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Level of autistic traits in 
neurotypical adults predicts 
kinematic idiosyncrasies in their 
biological movements
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Introduction: Over the last decade of research, a notable connection between 
autism spectrum disorder (ASD) and unique motor system characteristics has 
been identified, which may influence social communication through distinct 
movement patterns. In this study, we investigated the potential for features of 
the broader autism phenotype to account for kinematic idiosyncrasies in social 
movements expressed by neurotypical individuals.

Methods: Fifty-eight participants provided recordings of point-light displays 
expressing three basic emotions and completed the Autism Spectrum Quotient 
(AQ). We  extracted kinematic metrics from the biological movements using 
computer vision and applied linear mixed-effects modeling to analyze the 
relationship between these kinematic metrics and AQ scores.

Results: Our results revealed that individual differences in the total AQ scores, 
and the sub-scale scores, significantly predicted variations in kinematic metrics 
representing order, volume, and magnitude.

Discussion: The results of this study suggest that autistic traits may intricately 
influence the movement expressions at the microlevel, highlighting the need for 
a more nuanced understanding of the potential endophenotypic characteristics 
associated with social movements in neurotypical individuals.
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1 Introduction

From early in development human social communication is centered around movements 
(Meltzoff and Marshall, 2018). Seminal research has demonstrated that a caregiver who 
abruptly stops moving during a social exchange with his or her infant can evoke anxiety in the 
infant (Tronick et al., 1978; Adamson and Frick, 2003). And several theoretical conceptions 
have posited that the coordinated exchange of movements with others is a nexus for the 
emergence of human social understanding (Meltzoff and Gopnik, 1993; Barresi and Moore, 
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1996; Moore, 1996; Gopnik and Meltzoff, 1994; Mundy, 2016). At the 
neurocellular level, perceptual-motor neurons serve as effectors of 
movement information. They have come to be  known as mirror 
neurons. Their discovery in both nonhuman and human primates has 
expanded our understanding of the cortex as a resonance system, 
activated by the movements of others (Di Pellegrino et  al., 1992; 
Gallese et al., 1996; Iacoboni et al., 1999). During the decades that 
have followed the discovery of mirror neurons, a large body of 
literature has emerged on the role of mirror neurons in social 
processes, including imitation, empathy, and even sociopathy, as well 
as the development of social functioning in autism spectrum disorder 
(ASD) (Iacoboni, 2009). Despite skepticism in the extent to which 
mirror neurons play a role in human social understanding, and in 
ASD (e.g., Hickok, 2009; Hamilton, 2013; Heyes and Catmur, 2022), 
mirror neuron research has shed light on the fact that movement is a 
fundamental source of information for social neurocognitive systems 
(Cook, 2016).

Movement differences permeate across the autism spectrum. 
Although descriptions of idiosyncratic movements in autistic children 
date back to the writings of Kanner, 1971 and Asperger (1944), interest 
in understanding the links between movement and ASD has 
burgeoned in the recent decade. A significant proportion of adults and 
children diagnosed with ASD present with differences in gross motor 
movements (Bhat, 2020; Bhat, 2021; Wang et al., 2022; Bhat et al., 
2023), gait (Hallett et al., 1993; Esposito et al., 2011; Nobile et al., 2011; 
Weiss et  al., 2013), the planning, control, and execution of goal-
directed movements (Hughes, 1996; Glazebrook et al., 2006, 2009; 
Stoit et al., 2013), and fine motor movements (Beversdorf et al., 2001; 
Fuentes et al., 2009; Fournier et al., 2010; Johnson et al., 2013; Alaniz 
et al., 2015). Movement differences have also been associated with 
social, emotional, and behavioral disturbances (Freitag et al., 2007; 
Hilton et al., 2007; Sipes et al., 2011; Papadopoulos et al., 2012; Wang 
et al., 2022). Moreover, given that both action and perceptual feedback 
are integral for the accurate production of movements, it is likely that 
the motoric differences in individuals with ASD also alter their 
interpretation of social movements. The mechanism for such an 
impairment is posited to occur via a mismatch between the perception 
of movements and the observer’s internal representation of those 
movements (Aransih and Edison, 2019). For example, Gowen has 
proposed that many of the observed deficits in imitation in autism can 
be attributed to autistic children and adults failing to attend to relevant 
kinematic information that provides cues regarding intentionality and 
goals (Gowen, 2012). Because movement is nested in social behavior, 
and social impairment is a cardinal feature of autism, children with 
autism may not have learned the same nuanced social strategies that 
neurotypicals use such as attending to the subtle movement cues of 
others during social interaction (Gowen, 2012; Dawson and Toth, 
2015; Chevalier et al., 2016).

