativeNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnint.2022.972055
https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org


Tiddia et al. 10.3389/fnint.2022.972055

All the simulations begin with a time period of 3,000ms

in which only the background input is injected into the whole

network in order to allow the network to enter its baseline

state illustrating spontaneous activity. This stimulation, as well

as all the other external signals, is created using the NEST

noise_generator, which injects a Gaussian white noise

current as described in Equation (4). The background input

targets both excitatory and inhibitory neurons with different

mean current values. Later in this section, it will be shown

how network behavior can be modulated by changing excitatory

background activity.

After the network reaches its spontaneous activity, an

additional current, designed as a Gaussian white noise current

which sums up to the background input, is injected only into a

selective population for 350ms. As a result, an item is loaded

into the model. This signal, called item loading, increases the

synaptic activity of the target population and thus permits

a temporary strengthening of synaptic efficacies by changing

the STP variables u and x across the connections of neurons

belonging to the target population. Thus, even after the end of

the item loading signal, the loaded memory can be maintained

especially because of the slow decaying dynamics of the variable

u due to synaptic facilitation.

As can be seen in Figure 2, the memory specific response

of the network depends on the background activity level of the

excitatory neurons. This figure shows the raster plot of two

selective populations, one targeted by the additional current

which loads the item and a non-targeted one, together with

the STP variables x and u averaged over the connections

outbound from the neurons of the targeted selective population.

In Figure 2A, to reactivate a memory, a supplemental external

signal targeting the entire excitatory population is given.

Although this external signal is nonspecific, only the population

in which the memory was previously restored responds with the

emission of a single synchronized activity, called a population

spike. The network can also autonomously exhibit a memory

specific spiking activity when a higher excitatory background

current is injected (Figures 2B,C). In Figure 2B, the selective

population which receives the item loading stimulation shows

an autonomous and synchronous emission of population spikes.

It should be noted that after each population spike, the STP

variable u increases and returns to similar values reached at

the end of the item loading signal injection, interrupting the

exponential decrease due to the calcium removal mechanism

and thus enabling a new population spike to emerge. This

behavior, together with the fast exponential growth of available

resources described by the variable x, leads to a new stable state

for the network together with the one representing spontaneous

activity. To interrupt the network persistent activity, we set

the excitatory background current to the value of Figure 2A.

In Figure 2C the background input is further increased, and

the network spontaneously shows an asynchronous higher rate

activity. In this state, the memory is maintained in both spiking

and synaptic form since the STP parameters reach stable values

during the high activity state followed by a population spike.

As in the previously described state, the network could pass

from the memory specific activity state to the spontaneous

state by diminishing the background input. Indeed, without

the diminishing of the background input, the network would

continue to behave showing the asynchronous higher rate

activity or the synchronous emission of population spikes. The

values of the background current used in Figure 2 are reported

in the Supplementary Table S2. Moreover, we quantitatively

estimated the difference in firing rate for the targeted selective

population between the delay period and the spontaneous

activity state. The difference in firing rate for a neuron

population is obtained by measuring the spike-count rate for

each neuron of the population at two-time intervals. Naming

rs the firing rate measured during the spontaneous activity state

and rd the firing ratemeasured during the delay period, the firing

rate difference for a neuron i of the population is

1r(i) = r
(i)
d

− r
(i)
s =

N
(i)
d

1td
−

N
(i)
s

1ts
(9)

where N(i) is the number of spikes emitted by neuron i in a

certain time interval 1t. Those values are obtained for each

neuron of the targeted selective population and are collected

in the histograms on the right side of Figure 2. In Figure 2A,

the delay period is defined as the time between the end of item

loading and the beginning of the nonspecific signal, whereas in

the other panels, it is identified between the end of the item

loading and the decreasing of the external input (happening

at 5.2 s for both panels). The time intervals related to the

spontaneous activity and the delay period are indicated with

horizontal lines (sky blue and orange, respectively) in the left

panels of Figure 2. It is possible to notice that in Figure 2A

there is no significant difference in firing rate, and a relevant

part of the network shows a decrease in firing rate during the

delay period. In Figures 2B,C, we observed an increase in firing

rate of about 4 and 7Hz, respectively, with an average baseline

firing rate of about 0.7Hz. These changes in firing rate are lower

with respect to the ones shown in network models relying only

on persistent activity to show WM behavior such as Brunel

(2000) and they are in agreement with experimental measures

on single-cell activity during the delay period (Shafi et al.,

2007), according to which the changes in firing rate are mostly

below 5Hz.

