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Many techniques have attempted to provide physical support to ease the
execution of a typing task by individuals with developmental disabilities
(DD). These techniques have been controversial due to concerns that the
support provider's touch can influence the typed content. The most common
interpretation of assisted typing as an ideomotor phenomenon has been qualified
recently by studies showing that users with DD make identifiable contributions to
the process. This paper suggests a neurophysiological pathway by which touch
could lower the cognitive load of seated typing by people with DD. The required
sensorimotor processes (stabilizing posture and planning and executing manual
reaching movements) and cognitive operations (generating and transcribing
linguistic material) place concurrent demands on cognitive resources, particularly
executive function (EF). A range of developmental disabilities are characterized
by deficits in sensorimotor and EF capacity. As light touch has been shown to
facilitate postural coordination, it is proposed that a facilitator's touch could assist
the seated typist with sensorimotor and EF deficits by reducing their sensorimotor
workload and thereby freeing up shared cognitive resources for the linguistic
elements of the task. This is the first theoretical framework for understanding how
a facilitator’s touch may assist individuals with DD to contribute linguistic content
during touch-assisted typing.

cognitive load, developmental disabilities, autism, touch, light touch, executive function,
cognitive-motor interference, assisted typing

1. Introduction

There have been several attempts to find strategies to physically support people
with developmental disabilities (DD) in the generation of written linguistic content. The
proposed methods include assisted typing (Lilienfeld et al., 2014; Jaswal et al., 2020), the
rapid prompting method (Lilienfeld et al., 2014; Tostanoski et al., 2014) and facilitated
communication (Wehrenfennig et al, 2008; Schlosser et al, 2014). Supported typing
techniques usually involve an external assistant providing physical support at the level of
the hand, arm, or shoulder of the user to help them point at objects or type on a keyboard.

Such interventions are adopted to enhance communicative options in people with
various DD. They are generally introduced to people with little or no verbal communication
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skills, but the application of these interventions can persist even
after the development of verbal communication. Although most
general interest in the adoption of such techniques has focused on
people with autism, assisted typing techniques have also been used
in people with communication difficulties who have other DD, for
example Down syndrome, Cerebral Palsy, and Fragile X.

These approaches are controversial (Mostert, 2001), however,
as a range of studies have found that the user’s output is in
most cases strongly influenced by the facilitator (Mostert, 2001,
2010; Wehrenfennig et al., 2008; Saloviita et al., 2014; Schlosser
et al,, 2014). Burgess et al. (1998) suggested that supported typing
techniques were an example of the ideomotor effect (Carpenter,
1875) and Wegner et al. (2003) compared them to the episode
of Clever Hans, the horse that reportedly answered mathematical
questions with its hoof by reading subtle cues coming from his
breeder. The ideomotor effect has since become the only widely
discussed and accepted theoretical explanation of what occurs
in supported typing (Schlosser et al, 2014; Saloviita, 2018). As
a result, these techniques are currently not recommended as an
assistive framework in formal education (NICE, 2012) although
their practice has continued widely (Lilienfeld et al., 2014), and
research on supported typing has persisted over the last two
decades. Some authors have continued testing the authorship of
written content through “message passing” tasks, showing that
users largely fail to transmit information that the assistant does
not have (Wehrenfennig et al., 2008; Saloviita et al., 2014). Others
have used eye-tracking methods (Grayson et al., 2012; Jaswal et al.,
2020) to show that users anticipatorily fixate the to-be-typed key,
and so are actively involved in the process. Others have sought to
assess and evaluate textual contents produced via such techniques
adopting qualitative and quantitative linguistic analysis (Tuzzi,
2009; Saloviita, 2018), finding mixed results.

The results from the latter strand so far show that supported
typing users have unique and idiosyncratic styles that differ
from their assistants, but style idiosyncrasy does not rule out
the possibility of assistants influencing the content of the texts
produced (Saloviita, 2018). Linguistic analysis conducted by
Zanobini and Scopesi (2001), Emerson (2010), and more recently
by Nicoli et al., (2021, under review), showed that textual output
from supported typing contains linguistic patterns associated with
both the assistant and the user. These results suggest that the
whole process is best studied as a collaborative effort (Sartori and
Betti, 2015; Curioni et al., 2019). Thus, considered as a possible
conduit for a collaboration, supported typing methods present a
more complex and nuanced picture than the apparent consensus
discrediting them would suggest. In this perspective, it would
be of interest to investigate whether there are neurophysiological
pathways by which physically supporting people with DD such
as autism (ASD) or Down syndrome (DS) could enable them to
co-create textual output that they could not generate and express
independently. It is possible that supporting the user by touch may
reduce the cognitive and sensorimotor load of generating content
and interacting with communication interfaces. Consideration of
this possibility requires a thorough analysis of the computational
challenges faced by individuals with a range of DD and whether
or how supportive touch might ease them. The literature on
supporting typing methods has not attempted this, and so doing
this is a key purpose of this paper.
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Typing is a complex skill that requires the coordination
of multiple concurrent tasks. Typing while seated requires
coordination of repeated reaching movements of the arm. The
programming of these movements depends on postural control
mechanisms that maintain a stable upright stance and counteract
the mechanical perturbations produced by arm extensions (Section
2.1.1. “Mechanical base”). Postural control involves the integration
of vestibular, somatosensory, and visual information, which in turn
loads the executive function (EF) system (Section “2.1.3. Executive
function load of sensorimotor coordination”). EF broadly refers
to regulatory mechanisms that oversee goal-directed cognitive
and motor processes by maintaining, and operating upon, task-
relevant information (Baddeley, 1996; D’Esposito et al., 1999).
Unifactorial models of EF attribute the roles of coordinating
and regulating cognitive processes to a unique function, namely
working memory or attentional control (Posner, 1980; Shallice and
Burgess, 1991; Demetriou et al., 2019), whereas multifactor models
distinguish between discrete, independent components (Diamond,
2013). Although the structure and unity of EF continue to be
debated, it is generally agreed that EF is comprised of working
memory, updating information held in working memory, mental
flexibility (i.e., shifting between tasks or task sets), fluency, response
inhibition, inhibition of task-irrelevant information, planning,
problem-solving and self-monitoring (Miyake et al., 2000; Miyake
and Friedman, 2012; Demetriou et al., 2019). See Section “6. EF
deficits in DD” and Table 1 for EFs relevant to the seated typing
task.

The generation of the linguistic content to be typed places
its own demands on EF (Section “2.2. Generating written
content”) and planning the movement sequence required to type
out that content also comes with its own EF load (Section
“2.1.2. Motor planning” and Section “2.1.3. Executive function
load of sensorimotor coordination”). The concurrent demands
of sensorimotor coordination and cognitive tasks on common
computing resources (resulting in interference in some conditions)
has been extensively researched in the past few decades, particularly
in the context of aging (Section “3. Cognitive-motor interaction”).
The literature has also documented the beneficial impact an
external somatosensory signal can have on postural control. The
possibility we present here is that supportive touch might reduce
the computational workload of generating and typing linguistic
content by assisting the sensorimotor processes of typing (Section
“4. The utility of touch information in balance control”). Given
the noted interactions between such sensorimotor and concurrent
cognitive processes, tactile support has the possibility of freeing
up cognitive capacity for the required linguistic effort. This
prospect is considered in the context of extensive evidence that
a range of DD affect both motor coordination and cognitive
capacity. As we expand in Sections “5. Sensorimotor deficits in
DD” and “6. EF deficits in DD, individuals with developmental
disabilities (DD) experience sensorimotor deficits that affect
both motor coordination and cognitive capacity. Sensorimotor
deficits include impairments in sensory integration, postural
control, and difficulties in planning and controlling voluntary
movements. These deficits, combined with weakened trunk
stability and impaired sensory integration, can make it challenging
for individuals with DD to maintain a stable seated position
and perform the precise arm movements required for typing.
Furthermore, individuals with DD often experience executive
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TABLE1 Summary of the executive functions required
during a typing task.

