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Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by a

repeat expansion mutation in the promotor region of the FMR1 gene resulting

in transcriptional silencing and loss of function of fragile X messenger

ribonucleoprotein 1 protein (FMRP). FMRP has a well-defined role in the

early development of the brain. Thus, loss of the FMRP has well-known

consequences for normal cellular and synaptic development leading to a variety

of neuropsychiatric disorders including an increased prevalence of amygdala-

based disorders. Despite our detailed understanding of the pathophysiology

of FXS, the precise cellular and circuit-level underpinnings of amygdala-based

disorders is incompletely understood. In this review, we discuss the development

of the amygdala, the role of neuromodulation in the critical period plasticity, and

recent advances in our understanding of how synaptic and circuit-level changes

in the basolateral amygdala contribute to the behavioral manifestations seen in

FXS.

KEYWORDS

critical period, synaptic plasticity, basolateral amygdala, fragile X syndrome,
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Introduction

Fragile X syndrome (FXS) is a rare X-linked recessive genetic disorder affecting
approximately 1:5,000 males and 1:4,000–8,000 females (Hagerman et al., 2017). The physical
phenotype of individuals with FXS is characterized by large ears, long narrow faces,
hyperextensible joints, and macroorchidism (Kidd et al., 2014). The clinical features of FXS
include a variety of neurologic and psychiatric disorders including intellectual disability,
attention deficit hyperactivity disorder (ADHD), anxiety, social avoidance, increased
incidence of seizures and epilepsy, autism spectrum disorders (ASDs), and hypersensitivity
to sensory stimuli (Hagerman et al., 2009).

Fragile X syndrome is caused by a CGG repeat expansion in the 5′ untranslated region
(UTR) of the fragile X messenger ribonucleoprotein 1 (FMR1) gene located at Xq27.3.
Individuals with trinucleotide repeats numbering < 50 are phenotypically normal and
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without clinical symptomatology. Carriers of the premutation
repeat expansion (numbering between 55 and 200) exhibit the
distinct fragile X associated-tremor ataxia syndrome (FXTAS).
FXTAS is an adult-onset neurodegenerative disorder characterized
by intention tremor, parkinsonism, and generalized brain atrophy
(Bale et al., 2010). The pathophysiology of FXTAS has been shown
to result in part from excessive production of CGG repeat expanded
FMR1 messenger RNA (mRNA) (Bale et al., 2010). This excessive
mRNA production has been shown to be neurotoxic in vitro and
in vivo (Jin et al., 2003; Hukema et al., 2014; Swinnen et al.,
2020) resulting in ubiquitin and FMRpolyG-positive intranuclear
inclusions and subsequent cerebellar Purkinje cell loss (Buijsen
et al., 2014). Trinucleotide repeat expansions (numbering > 200)
result in hypermethylation of the promoter region of the FMR1
locus and subsequent transcriptional silencing of the FMR1 gene
(Fu et al., 1991). Functionally, and in contrast to FXTAS, this
results in the absence of the fragile X messenger ribonucleoprotein
1 protein (FMRP) (Verkerk et al., 1991). The clinical severity
of FXS depends in large part on the number of trinucleotide
repeat expansions in the 5′ UTR of the FMR1 gene and on cell-
autonomous FMRP production (Hagerman et al., 2017).

Since the identification of the molecular pathophysiology
underpinning FXS (Fu et al., 1991; Verkerk et al., 1991), subsequent
investigations have elucidated the functional role of the FMRP.
The FMRP is an RNA binding protein with a known role in
regulating mRNA translation (Chen et al., 2003; Darnell et al.,
2011) and is ubiquitously expressed throughout the brain and
present in all neuronal cell compartments (Christie et al., 2009).
FMRP binds directly to translational machinery and induces
ribosomal stalling with suppression of protein synthesis (Darnell
et al., 2011). However, the regulatory role of FMRP in protein
synthesis is complex and varied. FMRP regulates many target
genes involved in neuronal synapse formation and maintenance
and plasticity responses (Casingal et al., 2020). Loss of FMRP
results in the dysregulated synthesis of proteins essential for
normal corticogenesis, cellular and synaptic function, and synaptic
plasticity (Sidorov et al., 2013; Sears and Broadie, 2017). In addition
to its role in translation suppression, new evidence is emerging
that FMRP may enhance, rather than repress, protein translation
and that loss of FMRP induces the down-regulation of target genes
implicated in ASDs and neurodevelopmental disorders (NDDs)
(Greenblatt and Spradling, 2018). Thus, FXS may share pathology
common to many different forms of ASDs. Indeed, the Fmr1KO
mouse model of FXS not only recapitulates many aspects of the
human condition but has been a key tool for understanding ASDs
more broadly.