In comparison with the work of Mongillo et al. (2008),

the network simulated with NEST shows qualitatively similar

results, with comparable behavior when modulating the

background input targeting the excitatory neurons. However,

we noticed some relevant differences with respect to the

original work. For instance, on the left side of Figure 2B,

it is possible to see that the time interval between adjacent

population spikes is around 300ms, whereas in Mongillo et al.
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A

B

C

FIGURE 2

Raster plots of a subset of neurons of a targeted selective population (green) and a non-targeted one (black) for di�erent values of background

input. Averaged STP variables (x in red and u in blue) of the synaptic connections belonging to the target population are also shown. (Left) (A)

The network, after the end of the injection of the item loading signal (gray shading) does not show a significant di�erence in spiking activity until

the injection of a nonspecific input targeting the whole excitatory population (lighter gray shading). (B) Network behavior with increased

excitatory background input. In this case, the network autonomously reactivates the memory by showing periodic synchronized events. The

network returns to its spontaneous state by diminishing the background input. (C) Network behavior with further increased background input.

Here, the network shows an asynchronous enhanced spiking activity of the loaded memory. As in (B), the network returns to its spontaneous

state when background input diminishes. (Right) Histograms represent the di�erence in firing rate between the delay period and the

spontaneous state for the selective population targeted by the item loading signal. The rate at the spontaneous state is calculated before the

injection of the item loading signal (sky blue line at the bottom of the panels). In (A), the delay period is intended as the time between the end of

the item loading stimulus and the beginning of the nonspecific external input. In (B,C), the delay period is defined as the time between the end

of the item loading signal and the decrease in the external background input (here shown at 5.2 s for both the panels). The delay period is

indicated with an orange line at the bottom of the left panels.

(2008), this value is closer to 200ms, same order of τd.

Furthermore, while the behavior of the variable u is mostly

comparable to the one shown in the original article, the behavior

of the variable x shows a considerably higher drop of the

averaged variable in correspondence to a population spike. This

pronounced drop in the value of x is probably the reason for the

difference in the time interval between the two population spikes

previously mentioned.

Since one of the main features of a WM network is the

holding of multiple information, we load two items into two

different selective populations at different times to analyze

the behavior of the STP variables of the targeted populations

and the capacity of such a network of maintaining multiple

items. Figure 3 shows a subset of two selective populations

targeted by the item loading signal in the single stable state

regime (Figure 3A) and in the regime showing synchronous and
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A

B

FIGURE 3

Raster plots of a subset of neurons of two targeted selective populations when two items are loaded into the network. An additional noise (cyan

shading), which targets 15% of the excitatory neurons, is injected to test the network’s robustness. (A) Network showing a single stable activity

state injected with a periodic readout signal targeting all the excitatory neurons. After the second memory is loaded into the network, the

populations show alternating population spikes. (B) Network in the bi-stable regime showing synchronous spiking activity. Here, the network

does not receive the periodic input since the synchronous activity autonomously shows up after the item loading. After the second memory is

loaded, the population spikes of the stimulated selective populations alternate, refreshing the synaptic variables in order to maintain the

synchronous spiking activity.

autonomous reactivation (Figure 3B), obtained using the same

values of background input used in Figures 2A,B, respectively.

Moreover, in both simulations noise is given to a fraction of all

the excitatory neurons in order to check the robustness of the

network state. The noise signal is designed as the item loading

one but targets the 15% of the excitatory neurons randomly.

In Figure 3A, the reactivation of the selective populations is

enabled by a periodic nonspecific input (with a period of

300ms). It can be noticed that in this framework, the two

targeted selective populations do not emit the population spikes

during the same periodic readout signal, but they alternate in

order to reach suitable values of STP variables to enable the

emission of a population spike in the following readout signal.

This peculiar behavior can also be seen when the network

autonomously shows synchronous spiking activity (Figure 3B).

In this case, similarly to Figure 3A, the synchronous activity

of the targeted selective populations is alternated, increasing

the average value of x for a population when the other one

is emitting the population spike. However, in Figure 3B, this

mechanism is completely autonomous. In both the network

states, the slow dynamics of u has a key role in holding the

information, in particular when another selective population

shows a higher spiking activity. In addition, it can be observed

that the higher spiking activity of a selective population inhibits

the other populations. This is due to the network’s connectivity

which enables a winner-take-all mechanism, i.e., the competition
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between different populations through a mechanism of global

inhibition, as previously described. For this reason, it is not

possible to correctly load multiple items at the same time,

and it is not possible to have population spikes from different

selective populations at the same time. As can be seen in

Figure 3A, even if the readout signal targets all the selective

populations, only the targeted selective population which has the

highest STP-modulated synaptic efficacy is capable of emitting

a population spike, inhibiting the excitatory neurons of the

competing selecting populations.