Executive Description

function

Inhibition The ability to suppress irrelevant or distracting

linguistic and non-linguistic information.
Updating The capacity to continuously monitor and update
information in working memory during the writing
process. This involves integrating new ideas or
information and modifying the written output
accordingly.
Planning The process of organizing and structuring the written

content before typing. It includes developing an outline
or framework for the text, deciding on the sequence of
ideas, and formulating a plan for how to express those

ideas effectively.

Self-monitoring The ability to monitor one’s own performance during
typing, checking for errors, inconsistencies, or
deviations from the intended message. It involves
self-evaluation and making adjustments to improve the

quality and accuracy of the written output.

Working memory The capacity to hold and manipulate information in
mind while performing cognitive tasks. In typing,
working memory is involved in temporarily storing
and retrieving relevant information, such as graphemic
strings, vocabulary, grammar rules, and previously

written content.

Problem solving The cognitive ability to identify, analyze, and solve
problems encountered during the writing process. It
includes identifying the most appropriate words,
phrases, or sentence structures to convey meaning

effectively.

Motor planning and The coordination of motor movements required for

coordination typing, including the precise control of finger
movements and keystrokes to accurately produce

written words.

function (EF) deficits, which may impact cognitive processes
involved in typing, such as working memory, planning, flexibility,
and inhibition. Thus, acknowledging the simultaneous presence of
sensorimotor and EF deficits in DD populations sets the context
for interpreting and implementing interventions such as light touch
that be effective primarily by reducing the workload associated with
the sensorimotor component.

In Section “2. Task analysis,” we start providing a detailed
analysis of what typing while sitting requires from a sensorimotor
and cognitive perspective. Here, we also show how the associated
sensorimotor and linguistic actions significantly draw on EFs. In
Section “3. Cognitive-motor interaction,” we present the literature
on cognitive-motor interaction (CMI) that shows how concurrent
motor and cognitive tasks can interfere due to shared cognitive
resources. In Section “4. The utility of touch information in
balance control” we present the literature on the role that
touch can play in aiding postural control, thereby reducing
cognitive load. In Section “5. Sensorimotor deficits in DD, we
establish the relationship between DD and sensorimotor deficits,
and then, in Section “6. EF deficits in DD, we demonstrate
how a range of DD limit EF capacity. In Section “7. General
discussion—Sequences of events,” we synthesize the assembled
information in support of the proposal that touch-based physical
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support may facilitate typed communication by individuals with
DD by reducing the computational load of the sensorimotor and
cognitive components of the task.

2. Task analysis

As typing is a complex task that involves both sensorimotor
and cognitive components, in this section we analyze each
component in turn, with a particular focus on how executing and
coordinating these bear on the cognitive workload. We start with
the sensorimotor coordination required for pointing gestures of the
arm, and consider the cognitive processes involved in generating
the linguistic content to be written.

2.1. Sensorimotor coordination

The task of typing on a keyboard involves repeatedly aiming
the typing fingertip at the required key and making a reaching
movement toward the key. We assume that the key readily provides
haptic and visual feedback when it is pressed. These sensory signals
indicate goal achievement, and therefore the termination of the
key press action.

Leaving aside the linguistic aspect, the action of typing requires
the coordination of a postural task (setting the mechanical base)
and a manual reaching task (pointing at the keyboard). The
postural task stabilizes the torso, and the torso’s position and
velocity affect the programming of the arm’s reaching trajectory
(Thelen and Spencer, 1998). To better understand the latter task’s
dependence on the former, we must examine the information
requirements of both task components.

2.1.1. Mechanical base

The informational support for maintaining the body’s upright
stance comes from the integration of perceptual data processed
by vestibular, somatosensory (cutaneous, proprioceptive, and joint
receptors) and visual systems (Allum and Keshner, 1984; Diener
et al,, 1988; Shumway-Cook and Woollacott, 2012). The vestibular
system provides information about the head’s movement with
respect to gravity and inertial forces (Horak et al., 1994). The
somatosensory system provides information about the body’s
position and motion with respect to support surfaces and about
the dynamic inter-relationship between body segments (Diener
et al., 1984; Roll and Roll, 1988). The role of vision is to provide
information about the position and motion of the head relative to
environmental objects and a sense of verticality. Visual information
is particularly salient in the detection of self-motion as movements
of the head through a visible environment generate flows of optical
elements across the entire visual field (Lee and Lishman, 1975;
Dijkstra et al., 1992). Anterior-posterior head motion produces
radial optical flow whereas medial-lateral head motion generates
lamellar flow (Warren, 2010). When these visual signals are
available, the body sways less in both planes (Edwards, 1946; Paulus
et al., 1984, 1989). Indeed, the ratio of body sway between eyes-
open and eyes-closed conditions, the Romberg quotient, is a clinical
indicator of postural stability (Romberg, 1853). Research suggests
that the maintenance of balance (for example, keeping the body’s
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center of mass within the base of support) involves both exploratory
and corrective body sway. Exploratory sway generates perceptual
information (including optical flow) that guides the compensatory
sway that corrects drifts toward instability (Riccio et al.,, 1993;
Riley et al., 1997). Although visual information is not essential for
maintaining balance, it plays a dominant role when it is available
and provides a strong signal of head motion. For example, when
the train in the next track moves off, standing passengers in a static
train produce a postural reaction consistent with their own train
setting off. This happens despite the absence of any self-motion
signals from their vestibular and somatosensory systems. In upright
position, body sway is lower in the presence of vision, a result
commonly interpreted as indicating greater stability (Andersen and
Dyre, 1989; Masson et al., 1995). The closer the environmental
objects on which the eyes fixate, the less the body sways (Lee
and Lishman, 1975; Dijkstra et al., 1992). As the optical flow
produced by nearer objects is larger in magnitude, this suggests
that optical flow information is actively used to maintain stance
stability.

In the typing task context, the posture control system has a
dual function: a stabilizing function in maintaining upright stance
in the seated position, and a task-facilitative (Stoffregen et al,
2000) function that: (a) controls the position of the mechanical
base (shoulder) from which the arm extension is parameterised,
(b) contributes to the reaching action by controlling forward
lean, and (c) anticipates and adapts to the perturbation generated
by arm extension. The direction and amplitude of the reaching
gesture appear to be prepared before movement begins, and, for
this to be possible, information about the initial position of the
limb is important (Polit and Bizzi, 1979). The position of the
shoulder at the start of each reaching trajectory is the result of
the facilitatory and stabilizing functions of the posture control
system. Both these functions are confirmed (in work on standing
balance) by the activation of leg muscles during anticipatory
postural adjustments before arm movement (Shepherd et al., 1993),
and by the occurrence of earlier and larger postural adjustments
reaching distance increases and the support area shrinks (Moore
et al., 1992). With regard to planning the direction of pointing
movements, there is considerable evidence that the trajectories
are planned in spatial coordinates (Tresilian, 2012; Bosco et al.,
2017). How this operates is addressed in the next section, but
here it is important to note that the development of an internal
coordinate system, be it head-, hand- or body-centered, requires
a reliable and stable origin for reference. The observer’s posture
can influence the spatial relationships between objects in their
visual field and can also affect their ability to perceive depth
and movement. Additionally, changes in posture can alter the
visual cues that are used to perceive the environment, such as the
relative size and position of objects. Body sway, which refers to the
small movements of the body caused by changes in balance and
weight distribution, can have an impact on the visual coordinate
system by altering the relative positions and orientations of the
observer and the objects in their visual field (Thelen and Spencer,
1998).