FMRP-associated cellular, synaptic, and
circuit dysfunction in FXS

At the cellular level, loss of FMRP affects ion channel function
with profound effects on membrane properties and neuronal
intrinsic excitability beyond mRNA translational modulation
(Contractor et al., 2015). Importantly, this non-canonical function
of FMRP appears to involve modulation of ion channels via
direct FMRP binding and modulation of channel kinetics (Kshatri
et al., 2020). For example, FMRP has been shown to regulate

the function of numerous potassium channels [including Kv3.1
(Darnell et al., 2011), Kv4.2 (Gross et al., 2011), HCN (Brager
et al., 2012; Zhang et al., 2014; Brandalise et al., 2020), and BK
(Torres et al., 2007; Deng et al., 2013), Slack (Brown et al., 2010)]
and calcium channels [Cav2.2 (Ferron et al., 2014)] (Ferron, 2016).
FMRP-mediated potassium channel dysfunction has been shown
to underpin membrane hyperexcitability and increased UP states
in layer 4 somatosensory barrel cortex principal neurons (PNs)
(Gibson et al., 2008). Further, alterations in BK and h- channel
function has been shown to contribute to sensory hypersensitivity
by altering a number of membrane properties including resting
membrane potential and dendritic excitability in S1 excitatory PNs
in the period immediately following the somatosensory critical
period (CP). Broadly this results in increased action potential (AP)
output and integration of synaptic input (Zhang et al., 2014). Loss
of FMRP also results in abnormal Slack function and decreases in
late after-hyperpolarization which enables repetitive firing in PNs
in Fmr1KO mice.

At the level of the synapse, FMRP-driven dysfunction in Cav2.2
leads to alterations in presynaptic neurotransmitter release in
dorsal root ganglion (DRG) neurons (Ferron et al., 2014). FMRP
is upregulated by group 1 (Gp1) metabotropic glutamate receptors
(mGluRs) following post-synaptic activation (Weiler et al., 1997).
In particular, loss of FMRP leads to increased expression of
mGluRs as well as increases in α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) receptor turnover (Bear et al.,
2004). This AMPA receptor turnover has been shown to mediate
mGluR-mediated long-term depression (LTD) in hippocampal
neurons following post-synaptic stimulation of excitatory principal
neurons (PNs) in older animals (Weiler and Greenough, 1993;
Weiler et al., 1997). Altered long-term potentiation (LTP) and LTD
have also been observed in the cingulate cortex, visual cortex, and
the amygdala (Bhakar et al., 2012). As with ion channel dysfunction,
plasticity alterations seen in FXS may be region and developmental
stage-specific. For example, in contrast to later life mGluR-LTD
in the hippocampus, early life enhancements in synaptic plasticity
have been observed in hippocampal neurons of Fmr1KO mice
(Gray et al., 2019). This effect may be in part mediated by increased
mGluR-mediated expression of R-voltage dependent calcium
channel (R-VDCC)-mediated Ca2+ spikes (Gray et al., 2019). Thus,
numerous FMRP-mediated channelopathies contribute not only
to altered intrinsic membrane properties and hyperexcitability but
synaptic and circuit-level dysfunction as well.

In addition to cellular, circuit, and plasticity alterations in
excitatory PNs in FXS, loss of FMRP also has a known role in
interneuron (IN) dysfunction as well (Paluszkiewicz et al., 2011b;
Cea-Del Rio and Huntsman, 2014; Martin et al., 2014). FMRP
is widely expressed in inhibitory INs (Olmos-Serrano et al.,
2010) and many functional elements of γ-aminobutyric acid
(GABA) neurotransmission are dysregulated in the context of
loss of FMRP (Paluszkiewicz et al., 2011a). As early as P5, GABA
concentrations are altered in the frontal cortex and thalamus in
Fmr1KO mice (Reyes et al., 2020). Functional GABAA receptors
are heteropentamers whose unique receptor subunit composition
determines their pharmacologic and physiologic properties
(Hevers and Luddens, 1998; Rudolph and Mohler, 2006). Loss of
FMRP leads to reductions in synaptic and extrasynaptic GABAA
receptors with concomitant reductions in GABAA α, β, γ receptor
subunit expression (D’Hulst et al., 2006; Gantois et al., 2006;
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Huang and Richter, 2007). Significant alterations have also been
found in the biochemical pathways necessary for the synthesis of
GABA including alterations in the GABA synthesizing enzyme
GAD65 (D’Hulst et al., 2009; Adusei et al., 2010; Olmos-Serrano
et al., 2010). Further, dysfunction in the systems necessary
for GABA catabolism, reuptake mechanisms, and subcellular
localization of GABAA receptors have also been observed (D’Hulst
et al., 2009; Adusei et al., 2010). Thus, marked IN dysfunction
is a contributing factor to multiple hyperexcitable phenotypes
observed in FXS (Contractor et al., 2015). Importantly, these
alterations are highly region- and developmental timepoint
specific (Paluszkiewicz et al., 2011a). Taken together, these data
demonstrate that the loss of function of FMRP has wide-ranging
effects throughout the brain at all developmental ages but these
effects may be most pronounced during early development.