Motoric differences can also alter the production of the dynamic, 
moment-to-moment behavior that is integral to social communication 
(e.g., Brewer et  al., 2016; Cook, 2016; Aransih and Edison, 2019; 
Bokadia et  al., 2020). However, investigation of such behavior 
topography requires analysis at what has been described the microlevel 
of social interactions (e.g., Whyatt, 2017). At this level, movement 
pattern nuances are not easily detected via direct observation nor 
standardized assessments tools. Rather, they require sensors that can 
track the movement dynamics over time. This idea is exemplified in 
the work of Bokadia et al. (2020), which has revealed how movements 

at the microlevel of analysis unfold during the semi-structured social 
tasks that are used in the Autism Diagnostic Observation Schedule 
(ADOS, Lord et al., 2012). By applying wearable sensors on examiner-
examinee dyads, with the ADOS as a social platform, the authors have 
revealed fluctuations in the strength and coherence of the dyads that 
would not have been captured by the standard ADOS algorithmic 
scoring. In addition, their analysis uncovered an interesting mirroring 
effect that contributed to a bias in the way examiners lead their 
interactions with neurotypical examinees versus how they lead 
interactions with autistic examinees. Finally, they demonstrated that 
a microlevel analysis of movement was more sensitive at detecting 
male versus female differences in social interaction patterns than 
observational scoring. Thus, a microlevel analysis of movement can 
unveil yet to be discovered phenotypes of autism.

Along these lines, studies have also begun using movement 
tracking methods to quantify a variety of kinematic differences in 
individuals with ASD (e.g., Crippa et al., 2015; Foster et al., 2020; 
Vabalas et al., 2020; Cavallo et al., 2021). Rinehart and colleagues, for 
example, examined the kinematics of movements in a group of 
children diagnosed with ASD (DSM-V criteria level 1), a group of 
children who were at the time diagnosed with Asperger’s Syndrome 
(now classified under the broader category of autism spectrum 
disorder in the latest diagnostic criteria), and a group of neurotypical 
children (Rinehart et  al., 2006). They used a target aiming task 
involving three difficulty levels. Movements were tracked as the 
children moved a stylus on a tablet either toward left or right circular 
targets. For all levels, several metrics from the horizontal and vertical 
components of the movements were extracted which included metrics 
of movement preparation time, total movement time, and the shape 
of the movement trajectory indexed by an asymmetry ratio.

The ASD group and the Asperger’s Syndrome group showed more 
pronounced deficits in movement preparation than movement 
execution regardless of the difficulty level of the task. In addition, the 
ASD group showed movement preparation deficits at all task levels, 
while the Asperger’s Syndrome group paradoxically showed 
movement preparation deficits with the simple but not the difficult 
tasks. Interestingly, the motor planning deficits in the ASD group 
appeared to resemble Parkinsonian like movement abnormalities. 
And the analyses of the total movement time indicated that the ASD 
group lacked any modulation for task expectancy, regardless of the 
task being predictable or not. Finally, the asymmetry ratio indicated 
poorer movement planning in the ASD group relative to the Asperger’s 
Syndrome group as seen by more time spent in the deceleration phase 
for expected movements than the acceleration phase.

In addition to movement planning differences, Cook et al. (2013) 
has demonstrated that individuals with ASD also produce more 
varied, jerky movements with greater acceleration and velocity 
fluctuations as compared to age-matched neurotypical individuals 
when performing repeated horizontal sinusoidal arm movements. The 
magnitude of these measures was also correlated with ASD severity. 
Other kinematic investigations have reported that the efficiency of 
movements is hampered in individuals with ASD. Fears and 
colleagues, for example, examined variability and the number of 
under- or over-shooting of a target while performing whole-body, 
goal-directed movements in children with ASD and neurotypical 
children (Fears et  al., 2023). The task was to bring a virtual ball 
displayed on a large screen to a designated virtual target area appearing 
on the right or left side of the starting position by moving the entire 
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body. Fears et al. (2023) reported that the time taken for completing 
the task was longer in the children with ASD, and they used more 
divergent and non-optimal paths compared to the neurotypical 
control group.