This
maintaining an upright stance that is stable and able to support the

section discussed the sensorimotor functions of

motor functions of the task at hand. The next section outlines the
components of arm trajectory planning in a task like typing.
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2.1.2. Motor planning

The first element of planning the trajectory of the fingertip (the
working point) to the required key is visually locating the target key
(termed “visual regard”). This involves coordination of the trunk,
head, and eyes (note that all three are also involved simultaneously
in postural control). Forming the trajectory involves a differencing
mechanism that compares the working point’s current position
to its required position. This internal feedback signal (internal to
the trajectory generator) is used integratively to drive the current
position of the working point to its target location (Saltzman and
Kelso, 1987; Bullock et al., 1993; Hoff and Arbib, 1993). This
process is one of negative feedback control and requires at least
intermittent sampling of visual and proprioceptive information
about the working points current and required position in space.
A differencing mechanism like this can only operate accurately
if both the current and required positions are represented in
the same coordinate system. These locations in space could be
monitored in a coordinate system located at the visual egocenter
(Tresilian, 2012), but it has been suggested that the coordinate
system is centered on the point in the visual field where the eyes
are fixating (Shadmehr and Wise, 2005). As this makes eye fixation
fundamentally important to trajectory planning, we recall that
it also affects the sampling of optic flow from eye-head motion
and proprioceptive information from ocular vergence for use in
postural control.

Aside from feedback-based closed loop control, fast movements
also exhibit open loop control in which the trajectory is specified
without feedback at execution time (Adams, 1971). Both these types
of control have also been suggested for postural control (Collins
and De Luca, 1993). Most reaching movements exhibit a hybrid
control pattern whereby open loop control takes the working
point close to the target location. Then, a set of sub-movements
controlled in closed loop brings the working point precisely to the
target location (Meyer et al., 1988). Accurate open-loop control
is only possible if the consequences of motor commands can be
estimated in advance. This implies access to detailed information
about the articulatory apparatus. This process operates in a
feedforward manner, utilizing predictions of the results of motor
commands and preparing elements of the controlled system for
the resulting changes in their states (Pisotta and Molinari, 2014).
The need for system knowledge also emerges when considering
the transformation of spatial trajectory information to the required
angular motion of the body’s joints (inverse kinematics) and the
muscle activity required to achieve these. Predictions of the sensory
consequences of planned motor commands are termed forward
models (Miall and Wolpert, 1996).

2.1.3. Executive function load of sensorimotor
coordination

Research agrees that there is a cognitive workload associated
other
coordination. In many situations, performing these tasks

with balance, gait, or goal-directed sensorimotor
concurrently with other cognitive tasks can pose significant
challenges. This may be due to capacity-limited cognitive resources
being shared by both types of tasks (Mitra, 2004) or because
tasks are functionally linked in terms of performance or system
requirements (Stoffregen et al., 2007). Maintaining the body’s

balance is the key imperative for postural control, but posture and
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gait are constantly modulated in service of supra-postural tasks.
The latter function of the posture control system is likely more
demanding of cognitive resources than simply retaining balance as
it must link and adapt coordination to specific and transient task
goals.

As seen in the previous section, keeping an upright stance is the
result of sensory and motor processes. Sensory processes compute
the position of the body in space, motor processes allow for muscle
and movement adaptation and responses to the detected position.
The sensory processes rely on the integration of visual, vestibular
and proprioceptive sensory information. The information provided
by each of these channels is then weighted to give precedence
according to reliability (Shumway-Cook and Horak, 1986). The
literature clearly shows that the integration of sensory information
poses demands on cognitive resources, so that decreased postural
control, due to injury, aging or sensorimotor deficits (Fournier
et al,, 2014) increases the demands for attentional resources to
maintain the body’s balance. When information provided by one
of the sensory channels deteriorates, the demands for attentional
resources to deal with postural tasks increases (Shumway-Cook and
Woollacott, 2000; Mahboobin et al., 2007). A striking implication
of these studies is that adding reliable sensory information may
substantially decrease the demands for executive resources that
can then be allocated elsewhere. Thus, given the essential role
of posture control in the execution of supra-postural tasks, by
extension, multisensory integration also plays a decisive role in the
planning and execution of movements (Betti et al., 2021). Motor
planning itself draws on executive and cognitive resources. It has
been proposed that motor planning and executive functions are two
distinct heterogeneous domains of cognitive functioning (Wunsch
et al,, 2016), but many studies have reported dual-task interactions
between motor planning and (visuo-spatial) working memory with
detrimental effect on the latter (Schiitz and Schack, 2020). Deficits
in motor planning and execution, reported in many DD (Mari et al.,
2003; Cummins et al., 2015; Alesi and Battaglia, 2019; Studenka
and Myers, 2020), would therefore pose increased demands on the
executive/cognitive domain.

The internal models involved in motor task execution are the
suggested means of several important functions in motor control.
These include motor learning, separating the effects of self-motion
from sensory input, and counteracting the impact of delays in
neural signal transmission (Miall and Wolpert, 1996; Wolpert and
Kawato, 1998). In terms of neural mechanisms, the planning and
execution of reaching arm movements involves the parietal and
premotor areas in spatial planning, the primary motor cortex and
descending pathways in the activation of muscle groups, and the
basal ganglia and cerebellum in refining the process by accounting
for the current and predicted states of the body (Shumway-Cook
and Woollacott, 2012). The cerebellum is thought to be involved in
the use of both inverse models (providing the neural commands
required for a given trajectory) and forward models predicting
sensory consequences of actions (Wolpert et al., 1998). Wolpert and
Kawato (1998) suggest that multiple pairs of forward and inverse
models need to be trained during the acquisition of motor skills
such that models suited to given task conditions can be activated,
or control can be switched to better suited models if conditions
change. Note that both selection and switching are EFs (Miyake
et al., 2000).
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As the reaching arm’s position is critical in trajectory planning
and depends on both the stabilizing and task-facilitative roles of
postural control, postural states and actions (e.g., of the torso)
must be included in internal models of the kind of seated typing
movements we are considering here (Wolpert and Kawato, 1998;
Morasso et al., 1999; Kuo, 2005). A key point with respect to
both limb movement and postural control is that much of it
is anticipatory in nature. Whether responding to an expected
external perturbation, or supporting a voluntary movement that
perturbs balance, the required postural adjustments must be
estimated and applied in advance. Evidence of this is seen not
only in the case of executed movements (Belen’kii et al., 1967;
Bouisset and Zattara, 1988), but also in the case of motor imagery
where only movement planning occurs but not execution (Wider
et al., 2020, 2022). The close coordination that has been observed
between anticipatory postural adjustments and associated limb
movements (e.g., these adjustments can be affected independently
by the magnitude of perturbation and magnitude of the action
triggering the perturbation) has led to suggestions that anticipatory
postural adjustments must be integral elements of limb movement
planning (Aruin and Latash, 1995, 1996). As the limb movements
themselves also involve anticipatory components within internal
models, and anticipatory processes must involve choices based on
task conditions and memory, the central importance of EFs in the
selection, planning and execution of the seated typing movements
we have been considering becomes evident.