Critical period dysfunction in FXS

Fragile X syndrome is a NDD in which the dysregulation of
protein synthesis results in significant deficits in neuronal, synaptic,
and circuit function during critical periods of development
(Contractor et al., 2015). Critical periods are stages in early brain
development in which precise cellular, synaptic, and experience-
dependent input is necessary for the proper development of
neural circuits and systems (Hensch, 2005). In turn, CP plasticity
is critically dependent on the precise balance of excitation and
inhibition (E/I) during normal synaptogenesis. Interestingly, CP
plasticity has been shown to be dependent on the maturation of
GABAergic neurotransmission (Fagiolini and Hensch, 2000; Iwai
et al., 2003; Fagiolini et al., 2004).

For example, the onset of the visual cortex CP has been shown
to correspond with the developmental emergence of parvalbumin-
expressing (PV+) inhibitory INs (Del Rio et al., 1994) around post-
natal (PN) day 14. Indeed, precocious emergence of CP opening
is mediated by brain-derived neurotrophic factor (BDNF)-driven
enhancements of PV+ GABAergic neurotransmission (Huang
et al., 1999). An accelerated post-natal rise of BDNF in the visual
cortex of transgenic mice has been shown to mediate a precocious
opening of CP plasticity such that increased ocular dominance
plasticity (ODP) leads to an early-life increase in visual acuity.
Importantly, this was driven by robust maturation of GABAergic
circuitry (Huang et al., 1999). Within the CP for the visual
system, ODP following lid suture requires homeostatic scaling
of inhibition mediated by PV+-fast spiking cells. In particular,
reductions in glutamatergic neurotransmission in the visual cortex
following lid suture are accompanied by reductions in feed-
forward inhibitory input onto excitatory PNs. This process is
mediated by reduced excitatory input onto PV+ cells. Further,
pharmacologically enhancing inhibition during lid suture reduces
ODP, and reduction of PV+-firing via pharmacogenetic approaches
extends ODP (Kuhlman et al., 2013). Additionally, somatostatin-
expressing (SOM+) INs also exhibit enhanced excitability during
the CP implicating dendritic-targeting inhibition from SOM+ as an
important factor in ODP (Lazarus and Huang, 2011). This precise
synaptic scaling and homeostatic plasticity has been shown to be
impaired in FXS (Zhang et al., 2018).

In FXS, E/I imbalance results in aberrant CP plasticity across
diverse brain regions including the somatosensory cortex and

the basolateral amygdala (BLA) (Rubenstein and Merzenich,
2003; Nelson and Valakh, 2015). Indeed, alterations in CP
plasticity are thought to underpin the temporal manifestation of
neurologic and psychiatric deficits observed during early childhood
development—known as sensitive time windows (Meredith et al.,
2012; Meredith, 2015). In the somatosensory cortex, the period
of programed synaptic and cellular changes required for normal
circuit development and refinement is shorter in duration and
occurs later in development (Harlow et al., 2010). Anatomically,
Fmr1KO mice exhibit altered dendritic spine morphology and
spine turnover in the barrel cortex at P14 (Cruz-Martin et al.,
2010). At the synaptic level, glutamatergic projections in the
barrel cortex of Fmr1KO mice have been found to exhibit lower
connection probabilities and diffuse axonal arbors accompanying
decreases in experience-dependent plasticity at P14 (Bureau et al.,
2008). Further, Fmr1KO animals show an early life increase in
the N-methyl-d-aspartate (NMDA)/AMPA ratio and an increase
in NMDA-silent synapses during the barrel cortex CP (Harlow
et al., 2010). Experience-dependent plasticity during critical
periods involves the conversion of previously formed NMDA-silent
synapses via up the upregulation of AMPARs. This upregulation
of AMPARs is thought to underlie the unique changes seen in
neonatal rodent olfactory learning and odor preference (Franks and
Isaacson, 2005; Opendak et al., 2018). NMDA receptor activation
and spike-timing dependent plasticity (STDP) are also altered
in Fmr1KO mice where LTD at cortical synapses is robust,
whereas LTP diminished (Desai et al., 2006). However, excitatory
projections resemble that of the wildtype animal by the third
week of life suggesting that homeostatic mechanisms may shift
developmental trajectories in the Fmr1KO barrel cortex (Bureau
et al., 2008).

Additionally, differences in BDNF signaling have been
observed in the barrel cortex and in the hippocampus of Fmr1KO
mice at P14 (Louhivuori et al., 2011). Increased BDNF signaling
has been observed in the hippocampus whereas decreased BDNF
signaling was observed in the somatosensory cortex (Louhivuori
et al., 2011). Thus, regional differences in BDNF signaling may
underpin early life plasticity alterations with distinctly different
effects in the hippocampus and somatosensory cortex (Louhivuori
et al., 2011; Gray et al., 2019).