Additionally, the authors reported that children with ASD made 
similar numbers of over- and under-shoots while their neurotypical 
peers made more over-shoots when the target area was near and 
more under-shoots while the target area was far. The authors 
speculate that these findings are due to the lack of accurate 
estimation of the limits of stability, or an inability to alter the 
required motor strategies for achieving postural stability in children 
with ASD. Similar studies report that youth with ASD (7–18 years) 
show different whole-body movements compared to their 
neurotypical peers while playing active video games (Ardalan et al., 
2019), particularly higher variability and entropy in their movement 
kinematics. Moreover, Trujillo and colleagues have demonstrated 
diagnostic group differences in gesture kinematics by utilizing a 
Microsoft Kinect to record movements while participants performed 
instrumental daily actions such as cutting paper with scissors 
(Trujillo et al., 2021). Compared to neurotypical adults, the hand 
movements of autistic adults showed a slower peak velocity 
(maximum velocity of either hand) or were characterized by a longer 
duration of holding a static position prior to restarting the movement 
(hold time). These pauses in movement are interpreted to reflect 
greater segmentation in the movements of autistic individuals. The 
authors also observed greater variability in the movement profiles 
for the autistic group compared to the NT group, consistent with 
other reports (e.g., Gowen and Hamilton, 2013).

Expanding the potential for motor behaviors as biomarkers, Wu 
and colleagues have made strides in characterizing 
neurodevelopmental levels through movement analysis in individuals 
with ASD. By examining hand trajectories and speed profiles during 
a pointing task among participants with ASD, neurotypical 
individuals, children, and parents of those with ASD, they introduced 
an R-parameter—devised via a machine learning algorithm—to 
quantify motor noise. This metric not only elucidates movement 
disturbances in ASD but also reflects the neurodevelopmental 
trajectory, differentiating between stages of maturity and varying ASD 
severity. The R-parameter, indicative of nuanced motor control, aligns 
jerkier movements and slower speeds with increased ASD severity, 
thus reinforcing movement analysis as a nuanced lens through which 
the severity and developmental aspects of ASD may be understood 
(Wu et al., 2018).

Continuing from their machine learning innovations, Wu et al. 
observed that the movement transitions within the ASD group did not 
align with the expected maturation patterns post seven years of age, 
highlighting a potential biomarker for developmental delays. The 
R-parameter’s ability to identify ASD severity also showed a significant 
correlation with established psychiatric assessment scores, 
strengthening its validity as a diagnostic tool. Furthermore, the 
detection of movement disturbances in the parents of ASD 
participants implies a filial component, suggesting that such kinematic 
differences may serve as subtle indicators of the broader autism 
phenotype. This data-driven methodology underscores the value of 
movement analysis in differentiating neurodevelopmental trajectories 
and reinforces the concept of utilizing movement kinematics not only 
in identifying ASD but also in potentially screening 
neurodevelopmental variances within family lines.

Recent advancements in understanding movement kinematic 
differences in ASD underscore a compelling avenue of inquiry: the 
potential association between such kinematic differences and levels of 
autistic traits within the neurotypical population. Notably, autistic 
traits, which can reflect a spectrum of social, communicative, and 
behavioral features, can manifest in varying degrees of intensity. These 
traits, even in their milder, sub-clinical form, have been conceptualized 
as nuanced expressions of features often associated with autism 
(Folstein and Rutter, 1977). This spectrum, reflective of the broader 
autism phenotype (BAP), suggests that autistic traits are not 
necessarily confined to those with a clinical diagnosis of ASD but can 
extend into the neurotypical population, presenting as attenuated, 
autistic-like qualities. The exploration of these traits in relation to their 
kinematic expressions presents a unique opportunity to broaden our 
understanding of how movement can be influenced by autistic traits.