This section established that sensorimotor coordination of both
postural control and focal movement planning components of
seated typing make significant demands on cognitive resources
such as EFs. The next section considers the simultaneous EF
demands of the content generation aspect of the seated typing task.
Both these discussions should be taken in the context of EF deficits
in DD that will be outlined in Section “6. EF deficits in DD.”

2.2. Generating written content

Writing is a problem-solving task (Cornoldi et al, 2010)
that requires the coordination of multiple operational procedures
working at central and peripheral levels (Ellis, 1982). In this section,
we broadly describe the main processes involved in the generation
of a written output with a particular focus on the demands these
processes load on EF capacity.

2.2.1. Writing operations

The operational procedures involved in a writing task can be
broadly divided into three recursive phases (Hayes and Flower,
1980). Models can vary in the number, name, and attribute
of these phases. For present purposes, we present a broad
summary. Note that while these processes are hierarchically
ordered in a cascade-like model, their execution is intertwined
in time (McCutchen, 2000; Cornoldi et al., 2010; Purcell et al.,
2011). Thus, writing being a much slower task than talking,
the processes that happen higher in the route (the generation
of contents) may be expanded, modified, or updated during
the completion of the lower (content’s transcription). The first
operational phase is the retrieval of semantic or contextual
information and formulation of the ideas that need to be organized
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in text form (Hayesand Flower, 1980; Ellis, 1982; McCutchen,
2000; Cornoldi et al., 2010). This phase is constantly updated
during the other phases of writing although an outline plan is
needed in very first stages to allow the writing process to start
(Cornoldi et al,, 2010). The second phase translates into linguistic
representations of the ideas generated in the first phase (Berninger,
1999; McCutchen, 2000; De Vita et al., 2021). This process can be
itself split into two components: a text generation phase, where
concepts are translated into lexical units and the broad text is
organized into a syntactic plan, and a transcription phase where
these linguistic representations are transformed into written words
(Cornoldi et al., 20105 De Vita et al., 2021). The latter is composed
by a central and a peripheral process. The central (spelling)
process creates a graphemic and orthographic representation
of the linguistic representation. The peripheral (motor) process
realizes graphemes through handwriting (graphomotor skills),
typing (pointing gestures) or oral spelling (Ellis, 1982; De Vita
et al,, 2021). The third phase involves revising procedures, namely
operations that check textual adequacy and linguistic features
(Hayes and Flower, 1980; Berninger, 1999; Cornoldi et al., 2010).

2.2.2. Executive function load of writing

A writing task requires constant and recursive shifting between
long-term memory retrieval (knowledge) and textual operations
(processes), (Hayes and Flower, 1980; Cornoldi et al, 2010).
The coordination of this multiple, hierarchically ordered, and
intertwined operations are overseen and constrained by an
executive system (Berninger, 1999; McCutchen, 2000). We have
already referred to writing as a problem-solving task (problem
solving is an EF, see section “6. EF deficits in DD” for references),
but inhibition, updating, planning, self-monitoring and working
memory are also involved (Salas and Silvente, 2020; De Vita et al.,
2021). Please refer to Table 1 for a summary of the EF involved in a
writing task. Depending on the level of expertise, the constraints
of EF are dealt with differently. Expert writers utilize much of
their EF resources on idea generation, conceptual organization, and
retrieval of lexical and syntactic structures suited to the context
and the goal of the task. They are also able to coordinate the
revision process to both check orthographic, linguistic, and overall
general textual aspect (Cornoldi et al., 2010). Less expert writers
such as children devote much of their working memory resources
to spelling and motor processes, as these operations are not yet
automatised, resulting in less resources being available for semantic
and linguistic planning (Berninger, 1999; McCutchen, 2000; Salas
and Silvente, 2020; De Vita et al., 2021) and greater challenges in
coordinating the revision of orthographic and linguistic features
(Cornoldi et al,, 2010). What clearly emerges from the literature
on writing processes is that to perform successfully at a good
level, cognitive resources have to be devoted to higher level
operations (text generation, concept planning, writing oversee and
monitoring), rather than on lower ones (orthographic planning,
motor execution). Struggling to derive an orthographic buffer from
linguistic representations or else to coordinate translation into
motor gestures of the output of the orthographic buffer would
overload the working memory system with a detrimental effect on
higher-ordered operations (Berninger, 1999; Cornoldi et al., 20105
Salas and Silvente, 2020; De Vita et al., 2021).
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3. Cognitive-motor interaction

Section “2. Task analysis” provided an analysis of the
computational components of the task of seated typing. The
load placed on EF by both the motor and linguistic production
components was noted. This section summarizes the extensive
literature on interactions between motor coordination and
concurrent cognitive tasks. The essential point it seeks to establish is
that EF capacity can be a limiting factor in the success of cognitive-
motor dual tasks. Seated typing is, of course, a clear instance of this
type of dual task.

It is increasingly clear that sensorimotor coordination involved
in posture and gait control, not to mention the planning and
execution of voluntary goal-directed movement, draws significantly
and continuously on EF resources (Fraizer and Mitra, 2008b; Al-
Yahya et al., 2011; Amboni et al., 2013). This understanding arose
initially in research on the effects of aging on balance and gait
control. Aging is associated with both reduced EF capacity (Fisk
and Sharp, 2004; Clarys et al., 2009) and increased involvement
of higher-level cognitive processes in motor coordination (for
example, increased reliance on visual feedback) (Lajoie et al., 19965
Peper et al., 2012; Yeh et al,, 2014; Hollands et al., 2017). A large
body of dual-tasking research has shown that adding attention and
EF load to ongoing balancing or gait tasks affects performance in
either or both tasks (Li and Lindenberger, 2002; Woollacott and
Shumway-Cook, 2002; Fraizer and Mitra, 2008a; Al-Yahya et al,,
2011). Such dual-task interactions have been found not only in
older people and neurological patients, but also in healthy young
adults. This suggests that these cognitive-motor interaction effects
do not arise from the EF capacity and sensorimotor performance
deficits associated with old age (or neurological conditions) but are
largely amplified by them.

Several theoretical frameworks have been used to explain
the complex results obtained across studies of cognitive-motor
interaction. The most commonly adopted framework accepts
that there is some involvement of high-level cognitive function
in posture and gait control (Tresilian, 2012), and cognitive-
motor dual-task interactions arise because both types of tasks
engage common mechanisms. Drawing on classic attention theory
(Broadbent, 1958), the bottleneck version of this account suggests
that cognitive-motor interaction results from the sharing of a serial
processor between cognitive and motor operations (Pashler, 1994;
Meyer and Kieras, 1997; Tombu and Jolicoeur, 2003; Bayot et al,,
2018). Operations that utilize the same neural pathway or network
must take turns. The bottleneck account has two variants, structural
and strategic (Bayot et al., 2018). The former suggests that the
processor generates a bottleneck effect at the decision-making
stage, whereas the latter postulates that the same interference
happens at the response-control stage or at a peripheral level when
tasks share the same input or output processors. The capacity or
resource sharing model (Tombu and Jolicoeur, 2003; Mitra, 2004;
Bayot et al., 2018) posits that a finite pool of processing resources
must be shared by concurrent task operations. If the resource draw
of one task increases, a deficit in resourcing the other emerges.
Accordingly, older people in particular have been shown to operate
a “posture first” principle (Shumway-Cook et al., 1997) whereby
they prioritize the balancing task by discontinuing a concurrent
cognitive task when they detect a risk of balance failure. Some
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accounts postulate multiple resource pools specific to particular
types of operation (e.g., spatial processing) such that interactions
occur when cognitive and balancing tasks place demands on the
same type of processing resource (Navon and Gopher, 1979; Bayot
etal., 2018).