Depolarizing GABA has been shown to play a pivotal role
in cell migration, synapse formation, and integration in early
development (Ge et al., 2006). Interestingly, GABA has been
shown to be depolarizing as late as P13 in the somatosensory
cortex (He et al., 2019). This delay in the GABA polarity switch
is driven by developmental alterations in the regulation of the
chloride transporters NKCC and KCC2 (He et al., 2014). Recent
work examining the GABA polarity switch in a schizophrenia-
risk gene model demonstrated that excessive PV+ inhibitory tone
after the polarity switch drives excessive glutamatergic synapse
formation further exacerbating E/I imbalance (Kang et al., 2019).
Interestingly, in conditional deletion models of ASDs, peripheral
sensory dysfunction arose from PV+ interneuron dysfunction
in both the BLA and the barrel cortex as early as P5. Thus,
distinct behavioral deficits, including increased tactile sensitivity
and anxiety, emerged in an early post-natal time deletion-specific
manner. Further, treatment in early life with GABAA receptor
agonists improved somatosensory hyperreactivity and anxiety
in these animals (Orefice et al., 2019). Thus, prolongation of
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the chloride reversal potential may enhance excitatory synapse
function in Fmr1KO mice and this effect may be mediated by PV+
INs.

Development of the basolateral nuclei of
the amygdaloid complex

The amygdaloid complex is a medial temporal lobe structure
generally considered to have two major divisions, corticomedial
and basolateral (Hopkins, 1975). The basolateral division is
composed of the lateral (LA) and basal (BA) nuclei whose
glutamatergic progenitors have their embryologic origin in the
ventral pallium. GABAergic progenitors have their origin in the
subpallium (medium ganglionic eminence) (Waclaw et al., 2010).
Together, these nuclei form the BLA and have an essential function
in the processing of emotional information and assigning valance
to emotional stimuli (Benarroch, 2015). Further, the BLA is the
nuclei responsible for conditioned learning of aversive stimuli
(Blair et al., 2005). Anatomical studies in rabbits have demonstrated
that during the first three post-natal weeks of development cerebral
volume and neuronal density increases (reaching mature levels by
P60 and P30, respectively). Further, acetylcholinesterase activity
increases over this time indicating that the neuromodulatory
actions of acetylcholine may play an important role in CP plasticity.
Importantly, these morphological changes are similar in the rodent
BLA (Jagalska-Majewska et al., 2003; Ryan et al., 2016).

From birth to adulthood, PNs in the rodent BLA during the
first three post-natal weeks undergo a number of morphological
changes including an increase in the size of the soma, maturation
of dendritic arbors around peri-weaning age, and an increase in
the dendritic spine density until age P60 (Ryan et al., 2016). The
neuronal density in the BLA is completely established by P7 (Berdel
et al., 1997). In turn, a number of intrinsic electrophysiological
parameters mature in PNs in the BLA. Specifically, AP frequencies
increase, input resistances decrease, and spike amplitudes increase
with age from P7 to P60 (Ryan et al., 2016). Maturational and
physiologic changes in PNs in the BLA during the first two post-
natal weeks accompany synaptic and microcircuit development. By
the second post-natal week, the thalamic afferents are completely
established by P9, followed by establishment of afferents from the
pre-frontal cortex by P14 (Bouwmeester et al., 2002). Functional
resting state MRI has revealed that the neonatal brain exhibits
undifferentiated connections to both primary sensory and cortical
areas compared to the adult brain. Thus, experience-dependent
plasticity likely influences cortical connectivity (Hansen et al.,
2020). To that end, the emergence of cue fear-learning correlates
with the developmental emergence of LTP at cortical and thalamic
afferents occurring at approximately P10 (Berdel et al., 1997), with
the complexity of learning features increasing with the maturation
of connectivity between the BLA and other brain areas (Hunt et al.,
2007; Li et al., 2012).

Neuromodulatory input to the
basolateral amygdala

A number of neuromodulators have important roles in the
modulation of fear learning. Neuromodulators are important

regulators of circuit output playing critical roles in regulating
neuronal excitability, pre-synaptic release of neurotransmitters,
LTD and potentiation, and mediation of brain state changes that
underlie behavior (Nadim and Bucher, 2014). Neuromodulatory
systems also have well-known roles in CP induction and
cortical plasticity (Herlenius and Lagercrantz, 2004; Hensch,
2005; Larsen and Luna, 2018). Indeed, neuromodulators are
employed throughout the forebrain with distinct effects on synaptic
transmission and behavior.

Cholinergic input
The BLA receives dense cholinergic input from a number

of basal forebrain structures including the nucleus basalis and
the horizontal limb of the diagonal band of Broca and the
magnocellular preoptic area. In the rodent, cholinergic afferents
in the BLA mirror those found in the human including the
horizontal diagonal band, magnocellular preoptic nucleus, and
ventral pallidum (Woolf, 1991). In the rodent, cholinergic input
to the BLA is also contributed by the lateral preoptic area, medial
septal nucleus, bed nucleus of the stria terminalis, and substantia
innominata (Woolf and Butcher, 1982). However, the majority of
cholinergic input originates from the magnocellular neurons in
the nucleus basalis of Meynert (NBM) (Kitt et al., 1994). Evidence
for the effects of cholinergic neuromodulation on plasticity and
associative behaviors is extensive. Cholinergic actions on forebrain
targets have been implicated in arousal (Jones, 2008), memory
(Croxson et al., 2011), attention, and learning (Ljubojevic et al.,
2018). Within the BLA, cholinergic signaling modulates fear-
learning via increases in PN excitability and the enhancement of
LTP forming durable fear memories resistant to extinction (Jiang
et al., 2016).