The behavior of the network in Figure 3 is totally comparable

with respect to the results shown in Mongillo et al. (2008). The

main differences that emerge are related, as stated before, to the

dynamics of the STP variable x, which shows amore pronounced

drop when neurons show synchronous firing activity. We

slightly increased the time interval between two consecutive

stimulations in Figure 3A, from 250 to 300ms, to make the

STP variable x recover enough to enable the synchronous

activity response as in Figure 2A. Shorter time intervals between

subsequent readout signals could result in stimulation that leads

to a population spike right after the end of the stimulus.

To further test the network capacity of maintaining multiple

items at the same time, we perform simulations with an

additional item loading signal targeting a third selective

population for the network state showing synchronous spiking

activity (same value of background input as in Figure 2B). The

raster plot, together with the averaged STP variables for the three

targeted selective populations, is depicted in Figure 4.

As shown in Figure 4, the network is able to maintain three

selective populations in the persistent activity state similar to

Figure 3B such that, when all the items are loaded, population

spikes alternate within the population keeping appropriate

values for the STP variables. Moreover, it should be noted that

each selective population in the synchronous spiking activity

regime diminishes the average value for the STP variable u when

other items are loaded into the network. This behavior is clearly

visible for the first selective population in Figure 4. Indeed,

this is due to the increased distance between population spikes

related to the activity of the other targeted selective populations.

For an increasing number of items loaded, this can lead to

a loss of synchronicity, since a persistent activity state needs

to maintain a relatively high values of u. In this regard, we

verified that an additional item loaded into the network causes

the mentioned loss of synchronicity, thus such a network is able

to maintain up to three items at the same time. However, an

increase in the value of τf leads to a slower decay of the variable

u, enabling the loading of more items into the network. For

instance, with τf = 2, 000ms, the network is able to maintain

four items at the same time, and with τf = 3, 000ms, all the five

selective populations can alternate their population spikes (refer

to Supplementary material). We also simulate a larger spiking

network with ten selective populations in order to see whether a

further increase in τf would enable the upkeep of more items.

We show in the Supplementary material that an opportune

choice of the synaptic parameters can enable the upkeep of

even seven items simultaneously (i.e., the early estimation of

the WM capacity proposed by Miller, 1956). Indeed, to simulate

an analogous model with ten selective populations there is

a need for a larger network having a similar ratio between

selective, non selective, and inhibitory populations. For this

purpose, we simulated a network with 20,000 LIF neurons,

with ten selective populations each composed of a similar

number of neurons to that of the network described above. The

parameters used to perform these simulations are presented in

the Supplementary materials.

Hitherto, we presented the results of the simulations for

the model with non overlapping populations, ergo an excitatory

neuron can only belong to a selective population at most. To

verify the network’s behavior in more realistic conditions, we

also performed simulations in which there is the possibility

of having overlaps between the selective populations. Figure 5

shows the raster plot of a simulation with the same parameters

used in Figure 3B, but with overlapping populations. Here, the

population spikes are less synchronized, and not all the neurons

belonging to the selective population emit a spike during the

synchronous spiking activity. For this reason, the STP variable

x drops caused by the population spikes are less pronounced.

To obtain a qualitatively similar behavior with respect to the

network with non overlapping populations, the value of the

potentiated synaptic efficacy Jp has been slightly increased.

4. Discussion

In this work, we have reproduced a WM spiking network

model proposed by Mongillo et al. (2008), in which the short-

term synaptic plasticity has a key role in the network capability

of memories upkeep. We have performed the simulations using

the spiking network simulator NEST and following the network

description and the parameters shown in the original work. We

also modified the NEST synaptic model describing short-term

plasticity to be consistent with Tsodyks et al. (1998).

Indeed, the spiking network model proposed here has

some differences with respect to the original one of Mongillo

et al. (2008). First, we employed a LIF neuron model with

exponential postsynaptic currents, whereas the original one

used a LIF model with the instantaneous rise and decay times

for postsynaptic currents. Furthermore, the neuron model is

integrated following the exact integration method of Rotter

and Diesmann (1999), with synaptic variables for the neuron i

synapses updated when the neuron i emits a spike, as mentioned

in the Results section. The implementation of the STP dynamics

follows Equations (1) and (6). In the original model, both neuron

and synapse dynamics are integrated using the Euler scheme.