In cognitive-motor interaction research, motor performance
is commonly evaluated using speed, cadence, or stride time to
assess gait, or center-of-pressure (the point of application of ground
reaction force) displacement and frequency to measure body sway
to assess postural control (Fraizer and Mitra, 2008a; Al-Yahya
etal, 2011). Slower gait speed, reduced cadence, or increased body
sway are taken to indicate a deterioration in motor performance.
A wide range of cognitive tasks including working memory,
verbal fluency, inhibition, set-shifting and arithmetic skills, most
involving EF, have been studied using behavioral performance
indicators such as response time and accuracy, and, more recently,
at the neurophysiological level using electrophysiology (Swerdloff
and Hargrove, 2020; Reiser et al., 2021).

Despite variability in outcomes, sometimes due to
methodological differences (Fraizer and Mitra, 2008a; Bayot
et al., 2018), research has tended to show that concurrent EF tasks
result in performance deficits in balance and gait in older people
(Shumway-Cook et al., 1997; Morris et al., 2000; Swanenburg et al.,
2009; Chang et al., 2010; Nadkarni et al., 2010; Al-Yahya et al,,
2011; Patel et al., 2014; Fernandes et al., 2015; Bahureksa et al.,
2017; Hsiu-Chen et al., 2020; Morenilla et al., 2020; Przysucha et al.,
2020; Varas-Diaz et al., 2020). Similar results have been reported
in stroke patients (Lee et al., 2020) and, importantly, also in young
adults (Dault et al., 2001; Woollacott and Shumway-Cook, 2002;
Pellecchia, 2003; Nadkarni et al., 2010; Onofrei et al., 2020) and
children (Chang et al., 2010; Bucci et al., 2013; Palluel et al., 2019).
The literature also describes executive task performance deficits
when body posture is perturbed or motor task complexity increases
(Andersson et al., 1998, 2002; Brown et al., 1999; Yardley et al,,
2001; Wollesen et al., 2016; Estevan et al., 2018; Abou Khalil et al.,
20205 Stephenson et al., 2020; Swerdloff and Hargrove, 2020; Reiser
et al., 2021). These results appear to provide clear evidence that
the coordination of balance or gait has an EF load associated
with it. A reduction in available EF resources negatively affects
coordination, and impaired coordination adds to EF load.

Although the results of cognitive-motor dual tasking are most
often interpreted as patterns of mutual interference, in some
situations, there are reasons to be wary about such conclusions (and
the theories they are taken to support). When adding a concurrent
sensorimotor task, the accuracy of a cognitive task is reduced,
or the response time increases, it would appear clearly that dual
tasking negatively impacted cognitive task performance. Where
the sensorimotor task is simply maintaining upright stance, the
effect of a concurrent task is measured as a change in body sway.
Commonly, increased sway is interpreted as a negative effect on
postural stabilization functions. By this logic, reduced body sway
would indicate improved stability. Although commonly applied,
this logic does not adequately explain all empirical data. Posture-
cognition dual task studies have reported both increased and
reduced body sway when performing concurrent cognitive tasks
(Fraizer and Mitra, 2008a). It is also doubtful that the posture
control system always cares to reduce body sway to increase stance
stability beyond simply ensuring that the center of gravity stays
within the base of support (Stoffregen et al., 1999). If so, a change in
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body sway may indicate an imperative other than improving stance
stability. The logic also fails where the secondary task engages
the posture control system in facilitative actions other than, and
even in opposition to, maximizing stance stability (Stoffregen et al.,
1999). If the secondary task requires precise eye fixations for
reading, for example, body sway might be reduced, not because
reading impedes the posture control system’s stability maintenance
function, but because postural control acts to stabilize the head to
aid reading (Stoffregen et al., 2000). Such considerations underpin
an alternative view of posture-cognition dual tasking that points
to functional linkages (such as the shared use of vision) rather
than a competition for cognitive resources as the mechanism of
interaction (Stoffregen et al., 2007). This approach also emphasizes
the fact that postural control in everyday life is almost always
organized to enable some supra-postural tasks rather than simply
to maximize stance stability. Thus, postural control is itself a multi-
task function charged with maintaining stance as well as facilitating
supra-postural tasks.

Many of the ambiguities about the effects of cognitive load
on motor tasks arise in laboratory studies of dual tasking in
which the postural task is simply to maintain upright stance. In
some situations, the cognitive task clearly uses a function that
postural control also uses, for example, when the cognitive task
requires visual perception and attention that are also required by
a balancing task. But in other cases, the cognitive task has no
obvious sensorimotor component. Interaction effects have been
reported in both cases, but their consistency and size under the
latter conditions have been questioned (Stoffregen et al., 2007).
Using the results of dual task studies to draw conclusions about
the role of cognition in the control of quiet standing may not
be straightforward, but the effect of concurrent cognitive load
is more clearly detrimental when counteracting perturbations to
body posture (Fraizer and Mitra, 2008a). There is considerable
evidence of cortical involvement in shaping responses to postural
perturbation, including the modulation of postural response based
on cognitive state, sensorimotor conditions and past experience
(Jacobs and Horak, 2007; Jacobs, 2014; Bolton, 2015; Peterson et al.,
2016; Ghosn et al., 2020). Switching attention (an EF) to balancing
function is a key aspect of responding to perturbation (Maki et al.,
2001). Concurrently performing EF tasks (e.g., mental arithmetic)
reduces the amplitude of postural muscle activity (though not its
latency) when responding to perturbation (Rankin et al., 2000).
Analogously, when attention is engaged in a tracking task during
postural perturbation, the magnitude (but not the latency) of
the cortical response, detected electrophysiologically as the N1
potential (Adkin et al., 2008), is attenuated (Quant et al., 2004).
Deterioration in EF predicts loss of balance in older individuals
(Buracchio et al,, 2011; Kearney et al, 2013) and concurrent
performance of EF tasks affects a number of gait measures (Al-
Yahya et al., 2011). In the case of gait, the prefrontal cortex is
known to become involved when the coordination needs to adapt to
changing task requirements (e.g., a change of speed or a transition
to running) (Suzuki et al., 2004), suggesting a role for EF in tailoring
coordination to task goals.

The effects of concurrent cognitive load become even clearer
when the motor task includes aimed movements of the upper limb
as everyday tasks like driving (Strayer and Johnston, 2001; Recarte
and Nunes, 2003). Pursuit-tracking tasks have a long history of use
in dual-task interactions (Isreal et al., 1980; Kramer et al., 1983;
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Brown, 1998; Gazes et al., 2010), including as a simulated driving
task (Strayer and Johnston, 2001) and as a secondary task during
postural perturbations (Mcilroy et al., 1999; Norrie et al., 2002).
Baker et al. (2018) monitored the electrophysiological correlates
of detecting and tallying the occurrence of visual oddball stimuli
while performing a visuomanual tracking task. They found that
adding the tracking task attenuated the markers of attentional (but
not perceptual) processes even though tracking task performance
was itself unaffected by the oddball task at these timescales.
Tracking performance did suffer when, after detecting an oddball,
the target tally was updated (updating is recognized as an EF).
This demonstrates that cognitive-motor dual task interactions can
have intricate mechanisms composed of separate, asymmetric and
asynchronous influences between tasks.