Noradrenergic input
The main source of noradrenergic innervation in the BLA

is the locus coeruleus (LC). The LC is located within the pons
of the brainstem and is comprised of three fiber projections the
ascending pathway, the cerebellar pathway, and the descending
pathway. The ascending pathway innervates structures within the
midbrain including the limbic system (Szabadi, 2013). Within the
amygdaloid complex dense innervation has been noted within
the basal and central nuclei (Jones and Moore, 1977; Fallon
et al., 1978). Indeed, there exists a specific population of neurons
within the LC that project (LA-projecting) to the LA whose
activation is necessary for fear-learning (Uematsu et al., 2017). The
principal neurotransmitter, norepinephrine, mediates its effects
in the BLA via functionally-distinct adrenergic receptors: α1,
β1, and β2-receptors mediate excitation of PNs within the BLA
and α2 receptors mediate inhibition. Within the BLA, the α1
receptor is highly expressed within the LA, with modest expression
noted in the central amygdala (CeA) (Jones and Moore, 1977;
Pieribone et al., 1994). Interestingly, a recent study noted high co-
expression of α1 with glutamic acid decarboxylase (GAD), GABA,
and NMDA receptors (Papay et al., 2006). This suggests that α1-
receptors not only mediate an excitatory effect on PNs but may
also enhance GABAergic signaling via a direct effect on inhibitory
interneurons. Administration of an α1-adrenergic antagonist to
mice during fear-conditioning showed similar levels of freezing to
control animals. However, α1-adrenergic antagonist-treated mice
exhibited higher levels of post-training extinction (Favero et al.,
2018).
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Expression of α2-receptors is confined mainly to the CeA
with only low-level expression noted in the lateral and basal
nuclei (Pascual et al., 1992; Glass et al., 2002). This suggests
that the predominate effects of α2-adrenergic activity in the
central output nucleus of the amygdaloid complex may be to
mediate the autonomic and motor responses to fear and anxiety.
Within the amygdaloid complex, moderate β-receptor expression
is highest in the cortical nuclei with moderate expression
noted within the CeA (Wanaka et al., 1989). Higher levels of
expression of β1 and β2 receptors have been observed in the
BLA (Rainbow et al., 1984). High densities of β-receptors have
also been observed in the human amygdala post-mortem (Pazos
et al., 1985). The role of β-receptors in the pathology of fear
and anxiety is well-described (AlOkda et al., 2019). β-receptors
have been found to enhance fear potentiation and β-receptor
antagonists are capable of enhancing fear extinction (Debiec et al.,
2011). Furthermore, administration of the β-adrenergic antagonist
propranolol abolishes amygdala-associated memory enhancement
(Strange and Dolan, 2004).

The developmental effects of noradrenergic neuromodulation
in the BLA are just beginning to be studied with a recent study
identifying an age-dependent effect of adrenergic agonism on
increased PN spike frequency in juvenile mice but not in adult mice.
This effect was mediated via the downregulation of tonic inhibition
in juvenile animals (Fink and LeDoux, 2018). Norepinephrine
(NE) is also known to potentiate associative learning at thalamo-
amygdala synapses (Tully et al., 2007) and is capable of suppressing
feed-forward inhibition (FFI) (Bergles et al., 1996; Ehrlich et al.,
2009). Similarly, NE has also been demonstrated to play a distinct
role in the conversion of eligibility traces for LTP (Elwood and
Keeling, 1982). Thus, noradrenergic neuromodulation is necessary
for state-dependent neural coding and threat learning.

Serotonergic input
The BLA receives serotonergic innervation mainly from the

nucleus raphe dorsalis found in the brainstem. A total of 10%
of serotonergic efferent projections throughout the forebrain
are known to innervate the BLA (Bobillier et al., 1976; Ma
et al., 1991; Bonn et al., 2013). The actions of serotonin in
the BLA are considerably more complex given the diversity of
serotonergic receptors and their myriad actions. During Pavlovian
fear-conditioning, serotonin is known to increase in concentration
in the BLA (Zanoveli et al., 2009). Serotonin primarily affects
GABAergic INs via the 5-HT2A receptor enhancing inhibitory
neurotransmission and FFI (Rainnie, 1999; Jiang et al., 2009).
However, following acute stress, downregulation of the 5-HT2A
receptor on INs decreases FFI (Jiang et al., 2009). Indeed,
reductions in serotonergic tone have been shown to decrease
GABAergic FFI in the BLA and have been postulated to underpin
anxiety and fear disorders (Wang et al., 2019). However, studies
evaluating the effects of serotonin on fear learning have produced
conflicting results. Rodents treated with a selective serotonin
reuptake inhibitor (SSRI) prior to fear-conditioning exhibited
increased contextual and cued fear (Bosker et al., 2001). In
contrast, under conditions of depleted serotonin, rodents exhibited
decreased fear acquisition (Dobyns et al., 1984). Thus, the exact role
that serotonin plays in fear acquisition remains unclear, but these
studies suggest that it may be receptor subtype specific.