The implementation of the STP dynamics further differs with

respect to the original work. In fact, in Mongillo et al. (2008)
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FIGURE 4

Raster plot of a subset of neurons of three targeted selective populations when three items are loaded into the network. The network is in the

bi-stable regime showing synchronous spiking activity. Item stimuli are loaded into the network at 3, 000, 6, 000, and 9, 000ms.

FIGURE 5

Raster plot for a simulation with overlapping populations. Here only a subset of the two targeted selective populations is shown. An additional

noise (cyan shading) is also injected. The network is in the bi-stable regime showing synchronous spiking activity.

and Mi et al. (2017), the absolute synaptic efficacy is modulated

using the values of the variables u and x immediately before

the emission of the spikes. As described in Equation (6), the

implementation used in this work considers the value of the

variable x immediately before the spike emission, but with the

variable u updated at the time of the emission of the spike,

in agreement with Tsodyks et al. (1998). This change in the

implementation leads to higher modulated synaptic efficacies for
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the implementation employed (refer to also Gast et al., 2021 for

a comparison of the two different implementations in a network

of QIF neurons), and thus can be responsible for the more

pronounced drop of the variable x noticed in the spiking model

presented in this study. Despite these differences, we were able

to obtain a similar behavior with respect to the original model by

slightly adjusting some parameters. However, other parameters

were missing, like the integration time step. We decided to

set a time step of 0.05ms, verifying that lower or higher time

steps do not entail significant changes in the network behavior

(refer to Supplementary material). Moreover, the connection

scheme in the NEST simulator opens to the possibility of having

multiple connections with the same two neurons or also self

connections. In the simulations presented here, we enabled

both multiple and self connections and we verified that the

dynamics of the network do not change significantly when

these options are disabled (refer to Supplementary material).

Furthermore, we also performed simulations with the same

neuron model integrated with a different integration scheme

with respect to the exact integration method of Rotter and

Diesmann (1999). Specifically, we employed the stochastic

Runge-Kutta method, more suitable in the presence of noise

signals modeled as the background input employed in this

network. We found that the results of the simulations are totally

comparable with respect to the one presented in the manuscript,

as shown in the Supplementary material after a description of

the integration method.

Figure 2, showing the raster plot of a selective population

targeted by an item loading signal and a non-targeted

population, exhibits totally comparable results with respect

to the original work. The response of the network can be

tuned by changing the excitatory background activity, and

different behaviors can thus be shown: with relatively low

background activity (refer to Figure 2A), the network needs

an additional excitatory signal to exhibit a memory specific

response, whereas an increase in the background input can lead

to a synchronous (Figure 2B) or an asynchronous (Figure 2C)

higher rate persistent activity. Such responses are driven by

short-term plasticity, which temporarily modulates the synaptic

efficacy within the connections belonging to neurons of the

targeted selective population. In particular, the slow dynamics of

calcium release from the synaptic terminal grant the temporary

growth of the average synaptic efficacy of the population, leading

to temporary storage of the memories in a synaptic fashion.

Additionally, as it is possible to see in the histograms of

Figure 2, the increase in firing rate for the targeted population

is relatively modest. Besides, the model can stop showing the

synchronous or the asynchronous higher rate activity only by

diminishing the background input current, thus was able to

maintain memories for extremely long periods of time, as shown

in the Supplementary material. Indeed, bifurcation analysis of

a single population rate model discussed in the Supplementary

material of Mongillo et al. (2008) shows that for constant inputs,

the network can show two possible behaviors: a steady state

with a constant rate and a limit cycle solution corresponding

to a periodic train of population spikes, which is consistent

from what is observed in Figure 2B. A further study (Cortes

et al., 2013) shows that, besides these stable solutions, the system

can exhibit another class of states with highly irregular and

chaotic-like dynamics, denoted as Shilnikov chaos.

Moreover, Figure 3 exhibits the ability of the network of

maintaining multiple items at the same time and also the

robustness of the network to external noise, here modeled as an

item loading signal targeting a fraction of the whole excitatory

neurons. It should be noted that the synchronous spiking

activity of the first stimulated population, once an additional

population is targeted by the item loading signal, interrupts and

then alternates when the latter starts showing the synchronous

persistent activity. This behavior enables the maintenance of

two items at the same time. In addition, the current parameters

enable the network to maintain up to three populations in

the synchronous activity state (Figure 4). We verified that

stimulating a fourth selective population makes the network lose

synchronicity and the alternation of the so-called population

spikes for the stimulated selective populations. However, we

noticed that an increase in τf and, more generally, a change in

the synaptic parameters enable the upkeep of a higher number

of items at the same time (refer to Supplementary material).