For present purposes, the key message from this research is
that there is a cognitive workload associated with balance, gait, or
other goal-directed sensorimotor coordination. In many situations,
performing these tasks concurrently with other cognitive tasks can
pose significant challenges. This may be due to capacity-limited
EF resources being shared by both types of tasks, or because task
pairs are functionally linked in terms of performance requirements.
Maintaining the body’s balance is the key imperative for postural
control, but posture and gait are constantly modulated in service
of supra-postural tasks. The latter function of the posture control
system is likely more demanding of cognitive resources than simply
retaining balance as it must link and adapt coordination to specific
and transient task goals. These considerations support our present
focus on the potential benefits of facilitating motor coordination as
a means of easing the combined workload faced by individuals with
DD when they try to communicate by typing text.

4. The utility of touch information in
balance control

A number of techniques seek to assist individuals with DD
to type text on a keyboard or to point to textual or pictorial
information on a screen by providing them with supportive touch
on the torso or arm (Lilienfeld et al., 2014; Schlosser et al,
2014; Beals, 2022). Critics of these systems have pointed out that
touch information can serve to cue the typing actions (Wegner
et al., 2003; Mostert, 2010; Saloviita, 2018) but the literature on
supported typing has not considered the possibility that, different
from specific action-cuing, an external touch signal can aid postural
control and thereby reduce the overall computational workload of
the typing task.

The role of touch in balancing has been investigated in detail
in the context of balance challenges due to aging (Jeka, 1997;
Johannsen et al., 2009; Rabin et al., 2013; Ditthaphongphakdee
and Gaogasigam, 2020), stroke (Lee et al., 2018, 2020; Martinelli
et al., 2018), blindness (Jeka et al., 1996; Schieppati et al., 2014)
and childhood DD (Baldan et al., 2014; Chen and Tsai, 2015; Chen
et al,, 2019). The benefits of light touch in balancing have also
been demonstrated in healthy young adults (Krishnamoorthy et al.,
2002; Magalhaes and Kohn, 2011; Martinelli et al., 2018; Kaulmann
et al., 2020), but its impact becomes greater in the context of
motor and postural difficulties due to disability or aging (Baldan
et al., 2014). Early research on this showed that light touch (< IN
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of force applied) can improve postural stability (as indicated by
reduced body sway) and reduce falling risk (Holden et al., 1994;
Jeka and Lackner, 1994, 1995; Jeka, 1997). Light touch does not
support the body’s weight but aids postural control by providing
an external somatosensory reference for judging body motion (Jeka
and Lackner, 1995; Riley et al., 1997). The touched object need
not even remain static against the applied force. Lightly touching
a hanging curtain can replace the level of reduction in body sway
that the availability of vision provides (Riley et al., 1999). Indeed,
light touch can be as effective as forceful touch in stabilizing
body sway by providing information to guide anticipatory muscle
activation (Jeka and Lackner, 1994). Importantly for present
purposes, research shows that postural assistance by touch works
whether the touching is active (for example, the assisted person
touches the external surface) or passive (for example, another
individual or a mechanical arm lightly touches the individual on
the back or shoulder) (Johannsen et al., 2009, 2011).

Light touch can also reduce postural instability arising from to
a concurrent cognitive task (Lee et al., 2018, 2020) suggesting that
light touch may reduce the overall cognitive workload of cognitive-
motor dual tasking. Chen et al. (2015) showed, for example, that
light touch to aid posture control resulted in improved performance
in a concurrent visual search task. Such results suggest that light
touch may play a particularly important role in reducing visual
attention load during cognitive-motor dual tasking. In this context,
it is important to note that touch information can be used by the
posture control system to facilitate a supra-postural task such as
visual search, as in the case of Chen et al. (2015), and maintenance
of the light touch itself, as in the case of Riley et al. (1999). The latter
study found reduced postural sway only when precisely touching
a hanging curtain was an actual task goal. For present purposes,
the point is that touch information can reduce the total workload
of a seated typing task, potentially by assisting the maintenance
of upright stance, or by facilitating the postural component of
planning and executing the repeated reaching movements of the
typing arm. To the extent that these coordination tasks involve
EF, reducing their workload has the potential to release resources
for the message formulation and sequencing functions involved in
typed communication. Section “4. The utility of touch information
in balance control” presented the details of the visual system’s
dual role in the maintenance of postural stability and in postural
facilitation of other tasks. This background now enables us to
appreciate, in the context of assisted typing, the potentially key role
of a touch signal in reducing the demands placed on the visual
system by postural control. This could free up visual processing
resources that are simultaneously demanded by the planning and
execution of typing the required sequence of key presses.

In summary, the literature shows that light touch can facilitate
a posture-cognition dual task by providing a reference signal that
assists postural control and therefore lowers the overall workload
of the task combination. With respect to assisted typing techniques,
it could be argued that light touch provided by an inanimate
object, or by the backseat of the chair, should also be facilitative.
Indeed, a successful case has been reported of assisted typing with
a mechanical arm facilitating the arm gestures toward the keyboard
(Oudin et al., 2007). It should be noted that the robotic arm in that
case was developed to counteract movement perseverations and so
the touch applied to the arm was far from light. Also, comparing
robotic and human assistance showed a prominent superiority
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of the latter. One property of a light touch applied by a human
facilitator in assisted typing is that the touch can be maintained
across the postural changes associated with typing (leaning toward
and back from the keyboard, lateral torso movements in sympathy
with the typing arm’s movement across the keyboard). This
allows the touch signal to be both present and lightly modulated
by the typists torso movements, serving as feedback about the
movements. Any system that allows maintaining and modulating
a tactile reference in this way should theoretically also reduce the
cognitive effort of the sensorimotor control task.

5. Sensorimotor deficits in DD

The direct effect of any touch-based assistance in the seated
typing task is likely to be on sensorimotor coordination. The
etiology of the sensorimotor deficits will not be the same across
DDs. Even so, if a touch signal could function as a supplementary
sensory aid to postural control, it could contribute to reducing
the overall cognitive workload of individuals with a range of DDs
with associated sensorimotor deficits. This section summarizes the
literature on the sensorimotor deficits that accompany a range of
DD, with a particular focus on ASD and DS populations. The
goal is to note the impact of these sensorimotor deficits on the
seated typing task.

Sensorimotor deficits refer to broad impairments in the
integration of sensory information that orientate and control
motor tasks (Coll et al., 2020). Children and adolescents with
sensorimotor deficits show prominent postural and gait deficits
along with difficulty in planning and controlling voluntary
movements (Damasio and Maurer, 1978; Webber et al., 2004; Galli
et al., 2008, 2011; Torres, 2013; Bie¢ et al., 2014; Fournier et al.,
2014; O’Keefe et al., 2016; Lim et al., 2017; Klotzbier et al., 2020).

For individuals with DS, impaired postural control, and
equilibrium, as well as weaknesses in head control and trunk
stability, can disrupt the proprioceptive system and hinder sensory
integration (Uyanik et al, 2003; Georgescu et al., 2016; Jain
et al., 2022). These difficulties in maintaining stable posture and
coordinating movements can directly impact the ability to sit
comfortably and maintain the necessary balance required for
typing. The hypotonicity often experienced by individuals with DS
may further compound these challenges, making it more difficult
to maintain an upright sitting position and stabilize the arms for
precise typing gestures.