Dopaminergic input
The BLA receives dopaminergic input primarily from the

ventral tegmental area (VTA) and substantia nigra (Asan, 1997).
Dopaminergic projections innervate both PNs (Brinley-Reed and
McDonald, 1999) and INs (Pinard et al., 2008) and have distinct
effects based on cell-type specific receptor expression. Principal
neurons in the BLA have been found to express D1 with dopamine-
enhancing PN excitability (Kroner et al., 2005). The D2 receptor
is found on PV+ INs and functions to suppress GABA release
at the synapse (Bissiere et al., 2003; Chu et al., 2012). The role
of dopaminergic neuromodulation in aversion learning is well-
described. In rodents, fear-potentiated startle is enhanced upon
electrical stimulation of the VTA (Borowski and Kokkinidis, 1996).
Conversely, administration of D1-receptor antagonists decreases
fear-potentiated startle and freezing behavior following Pavlovian
conditioning (Nader and LeDoux, 1999; Greba and Kokkinidis,
2000). In odor-cued fear-conditioning paradigms, administration
of haloperidol decreased PN excitability and excitatory synaptic
strengthening following odor-shock conditioning (Rosenkranz
and Grace, 2002b). Thus, the overall net effect of dopaminergic
neuromodulation is to increase PN excitability and to suppress
IN-mediated FFI in micro-circuits important for fear-learning
(Rosenkranz and Grace, 1999, 2002a; Bissiere et al., 2003).
Interestingly, dopamine suppression underpins the maternal
attenuation of infant fear-learning during a sensitive period in the
development of the BLA (Barr et al., 2009; Opendak et al., 2019).

Amygdala dysfunction in FXS

The limbic system, and in particular the BLA, has been
implicated in a variety of neuropsychiatric disorders including
anxiety, panic disorder, post-traumatic stress disorder, and
substance use disorder (Martin et al., 2010; Janak and Tye,
2015). Individuals with FXS and ASDs exhibit an increased
prevalence of socioemotional problems including social anxiety,
social withdrawal, hyperactivity, and gaze aversion (Bregman et al.,
1988; Cohen et al., 1988; Hagerman et al., 1991; Cordeiro et al.,
2011; Tonnsen et al., 2013). However, structural neuroimaging
studies examining volume differences in individuals with FXS have
been inconsistent. Small studies and case reports have documented
neuroanatomical increases in amygdala volume in individuals
with FXS (Reiss et al., 1995), whereas larger studies have found
no difference or reduced amygdala volumes (Kates et al., 1997;
Gothelf et al., 2008; Hazlett et al., 2009). One recent volumetric
study identified persistent developmental enlargements of caudate
volumes in children with FXS as early as 6 months of age but
no differences in amygdala volume. In contrast, children with
ASDs exhibited rapidly changing amygdala volumes over the first
2 years of life. Interestingly, these changes were observed prior
to behavioral symptom onset and diagnosis demonstrating that
developmental trajectories become altered very early in life (Shen
et al., 2022). From a functional connectivity standpoint, individuals
with FXS have been shown to exhibit aberrant white matter
integrity and interconnectivity (Barnea-Goraly et al., 2003), with
reduced integration of subcortical regions including the amygdala,
anterior cingulate, and temporal pole (Bruno et al., 2017). Taken
together, these data suggest that structural neuroanatomy may not
fully account for the behavioral differences observed in FXS.
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Functional imaging studies have identified a number of key
differences in amygdala responses in FXS. Pronounced gaze
aversion with abnormal gaze processing has been observed in
children and young adults with FXS (Garrett et al., 2004). However,
no differences in amygdala activation were observed between
neurotypical and FXS patients during facial-emotion judgment or
in the presentation of fearful stimuli (Hagan et al., 2008; Holsen
et al., 2008). In contrast, children with FXS have been found
to exhibit increased autonomic responses to fearful stimuli in
an age-dependent manner (Tonnsen et al., 2013). Comparison
of these studies is confounded by differences in experimental
design, experimental group parameters, and the type of behavioral
task employed. Thus, the precise neural correlates of amygdala
dysfunction in FXS patients remain unclear.

At the cellular level, hyperexcitability within the BLA has been
implicated in the pathophysiology of amygdala-based behaviors
(Bulow et al., 2022). Our own work has identified distinct
developmental alterations in the hyperexcitability of PNs in the
BLA including profound changes in intrinsic firing rates and low
threshold spiking activity (Svalina et al., 2021, 2022). At the circuit
level, in adult mice, our group and others have identified profound
alterations in GABAergic neurotransmission including deficits in
phasic and tonic inhibition, GABAA receptor composition, and
GABA synthesis (Olmos-Serrano et al., 2010; Paluszkiewicz et al.,
2011a; Cea-Del Rio and Huntsman, 2014; Martin et al., 2014).
Broadly, and in concert with other factors, this results in circuit and
network hyperexcitability (Contractor et al., 2015).