To our knowledge, there is only one study that has examined links 
between the BAP and movement patterns in neurotypical individuals. 
Granner-Shuman and colleagues recorded the hand movements of 
neurotypical college students during a motor coordination task with 
a research assistant (Granner-Shuman et  al., 2021). The authors 
defined interactional synchrony as the degree to which the form of the 
hand and fingers was symmetrical between the participant and 
research assistant. Measures for the motor planning task included the 
start time of movement and the time and magnitude of the maximum 
speed. Autistic traits were measured using the Autism Spectrum 
Quotient (AQ, Baron-Cohen et al., 2001) with a particular focus on 
the communication subscale. Results revealed significant negative 
correlations between communication skills and interactional 
synchrony, and between communication skills and movement start 
time. Mediation models additionally revealed that relationships 
between AQ Communication and interactional synchrony were 
mediated by motor functioning. The authors suggest that those with 
higher levels of autistic traits tend to form motor plans and execute 
the subsequent movements faster, which they argue is linked to a 
reduced ability to synchronize with others.

Additional studies highlight the role of AQ subscales might play 
in the nuanced variations in biological motion perception and the 
neural underpinnings of social cognition. These domains are linked 
to observable behavioral distinctions and neural activity. For example, 
an elevation in autistic-like traits within the realm of communication 
has been correlated with a diminished capacity for the local processing 
of biological motion (Wang et  al., 2022), potentially reflecting a 
hindered ability to leverage prior social experiences in anticipating the 
movements of others, as posited by Puglia and Morris (2017). Such 
insights underscore the role of distinct autistic traits, especially those 
pertaining to social skills and communication, in understanding social 
interaction dynamics. Furthermore, the subscales addressing attention 
switching and imagination have also been identified as significant 
contributors to neural differences during the perception of biological 
motion (see Puglia and Morris, 2017; Hudson et al., 2023).

In the current landscape of biological motion research in autism, 
a significant focus has been placed on the perceptual dimensions. 
However, our investigation places an emphasis on how autistic traits 
might manifest in the microlevel structure of biological movements. 
By integrating AQ subscales into our analytical framework, we seek 
to not only broaden our understanding but also pave the way for 
new hypotheses and insights into the interplay between the different 
types of autistic traits and nuanced micromovement expressions. 

https://doi.org/10.3389/fnint.2024.1364249
https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org


Lewis et al. 10.3389/fnint.2024.1364249

Frontiers in Integrative Neuroscience 04 frontiersin.org

The AQ is divided into subscales tapping into 5 trait constructs 
associated with autism: communication, social skills, attention to 
detail, attention switching, and imagination. Higher scores on each 
subscale reflect elevated levels of autistic traits for that construct. 
We posit that each of these traits may or may not play a role in 
idiosyncrasies in micro-movement patterns during social 
expressions. For example, questions regarding communication and 
social skills assess an individual’s proficiency and comfort in social 
settings. Elevated scores in these subscales could influence the 
nuances of social movement kinematics, as they reflect the 
individual’s ability to interpret social cues and respond with 
appropriate expressivity. The attention to detail subscale captures the 
degree to which individuals notice and prioritize subtle and specific 
aspects of their environment, such as intricate patterns, faint sounds, 
and minute details often missed by others. This heightened 
perceptual sensitivity could also influence the intricacy of social 
movement production. Individuals with elevated scores on this 
subscale could exhibit unique motor patterns influenced by a more 
nuanced perception of the world.

Attention switching taps into an individual’s flexibility in 
transitioning between activities and conversations, even deviating 
from pre-established plans. This cognitive flexibility is likely relevant 
to the context of social movement production in that individuals who 
show elevated scores in attention switching may manifest differential 
movement dynamics in real-time, which is crucial given the fluid 
nature of social exchanges. Finally, the imagination subscale focuses 
on one’s ability to effortlessly imagine and understand others’ 
experiences, whether during pretend games or while reading stories. 
This ability to mentally simulate and empathize with diverse social 
experiences possibly plays a role in shaping the production of social 
body movements. Individuals with elevated scores on the imagination 
subscale may have unique internal models of movements (Wolpert 
et al., 1995). Consequently, variations in this subscale could lead to a 
more nuanced understanding of the links between imagination and 
the articulation of internal states through movement. Thus, by 
including AQ subscales we can examine which specific BAP features 
that comprise the AQ (if any) play a more dominant role in modulating 
movement idiosyncrasies.