Similarly, the ASD literature has recently seen the emergence
of a motor perspective (Torres and Donnellan, 2015) that
acknowledges not only the significant presence of sensorimotor
coordination deficits, but also that these might be core features
in the characterization of ASD. Individuals with ASD frequently
experience sensorimotor coordination deficits, including postural
instability, poor task-oriented coordination, and movement
planning difficulties (Frith et al., 2003; Mari et al., 2003; Fournier
et al., 2014; Arabameri and Sotoodeh, 2015; Mache and Todd,
2016; Lim et al, 2017; Begum Ali et al,, 2020). These deficits
can affect their ability to sit with stability and perform the
coordinated arm movements required for typing. Difficulties in
sensory integration, such as integrating visual, vestibular, and
proprioceptive information, further contribute to the challenges
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faced by individuals with ASD when engaging in tasks that demand
postural balance and precise arm control (Memari et al., 2013;
Doumas et al., 2016). For present purposes, it is noteworthy that
cognitive performance and muscle strength have been shown to
be related in people with ASD, with higher muscular strength
associated with increased cognitive performance (Ludyga et al.,
2021).

The seemingly simple task of sitting and typing can pose
significant challenges for individuals with DD such as DS or
ASD. With regard to DS and ASD, the vast majority of postural
studies has focused on impairments in standing balance and gait
rather than sitting. Most of the research focusing on sitting while
balancing has been done on infants and children with DS and ASD.
Broadly, the results show delayed acquisition of the sitting stance
and lack of balance control associated with the sitting position in
both populations (Connolly and Michael, 1986; Lauteslager et al.,
1998; Minshew et al., 2004; Czermainski et al., 2014; Semrud-
Clikeman et al., 2014; Arabameri and Sotoodeh, 2015; Marchal
et al., 2016; Leezenbaum and Iverson, 2019; Jain et al., 2022).

Maintaining an upright seated position may be an easier task
than standing or walking, but it still requires the integration of
sensorimotor information (Genthon and Rougier, 2006; Serra-AN6é
et al,, 2015). Moreover, typing while sitting significantly perturbs
upright posture by requiring the typing arm to repeatedly cross
the midline, and visual fixation to continuously shift around the
keyboard. Thus, the sensorimotor deficits in DS and ASD also
impact the perturbed sitting posture required by a typing task
(Tsimaras and Fotiadou, 2004; Salar et al., 2014). Trunk stability
is an essential component seated balancing (Genthon and Rougier,
2006; Roberts and Vette, 2019). The absence of proprioceptive
information from legs and ankles joints makes the trunk primarily
responsible of maintaining a balanced upright position (Genthon
and Rougier, 2006). The literature indicates that both the DS and
ASD populations may have weakened trunk muscular strength,
challenging balance while sitting (Kohen-Raz, 1981; Weiss et al.,
2013; Salar et al., 2014; Ghaeeni et al., 2015; Aly and Abonour, 2016;
Salar and Daneshmandi, 2016; Jain et al., 2022).

Postural and motor coordination deficits in DD are generally
associated with disrupted sensorimotor integration which results in
difficulties when sensory information load increases (Uyanik et al.,
2003; Memari et al., 2013; Doumas et al., 2016; Georgescu et al.,
2016; Mache and Todd, 2016; O’Keefe et al., 2016). Difficulties
in these domains have adverse consequences in everyday life that
affect the execution of daily activities, the development of motor
and social skills, and, ultimately, independent functioning (Memari
etal., 2013; Lim et al., 2017).

As in the case of EF (see Section “6. EF deficits in DD”), it
is important to note that similar sensorimotor deficits may have
different etiology in different conditions. In the case of ASD,
sensorimotor deficits have been attributed to a general disruption
in sensorimotor integration due to cerebellar problems and reduced
Purkinje cell numbers (Doumas et al., 2016), impaired cerebellum
and basal ganglia (Memari et al., 2013), or dysfunctions of multi
synaptic pathways in the brain (Molloy et al., 2003). Regarding
DS, sensorimotor deficits are generally attributed to hypotonia,
ligament laxity and inherent musculoskeletal characteristics (Galli
et al, 2008; Wang et al, 2012; Bie¢ et al, 2014; Klotzbier
et al., 2020). According to some researchers, hypotonicity may
disrupt feedback loops and affect the voluntary control of muscles
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(Georgescu et al., 2016). Uyanik et al. (2003) has proposed that
sensory integration dysfunction can be due to a reduced number
of neural connections in the motor cortex, basal ganglia, and brain
stem.

It is worth noting, that sensorimotor deficits have been
described in many other DD. Increased body sway and postural
instability have also been observed in different task conditions in
young adults with Cerebral Palsy (Donker et al., 2008; Seether et al.,
2015) and Williams syndrome (Barozzi et al., 2013). Deficits in
static and dynamic balance have also been reported in adults with
Fragile X syndrome (O’Keefe et al, 2016). Furthermore, severe
postural instability in children with Prader Willies and Ehlers
Danlos syndromes have been documented (Galli et al., 2011). The
existence of such similar traits in these different DD coincides with
the use of assisted typing interventions in all these conditions.

In summary, for individuals with sensorimotor deficits, sitting
and typing can be a complex and demanding task as the
required coordination overlaps the sensorimotor impairments
they experience. Impaired proprioception, weak trunk stability,
and disrupted sensory integration highlight the need for tailored
interventions to facilitate their engagement in activities requiring
sitting and typing.

6. EF deficits in DD

As EF represents the core mechanism that directs cognitive
resources in higher order mental tasks (Norman and Shallice,
1986; Baddeley, 1992; Royall et al., 2002), the role of EF deficits
has received significant attention in the context of a range of
DD including ASD and DS (Lanfranchi et al., 2010; Hessl et al.,
2019). For example, adolescents with DS show performance
deficits in tasks involving working memory, planning, conceptual
shifting, inhibition and set-shifting (Lanfranchi et al., 2010). There
is an extensive literature on impairment of EF in the ASD
population, especially in planning, flexibility, inhibition, auditory
and visuospatial working memory, and verbal fluency (Robinson
et al., 2009; Czermainski et al., 2014; Kercood et al., 2014). The
distribution of cognitive resources (e.g., executive attention) is a key
EE, therefore executive dysfunction would impact the allocation of
cognitive resources that are limited in those cases where intellectual
disability coexists with DD.

The presence of such executive dysfunction in DS, ASD and
other DD connects closely with the seated typing task. The
cognitive component associated with typing, (i.e., the generation
of linguistic content) relies on EFs (see section “2. Task analysis”)
and Table 1, where we presented a list of EFs and their role
in a typing task. Deficits in planning would limit the strategies
available for organizing the content to be typed (narrating an event,
answering a question. . .), deficits in verbal fluency would impair
finding the lexical target of a conceptual referent, and working
memory impairment would influence typing effectiveness at the
sentence and word level. People with executive dysfunctions may
find it difficult to maintain the to-be-typed sentence, or even the
graphemic string (this is crucial in one-finger typing systems as
seen in assisted typing techniques). Similarly, EF dysfunction would
also impact the execution of both the postural and focal motor task
components of seated typing. These components include keeping
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the torso upright and stable and programming the sequence of
typing movements. The latter requires visuo-spatial orientation
to the letter targets on the keyboard and the inverse kinematics
required to navigate the finger to the required key.