Interestingly, our group has observed periods of homeostatic
changes in inhibition in the BLA of Fmr1KO mice corresponding
with sensitive time periods in the developmental emergence of fear-
learning (Vislay et al., 2013). These distinct changes in inhibitory
neurotransmission suggest that amygdala-based behaviors may be
altered in the Fmr1KO mouse early in development. During the
period of inhibitory synaptic development (P10–P21) (Huntsman
and Huguenard, 2000), our group has identified dramatic
reductions in inhibitory neurotransmission from birth to P10.
Between P14 and P16, a transient period of enhanced inhibitory
function emerges (Vislay et al., 2013). Interestingly, these inhibitory
changes occur in the absence of isolated changes in excitatory
synaptic function, but rather occur in the context of increased feed-
forward excitation. As such, at this developmental time point, FFI
is observed to be broadly normalized. However, this is followed by
a return to depleted levels of inhibition by P21. However, whether
this period of enhanced inhibitory function represents a precocious
maturation of GABAergic neurotransmission or a homeostatic
response to hyperexcitability in early life remains to be definitively
determined.

Our hypothesis about this phenomenon is that inhibitory
changes during this time period represent inadequate homeostatic
compensation and contribute to pathologic plasticity and
behavioral outcomes. Indeed, our studies at P14 demonstrate that
early life bidirectional changes in plasticity are dependent on the
state inhibition. For instance, at P14, enhanced LTP is observed in
the absence of GABA receptor blockade, whereas enhanced LTD
is observed in presence of GABA receptor blockade suggesting
that pathologic plasticity exists at baseline, but further driving
excitation has the opposite effect. However, at P21, a marginal
increase in LTP is observed in Fmr1KO animals at baseline, but
under conditions of GABA receptor blockade, this LTP magnitude

is diminished from the wild type (WT) baseline suggesting that as
early as P21 plasticity in the FXS BLA is demonstrably reduced.

Future studies are warranted to characterize these changes.
Indeed, one major driver of CP plasticity that has been
understudied in FXS is neuromodulation. To our knowledge,
few studies have focused on the canonical neuromodulators of
CP plasticity and fear-learning in the Fmr1KO BLA, despite
neuromodulation strategies (in particular, serotonin receptor
modulators) showing promise for reversing behavioral deficits for
FXS, ASDs, and NDDs more broadly (Armstrong et al., 2020; Lee
et al., 2021; Jeon et al., 2022; Kim et al., 2022).

Similar to studies in human patients with FXS, studies
examining fear learning in rodent models of FXS have produced
conflicting results. Fmr1KO mice have been found to exhibit
higher levels of hyperarousal and anxiety when interacting with
novel conspecifics (McNaughton et al., 2008). However, studies
employing classic Pavlovian fear-conditioning paradigms have
identified decreases in contextual and conditioned freezing
episodes suggesting deficiencies in both hippocampal and
amygdala-based associative learning (Paradee et al., 1999). Indeed,
these findings have recently been reproduced in a rat model of
FXS (Fernandes et al., 2021). Further, despite the prevalence of
amygdala-based disorders in human patients with FXS, mouse
models of FXS demonstrate deficiencies in LTP in the circuits
responsible for fear-learning (Zhao et al., 2005; Suvrathan et al.,
2010). One possible explanation for these disparate findings is
that plasticity and associative learning defects manifest differently
at different ages. In our own work, we have shown this to be
the case as LTP in the BLA is transiently enhanced early in
development (Svalina et al., 2022). Thus, understanding early life
cellular and synaptic alterations, CP plasticity in the BLA and how
deficits emerge and change over time in FXS and ASDs is of great
importance for developing new therapies.

Ontogeny of fear-learning in the rodent

The ontogeny of amygdala-dependent fear-learning has been
well characterized and involves a number of characteristic changes
in the BLA and fear across ontogeny (Moriceau and Sullivan,
2005). At birth, altricial rodents depend on olfaction for orientation
and navigation, maternal attachment, and nursing to receive
the caregiving necessary for survival (Teicher and Blass, 1977;
Galef and Kaner, 1980; Leon, 1992; Landers and Sullivan, 1999;
Sullivan et al., 2003). Whereas the rodent visual and auditory
systems develop later in life (around P14) (Blatchley et al., 1987;
Shen and Colonnese, 2016). From birth to P10, pups do not
exhibit amygdala-dependent fear learning (Sullivan et al., 2000a),
but show robust olfactory learning necessary for their survival
associated with a sensitive period for attachment learning and
learning the maternal odor (Pedersen et al., 1982; Shen and
Colonnese, 2016). However, at this developmental time point,
pups display similar reward value to both appetitive and aversive
stimuli to support attachment learning (Camp and Rudy, 1988;
Perry et al., 2017). Indeed, rodent pups will exhibit an odor
preference for a conditioned odor even when the odor is paired
with a mild tail shock or milk, using a learning circuit involving
the olfactory bulb and olfactory cortex, as well as failure to
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FIGURE 1

Summary timeline of observed changes in early development in the Fmr1KO mouse compared to the wild-type rodent. Figure adapted from
previous work by Regina Sullivan.