In this paper, we unveil our initial findings from a comprehensive 
study examining mappings between the BAP and whole-body 
kinematics during emotional expressions. These insights are part of 
an ambitious ongoing project aimed at harnessing visual intelligence 
in human movement analysis as a potential digital phenotyping 
approach for autism. Our research is driven by the understanding that 
movement, as a direct reflection of neurological processes, provides a 
distinctive lens through which we can explore the nuanced variations 
in movement expressiveness that span the endophenotypic spectrum. 
Building on existing research that delineates movement discrepancies 
in individuals with ASD and their implications for social 
communication, we  hypothesized a linear relationship between 
heightened levels of broader autism phenotype (BAP) traits in 
neurotypical individuals and the manifestation of idiosyncratic 
kinematic features. However, given the exploratory nature of our 
study, and the scarcity of prior research directly investigating these 
specific relationships, we did not posit the explicit directionality of the 
linear relationships between BAP traits and kinematic features. Our 
aim was to illuminate potential patterns and associations that may lay 
the groundwork for future focused and hypothesis-driven inquiries.

2 Materials and methods

2.1 Biological movements repository

A repository of point-light display recordings was furnished by 
volunteer study participants (N = 58). The participants were college 
students within the age range of 18 to 33 years. We specifically targeted 
college students to obtain a sample with minimal age-related 
variability in movement patterns, which could potentially confound 
the investigation of specific kinematic features of interest. The sample 
age range is considered to represent a period of optimal kinematic 
efficiency in bodily movements among neurotypical individuals 
(Hines Woollacott and Shumway-Cook, 1990; Honda et al., 2022; 
Muschter et  al., 2023). The participants were recruited via course 
announcements, campus online listservs, and community flyers. Each 
participant received an electronic gift card of small monetary value for 
their participation. All aspects of this study have been approved by the 
Human Subjects Institutional Review Board of Indiana University. 
Participant characteristics are summarized in Table 1.

The point-light displays (PLDs) in our repository are a 
configuration of moving points that depict human biological motion 
(Johansson, 1973). We  chose to use PLDs in our study because 
we wanted to isolate movement from other pictorial cues that are 
present in standard video to simplify the movement analysis. The 
biological movements in the repository depicted different emotional 
expressions. Emotional expressions were selected because they contain 
a variety of movement kinematics to convey valence and intensity. 
Many emotional states are communicated through the whole body, 
including both vertical and horizontal movement, though arm 
movements and elbow flexion may be particularly informative (De 
Meijer, 1989; Sawada et al., 2003; Dael et al., 2013; Poyo Solanas et al., 
2020). Only a subset of the emotion PLDs from the repository were 
included in our analyses. They were angry, happy, and fearful. In 
addition, a social functioning profile, linked to each participant, was 
compiled from a list of self-report instruments that are in line with the 
NIH Research Domain Criteria (RDoC) of social processes. In this 
paper, we focus on the BAP exclusively, which was assessed via the 
Autism Spectrum Quotient (AQ; Baron-Cohen et al., 2001); a self-
administered 50-item questionnaire. The scores obtained on the AQ 
reflect the level of one’s autistic traits. Scores on the AQ can range from 
0 to 50, where higher scores reflect more autistic traits, and 0–10 for 
the 5 subscales (described in the Introduction).

2.2 Generating point-light displays

PLDs were created using a motion capture setup consisting of a 
Microsoft Kinect camera and the Kinect-based biological motion 
capture (KBC) toolbox (Shi et al., 2018). The KBC toolbox captures 
depth information and body frame data at a sampling rate of 30 Hz 
thus recreating the participants’ biological movements in three-
dimensional space. All PLDs produced with KBC included 25 points 
which mark crucial points such as head, shoulders, elbows, hands, 
spine, hips, knees, and feet. Recording each PLD involved having the 
participant stand in front of the Kinect camera mounted on a tripod 
and adjusted to about 1.4 meters. Once the Kinect captured the 
participant, a tracking point-light figure was displayed in the preview 
window of the KBC GUI. At that point, we made sure the participant’s 
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entire body was centered within the frame by adjusting the Kinect 
camera’s angle and/or location to approximate an aspect ratio of 1:1 
for each PLD recording. Once centered within frame, the participants 
were then explained that they were going to perform several discrete 
whole-body movements. They were instructed to try to remain in 
their position while acting out the movements to remain centered 
within the camera frame. Then an experimenter read aloud a brief 
prompt such as, “After returning from a weekend getaway, you find 
that your roommate has trashed your apartment and completely 
ignored your agreements, which makes you very angry.” After the 
prompt, the experimenter said the word “action” which signaled to the 
participants to perform the movements. The prompts were adapted 
from Scherer and Ellgring (2007). They were intended to prime the 
participants before producing each movement. A distinct prompt was 
read for each emotional movement type. No additional guidance was 
provided to the participants to allow for variability in their movements 
(e.g., Ma et  al., 2006). The recording order for each PLD was 
randomized across subjects.