Executive function (EF) deficits in DD reduce the speed and
effectiveness of linguistic content generation. Simultaneously, they
impair the ability to stabilize the body and deploy the precise arm
movements required for typing. Aside from adversely affecting both
task components, reduced EF capacity also limits the ability to
manage dual task demands by flexibly allocating and reallocating
resources (Mitra, 2004). The net effect would be slowed content
generation, delays in motor execution and increased pressure on
working memory as the expression of each narrative unit stretches
out in time.

It is worth noting again that EF deficits occur in a range of
DD (Pennington and Ozonoff, 1996; Daunhauer and Fidler, 2013;
Demetriou et al., 2018), but their etiology may be different in
conditions such as Fragile X, Cerebral Palsy and Williams syndrome
(Pennington and Ozonoff, 1996; Temple and Sanfilippo, 2003;
Lanfranchi et al., 2010; Weierink et al., 2013; Hessl et al., 2019;
Wotherspoon et al., 2023). In the case of the ASD, EF deficits
have been linked to atypical network connectivity between the
prefrontal and other cortical regions (Nomi and Uddin, 2015), or
to dysfunctional coordination between the frontal lobe and the
rest of the brain (Hill, 2004). In DS, it has been proposed that
the co-occurrence of obstructive sleep apnoea, and therefore an
obstruction of the upper respiratory tract, may contribute to EF
impairment as disrupted and fragmented sleep interferes with the
maturation of the prefrontal cortex (Joyce et al., 2020).

7. General discussion—Sequences of
events

This paper sought to present a possible neural pathway by
which supportive touch might facilitate the seated typing task
performed by individuals with DD. We showed that seated typing
requires the coordination of intertwined sensorimotor and EF
components. To type while seated, a person first needs the
postural basis of a stable upright stance. Postural stability is
achieved through the integration of multisensory information
(vestibular, somatosensory, and visual). This invokes EF processes
and contributes to the overall cognitive load of the typing
task. Besides ensuring a stable stance, the postural system
plays a facilitative role in the motor planning. Posture control
positions the torso in space and in relation to the keys on the
keyboard. Computation of the arm trajectories required to type
the required key sequences depends on the position and velocity
coordinates of the torso. Recent models suggest that multiple
coordinate systems are involved in the integration of multisensory
information gathered at eye-, head-, and body-centered levels.
Even if the coordinates of the target key are computed at a
visual level (eye-centered), a body-centered coordinate system
is necessary to compute the position of the arm linked to the
torso. Also, the usability of an eye-centered coordinate system
depends on head stability which in turn is linked to torso
stability. Reduced postural stability would increase the dynamic
updating of arm trajectory parameters and add to the EF load
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of the whole task. Postural control therefore plays a crucial
facilitative role in the planning and execution of typing actions.
Besides planning the arm trajectories, postural control must also
anticipate and counteract the perturbations that arise from repeated
manual reaching.

In addition to controlling upright posture and coordinating
the arm movement sequences, a seated typist also generates
linguistic content to be typed. This is a problem-solving task
that coordinates ideation and the process of converting ideas
into linguistic form and graphemic representations. Together,
these tasks are cognitively demanding as they required a constant
shift between long-term memory (ideation) and working memory
(processing). They also involve inhibition and updating processes
that are key aspects of EF.

The typing task’s sensorimotor and cognitive components
are inter-linked and so place concurrent demands on the
same cognitive resource pool. The challenges of this task are
compounded in people with DD as both their sensorimotor
coordination and EF are adversely affected. Multisensory
integration capacity for postural stability and motor coordination
is reduced, which in turn reduces the already lower level of
EF capacity available for the linguistic aspects of the task. The
summarized literature suggests that an assistive system that
could reduce the cognitive load of postural control and motor
planning and execution might free up cognitive resources for
linguistic ideation and process. The literature also shows that
a light external touch that is not load-bearing but provides an
external reference signal can benefit postural control similarly to
visual information. If external touch is provided at the level of
the torso, as a hand on the shoulder, for example, it can facilitate
the stabilization of upright stance and free up visual processing
resources. These resources can then be used in coordinating
the typing task where visual fixation is involved in planning
reaching movements of the arm, locating the symbols on the
keys, and matching these to the contents of the orthographic
buffer. If the external touch is provided through holding the
arm, assistance for posture control may be greater as holding
the hand could also counteract the postural perturbations that
result from arm movement. However, this clearly increases the
possibility of influence from the assistant. Other techniques like
hand-over-hand assistance (Reichow, 2013), while clearly different
in their goals from assisted typing techniques, may also exploit
the reduction of cognitive and sensorimotor workload from the
availability of touch. Indeed, if we are less concerned about the
autonomy of content production and more interested in helping
challenged individuals develop some literacy and typing skills, the
possibilities of harnessing touch support can be seen in a different
light.

This paper’s argument is not that all the effects of touch in
assisted typing are in the form of cognitive load reduction. The
existence of the presented pathway for cognitive load reduction
does not negate the possibility of specific cuing by the facilitator’s
touch. What it does is show that specific cuing is not the only
plausible effect of touch on typing task performance. As noted
in the outset, the arguments offered in the present paper are
developed from the position that assisted typing is a co-created
process. Where an individual with DD who has cognitive and
sensorimotor deficits is physically assisted, either by touching
the shoulder or the arm, it should not be surprising that the
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facilitator has an influence on the action movements. A motor-
impaired patient being physically assisted to walk would not
produce movement that is free of the facilitator’s influence.
The patient’s gait parameters and trajectory pattern would vary
as the facilitator changed, and any kinetic-kinematic analysis
would reveal the significant extent of the facilitator’s contribution.
Although such locomotion would not be independent motor
output, the process of assisted walking could have significant
learning and rehabilitative benefits. This would be true even if
fully independent walking was never recovered, so long as the
assistance provided enabled the patient to make some contribution
to their movement.

This important point is clarified by an analogy drawn in
Wertsch’s (1984) commentary on Vygotsky’s (1978) concept of the
zone of proximal development. Vygotsky’s (1978) concept refers to
actions that a learner can currently perform only with teachers’ or
more advanced peers’ assistance. Such assistance can scaffold the
learner’s development, but only if it has certain key characteristics
beyond producing the outputs in question. Wertsch (1984) used the
example of a child being helped by an adult to divide 124 by 23.
If the adult guides the child using leading questions such as “how
many times will 23 go into 124?” and “what do we do with the
remainder?,” and so on, their assistance would be of a profoundly
different kind to that of another adult who tells the child to write
specific numbers in specific locations on the paper. The outcome
in both cases would be that the child writes the correct answer,
but only the former type of assistance would have served as a
scaffold for learning, and therefore been of developmental value.
The key point is whether the assistance enabled the learner to have
a meaningful role in text generation that they alone could not have
had.

The two types of assistance discussed by Wertsch (1984) are
important to how we understand assisted typing techniques. If
touch only served to provide specific cuing, then the situation
would correspond to Wertsch’s (1984) second scenario. The
individual with DD would be a conduit for the facilitator’s
expression. On the other hand, if touch reduced the cognitive load
of even a partial contribution from the individual with DD, the
effects on the person’s development, quality of life, connection
to carers and sense of self-worth could be impacted positively.
Whether the individual could generate, or develop to generate,
typed text independently would not be the sole determinant of the
value of practising and better understanding touch-assisted typing.
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