recruit the amygdala (Moriceau and Sullivan, 2006; Mukherjee
et al., 2017; Oruro et al., 2020). Olfactory bulb NE is necessary
and sufficient for associative olfactory learning in rodent pups
and has been postulated to be essential for attachment learning
(Sullivan et al., 1991, 2000b; Sullivan, 2001). It should be noted
that pups during the first week of life can learn fear and
avoidance with high shock or malaise, although learning depends
upon the olfactory system and high levels of NE, and not the
amygdala (Moriceau et al., 2009; Raineki et al., 2009). However,
during this developmental epoch of quiescent amygdala function,
the BLA is especially susceptible to early life adversity with
enduring effects seen throughout the lifespan (Lukkes et al.,
2012; Callaghan et al., 2019). Indeed, repeated adversity, such
as maternal separation or maltreatment of rat pups in the first
week of life results in a non-linear developmental trajectory
of hyperactivity in the amygdala and enhanced contextual and
conditioned fear-learning in later-life (Diehl et al., 2014; Pattwell
et al., 2016; Junod et al., 2019). But amygdala deficits are
also evident in infancy as reflected in precocial emergence of
amygdala-dependent fear due to amygdala excitability, reduction
of BLA axo-somatic synapses formed by parvalbumin cells, and
perineuronal net and engagement of intracellular molecular events
associated with plasticity (Ehrlich and Rainnie, 2015; Santiago
et al., 2018; Opendak et al., 2019). Further, repeated stress
or exogenous administration of corticosterone within a social
context is considered important in the initiation of this altered
developmental trajectory (Raineki et al., 2019; Opendak et al.,
2020).

From P10 to P15, a transitional sensitive period emerges
in which normal adult-like responses to odor-cued amygdala-
dependent fear conditioning are evident (Sullivan et al., 2000a).
Interestingly, social context is capable of blocking pup fear
responses during this time (Barr et al., 2009). For instance,

odor-cued fear conditioning conducted in the presence of the
maternal dam suppresses fear acquisition in the rodent pup such
that the pup will instead demonstrate an odor preference for
the conditioned odor (Shionoya et al., 2007). This has been
replicated in young children, illustrating a potential cross-species
feature of infant attachment learning (Tottenham et al., 2019),
with both species associated with decreasing stress hormone levels
and attenuation of the amygdala, which wanes by adolescence
(Gee et al., 2014). The rodent research has further defined the
importance of NE and dopamine in this process (Barr et al.,
2009; Opendak et al., 2019, 2021). These studies suggest that
at this developmental time point the attachment and avoidance
circuits exist in a delicate balance readily switched by maternal
presence. By P16 infant rats have a more mature functioning
of the amygdala-depended fear emerges and maternal presence
plays a limited role in modulating or only slightly attenuating
avoidance and fear, potentially through a decrease in maternal
modulation of dopamine and maturing amygdala (Upton and
Sullivan, 2010; Opendak et al., 2021). These unique age-specific
features of infant learning are due to age-specific mechanisms
illustrating that the developing brain is not an immature version
of the adult brain and highlights how the environment impacts its
development.

Emerging data also illustrates that developmental disorders,
potentially associated with genetic abnormalities in Fmr1KO mice
and rodent models of FXS can also impact the amygdala and
disrupt the developmental trajectory of the amygdala. For example,
in contrast to previous studies in aged mice, our most recent
work in mouse pups has shown that LTP and fear-learning are
briefly enhanced at the infant P14 developmental time point.
Interestingly, this pathologic LTP and fear-learning is dependent on
the state of inhibition and can be ameliorated with early-life 4,5,6,7-
tetrahydroisoxazolo [5,4-c]pyridin-3ol (THIP) intervention at this
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time point. Thus, it is essential to better study developmental
changes in NDDs to not only understand how to treat but also when
to treat and the importance of defining age-specific interventions.

Future directions

We integrate the current state of the literature as shown
in Figure 1. The broad spectrum function of FMRP enables
several avenues of dysfunction but also opens several potential
therapeutic avenues. For instance, it remains unknown if the
intrinsic properties of neurons are altered at the earliest post-natal
time points. Similarly, it remains to be determined how circuit-level
changes contribute to the maladaptive behavioral manifestations
seen in FXS throughout early development. Further, how social
and environmental factors impact the behavior in FXS is an
interesting area worthy of future study. Though suggested by our
own work and that of others, correlative circuit-level changes may
underpin behavioral alterations but direct causation studies are
certainly warranted. Indeed, the extended and enhanced period of
plasticity observed in NDDs such as FXS likely holds the key to the
discovery of specific changes at the circuit level (Meredith et al.,
2012). A major challenge for the study of NDDs, like FXS, is the
discrepancy between the onset of distinct molecular and synaptic
pathophysiology and the appearance of symptoms. It may be the
case, that the time at diagnosis may be too far beyond the CP of
plasticity to provide the platform needed for circuits to be modified.
Therefore, the identification of specific circuit-level changes during
critical periods of brain development is of high importance for
our understanding of the pathophysiology and treatment of FXS
patients.
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