2.3 KBC data preprocessing

The KBC toolbox generates output in text file format. The files 
store spatial information for all the 25 points of the participant body 
represented by multiple rows containing a vector of x-y coordinates, 
with the x and y values denoting the spatial positions in the 2D plane. 
We note here that these coordinates are Cartesian coordinates for the 
pixel location of each tracked point, reflecting the locations of the 
tracked fiducial points in a two-dimensional space. The KBC tool 
facilitates the recording of these coordinates for subsequent analysis 
and interpretation in the context of biological motion research. Each 
subsequent row in the text file represents the next frame in the 
PLD recording.

Preprocessing of these output files was employed to attenuate 
several artifacts in the data. The first issue we encountered was 
several instances of recording overlap which resulted in 
duplicated data within a single text file. This issue was mitigated 
with visual inspection of the PLD to determine where the 
duplication occurred and then removal of any redundant data in 
the text file. Secondly, there were scenarios where the subject 
moved too close to the Kinect sensor during recording. This 

resulted in overflow-induced anomalies that manifested as large 
negative coordinate values. Instances of overflow-induced 
anomalies, although rare, were identified via visual inspection 
and the coordinate data from missing fiducial points within 
frames displaying overflow were removed. We  also observed 
incomplete and/or missing PLD points in the text files resulting 
from the KBC failing to capture specific points during recording 
sessions. In all cases, we  applied a region-of-interest (ROI) 
method to reduce uncertainty in the location of body regions by 
including multiple tracked points within each ROI. Where only 
one point was missing from the ROI, the center of mass (CoM) 
of the ROI was calculated with the remaining points. Where more 
than one point within the ROI was missing, the ROI was marked 
as missing and removed from subsequent analysis. Finally, 
spurious signals, often arising from the initial and final 
movements captured by the camera, introduced noise to the 
dataset. To effectively mitigate these artifacts, a trapezoidal 
windowing function-based filtering technique was implemented. 
This procedure involved multiplying the extracted kinematic 
time-series by a trapezoidal signal to attenuate changes in the 
first (and last) 10% of data in every observation.

2.4 Defining regions of interest in the PLDs

As shown in Figure 1, a total of 4 regions of interest (ROIs) 
were defined based on the fiducial points labeled in the KBC 
toolbox: lower extremities (LE), right and left hand (RH and LH), 
and the head. As described in the results, our linear mixed-effects 
models included nested observations across these ROIs, with the 
‘LE’ ROI used as the reference level in the model output. The ‘LE’ 
encompasses points corresponding to the legs and hips, and thus 
the CoM of this region reflects large scale motion of the subject in 
space. The ‘LE’ region shows markedly lower magnitude of 
displacement compared to, for example, the hand regions. Thus, 
we refer our smaller ROI kinematics to this larger, more stable 
ROI, to ground the results in the most global measure of 
movement. Prior movement studies have focused on similar ROIs, 
such as gait (Gong et al., 2020), balance (Kohen-Raz et al., 1992; 
Memari et al., 2014; Bojanek et al., 2020), upper limb movements 
(Mari et al., 2003; Wedyan and Al-Jumaily, 2016; Gamez Corral 
et al., 2020), and head movements (Vabalas et al., 2020). Differences 
in the postural control and upper limb movements have 
differentiated between ASD and neurotypical individuals (Lim 
et al., 2017; Fears et al., 2023).

2.5 Digitized kinematics

Three digital kinematic features were extracted from the 
acceleration quantified in the PLDs: (1) entropy, (2) area under the 
curve (AUC), and (3) maximum acceleration (MAX). These measures 
were computed through the following sequence, illustrated in 
Figure 2:

 1 KBC coordinates were first normalized by dividing them by the 
distance between “Hip” edge points in the first 3 frames, to 
adjust for size of body in the frame of the camera.

TABLE 1 Sample characteristics.