Indeed, as observed in Mi et al. (2017), in which a spiking

network developed using the same framework as Mongillo

et al. (2008) is simulated, the number of items that can be

stored into the WM network (i.e., the WM capacity) can be

modulated by a different choice of the synaptic parameters

and of the background input. Additionally, the network has

been simulated with partially overlapped selective populations

to show the network’s behavior in a more realistic condition.

Figure 5 shows a totally comparable behavior with respect to an

analog simulation with non overlapped populations, except for

the fact that not every neuron of the selective population emits

a spike during a population spike. Also, the population spike

shows less synchronized spiking activity.

Regarding WM capacity, Mi et al. (2017) provides an

analytical expression for estimating the maximum number of

items that can be maintained in WM (see also Taher et al., 2020

for a similar derivation). This number is determined by the ratio

between Tmax, i.e., the maximal period of the limit cycle of the

network and ts, i.e., the time interval between two successive

population spikes. Indeed, the maximal period of the limit cycle

is only dependent on STP parameters and can be expressed by

Mi et al. (2017)

Tmax ≃ τd ln
τf /τd

1− U
(10)

Using the parameters employed to produce Figure 4, in

which up to three items can be stored in WM, Tmax ≃ 445ms,

whereas the time separation between the population spike,
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once the three items have been loaded into the network, is

approximately ts ≃ 160ms, with the ratio between these times

being

Nc ≈ Tmax/ts ≃ 2.8

not far from the number of items stored at the same time,

confirming the generality of the analytical estimation proposed

in Mi et al. (2017). We also performed a similar calculation

for a network able to store up to seven memories in the

Supplementary material, with comparable results.

Indeed, the model presented in this work is consistent

with several experimental observations. For instance, in Wolff

et al. (2015, 2017) showed that, during the delay period, the

information held in memory can be reactivated by a non-

specific stimulus (as in Figure 2A). This result is also shown by

Rose et al. (2016), in which transcranial magnetic stimulation

produced a brief reactivation of the held item. Moreover, the

silent dynamics can lead to interference between information

from different trials (Kilpatrick, 2018), and the relation between

STP dynamics and the so-called serial effects in WM tasks has

recently been explored in Kiyonaga et al. (2017) and Barbosa

et al. (2020). Furthermore, as already mentioned in the Results

section, the firing rate changes between the spontaneous state

and the delay period shown in the right panels of Figure 2

are in agreement with single-cell firing rate, which is mostly

below 5Hz and only rarely can reach values greater than 10Hz

(Shafi et al., 2007). Indeed, since a higher spiking activity

would be more metabolically demanding, this behavior makes

the model energetically efficient highlighting the importance

of activity-silent dynamics during WM tasks and also enables

a multiple memory maintenance having populations emitting

bursts at different times, in agreement with Lundqvist et al.

(2016).

On the other hand, this model has some limitations.

The main one being that it assumes a prior long-term

Hebbian learning. The way items are encoded in selective

populations is extremely simplified, as all the connections

within the same population have equal synaptic strength.

Furthermore, this value remains constant during the simulation.

A more realistic model would be a combination of long-

term and short-term plasticity, enabling the learning of

new items.

Working memory is responsible for the brain’s ability to

temporarily maintain, manipulate, and integrate information

from different sensory systems (auditory, visual, etc.) during

the performance of a wide range of cognitive tasks, such

as learning, reasoning, and language comprehension.

Indeed, this mechanism is not only useful, but can have

an essential role in robotics and autonomous systems in

general. For instance, WM implementation could lead to

autonomous systems with cognitive capabilities closer to the

human ones, enabling the possibility of learning through

interactions between humans, or learning from few examples

integrating information from different sensory inputs in

a similar way that humans do. Recent work has shown

that the use of a WM component in robotic models can

be useful to emulate many human-like cognitive functions,

ranging from episodic memory, imagination and planning

(Balkenius et al., 2018), language development (Giorgi

et al., 2021b), and language grounding into actions and

perceptions in embodied cognitive architectures (Giorgi et al.,

2021a).

In conclusion, in this study, we reproduced a spiking

network that shows typical WM behavior driven by short-

term synaptic plasticity. This mechanism leads to a robust and

energetically efficient behavior since the items loaded into the

network can be maintained with a relatively low change in the

population firing rate. The model, developed using the well-

known spiking network simulator NEST, is available on an

online repository (refer to Data Availability Statement). The

NEST implementation of the model can pave the way to further

studies aimed at a better understanding ofWMmechanisms and

of the link between short-term synaptic plasticity and long-term

cognitive processes such as learning (Capone et al., 2019; Golosio

et al., 2021).
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