Characteristic N =  581

Age (22.0, 21.0, 3.3, 18.0, 33.0)

Sex

  Female 47 (81%)

  Male 11 (19%)

Autism Spectrum Quotient (AQ) (20.3, 20.5, 6.10, 4.00, 32.0)

AQ: Communication (3.26, 3.50, 2.34, 0.00, 9.00)

AQ: Social skills (3.91, 4.00, 2.45, 0.00, 9.00)

AQ: Attention to detail (5.38, 5.00, 1.99, 1.00, 9.00)

AQ: Attention Switch (5.36, 5.50, 1.97, 2.00, 10.0)

AQ: Imagination (2.59, 2.00, 1.55, 0.00, 6.00)

1Mean, Median, SD, Range; n (%).
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FIGURE 2

Flow diagram for extraction of kinematic features from each point light display (PLD).

 2 Within each frame, the coordinates of the included points were 
used to calculate the CoM for each of seven ROIs.

 3 Velocity (magnitude of CoM change between frames) and then 
acceleration (change in velocity) were quantified from discrete 
sets of 7 frames.

 4 Mean Abs (Acceleration) across the 7 frames is stored for use 
in quantifying MAX and AUC.

 a (not in figure) acceleration values for the initial and final 10% 
of frames are multiplied by a triangle ramp to keep them close 
to 0 to account for instability in initial estimate of fiducial 
points by KBC.

 5 All acceleration values are stored for quantifying entropy.
 6 Digitized kinematics (per ROI, per emotional movement).

 a entropy = sample entropy for all accelerations {tolerance = 0.2 
* SD, embedding dimension = 3}

 b AUC = integral of the windowed acceleration time-series.
 c MAX = largest windowed acceleration.

The Center of Mass (CoM) was computed as a weighted average of 
the spatial coordinates of all tracked points in each region of interest 
(ROI). In our analysis, all points were assigned equal weight, with each 
point given a mass value of 1. The calculation involved summing the 
products of the individual point coordinates (x, y) and their 
corresponding mass values, and then dividing them by the total mass. 
The formula for the CoM calculation is as follows:
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where n is the number of points in the ROI, xi, y ii are the 
coordinates of the i -th point, and all points are considered to have 
equal weight.

FIGURE 1

Visualization of the 4 regions of interest (ROIs) defined based on the 
fiducial points labeled in the KBC toolbox: lower extremities (LE), 
right and left hand (RH and LH), and the head.
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Acceleration, as the derivative of velocity, captures alterations in 
motion speed. It highlights sudden changes in movement, shedding 
light on the nuanced dynamics of emotional expression. Entropy 
quantifies the regularity or irregularity of acceleration magnitudes 
across the emotion expression. It provides insights into the complexity 
and unpredictability of motion patterns. A low entropy value indicates 
that the acceleration pattern exhibits a high degree of regularity and 
consistency. A high entropy value suggests that the accelerations are 
highly variable and unpredictable within the expression, signifying a 
more complex and irregular motion pattern. The AUC and MAX 
aspects of acceleration capture oblique information on the distribution 
of motion energy across the expression.

By quantifying these kinematic features from the displacement 
vectors, we gain a multidimensional understanding of how emotions 
manifest through body movement. This approach transcends the 
boundaries of visual perception, deepening our comprehension of the 
human emotional experience encoded in motion. These kinematic 
features, when considered collectively, provide a quantitative 
foundation for comprehensive analysis and comparison across various 
emotional states.

3 Results

To explore whether BAP features can predict the expression of 
idiosyncratic micro-movements, we first investigated the simple 
linear dependence of each digitized kinematic on each BAP feature 
separately for each ROI and TASK. Multiple significant correlations 
were observed for each of the three digitized kinematics. Several of 
the effects were observed across ROIs. These significant associations 
are for measures that are ultimately nested within subject both 
across the ROIs and the TASKs. Therefore, these linear regressions 
are not appropriate for describing the nuanced relationship of BAP 
to movement across the body. Nevertheless, the number and 
strength of these relationships suggested that a nuanced model 
could capture the overall pattern of BAP features to 
movement parameters.

To fully describe the results, linear mixed-effects models (LMEM) 
were employed that could account for the nested observations and 
repeated measures of movement. We  fitted a series of LMEM 
(estimated using REML and nloptwarp optimizer) to examine the 
relationship between different digitized kinematics derived from the 
PLDs and different BAP features (i.e., autistic traits). We operationally 
defined BAP features from the scores obtained from the AQ (including 
subscale scores). Thus, 6 different BAP features and 3 target kinematic 

measures were examined. Table 2 lists the BAP features and target 
kinematic measures.

Each LMEM had only one BAP predictor to maintain simplicity 
of the model and since the BAP features are collinear. Moreover, each 
BAP feature was used in three different LMEM—predicting different 
target kinematic measures (entropy, AUC, and MAX). The result was 
a total of 18 models. Included in the models were interactions terms 
between the BAP feature and the 3 emotion tasks, and the BAP feature 
and the 4 ROIs. In addition, the models included an age term, aiming 
to account for any residual age-related variations within our sample, 
and a sex term to control the influence of sex on our findings. The 
model structure was random intercepts for each participant and 
random slopes for emotion task within each participant. The use of 3 
emotion PLDs containing 4 ROIs generated 12 observations per 
participant, resulting in 696 discrete observations. However, the 
sample contained observations with missing values due to recording 
equipment errors; therefore, the sample was further reduced to 676 
observations. The function for each LMEM can be describe as follows:

DK b b BAP b b b b BAP
b BAP

ijk ijk ij ij ijk ijk

i

� � � � �
�

0 1 2 3 4

5

Sex Age Taskx

jjk ijk j j ijk ijROI u u Task ex x� � �0 1

Where:

 • DKij: Digitized kinematic measure k for observation i from 
participant j

 • BAPijk: BAP feature k for observation i from participant j
 • Sexij.: Sex term for observation i from participant j
 • Ageij: Age term for observation i from participant j
 • Taskij - > {fear, anger, happy}: Emotion expression task k for 

observation i from participant j
 • ROIij - > {lower extremities, head, left hand, right hand}: Region 

of interests in the PLD for observation i from participant j
 • b0, b1, …, b3: Fixed effects coefficients
 • u0j: Random intercept for Task with participant j
 • u1j: Random slope for participant j
 • eij: Residual for observation i from participant j

We used R (R Core Team, 2023) and lme4 (Bates et al., 2014) to 
perform the LMEM analyses. Since we were only interested in exploring 
the predictability of kinematics from features of the BAP, we focus here 
only on the results in which a BAP features and interactions with BAP 
features significantly predicted a kinematic measure at a p-level less than 
0.05. In addition, we performed a Holm-Bonferroni correction (Holm, 

TABLE 2 List of the predictive Broad Autism Phenotype (BAP) features and the targets of the models.

BAP features (predictors) kinematic measures (targets)

AQ total Entropy

Communication Area under curve (AUC)

Social skills Maximum acceleration (MAX)

Attention to detail

Attention switch

Imagination

Each feature was fitted to each of the three targets in separate models. This resulted in 21 different models.
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1979) for all p-values using the p.adjust function in R. This correction 
method adjusts the significance thresholds for all the multiple 
comparisons. A visual inspection of residual plots revealed deviations 
from homoscedasticity and normality for the AUC and MAX measures. 
These measures were therefore log-transformed prior to model fitting. 
However, there were no obvious deviations from homoscedasticity or 
normality for the entropy measures. Likelihood ratio tests comparing 
each of the 18 models indicated significantly better fitting models 
compared to a null model without any BAP feature as a predictor. 
However, BAP feature interactions with ROI also significantly improve 
the model fit. Therefore, the subsequent sections focus on the results of 
the beta coefficients, with a specific consideration of the fixed effects of 
each BAP feature and its interactions with Task and ROI to potentially 
predict digitized kinematics derived from human biological 
motion stimuli.

3.1 Autism Spectrum Quotient (AQ) and 
kinematic features

With respect to the relationship between Autism Spectrum 
Quotient (AQ) total scores and kinematic features, Holm-Bonferroni 
adjusted p values revealed that the relationship between AQ scores 
and Entropy was not significant at the reference level (β = 0.01, 
p = > 0.9). Conversely, at the reference level, for AUC and MAX, the 
negative coefficients (β = −0.05 for both, p = 0.021 for AUC and 
p = 0.005 for MAX) indicate that as autistic traits increase, the overall 
volume and peak of acceleration in their movements decreases. 
Negative coefficients, relative to the reference level, for AQ interactions 
with three ROIs in the context of Entropy (Head: β = −0.01, LH: 
β = −0.02, RH: β = −0.03; all p < 0.001) showed that higher AQ scores 
were associated with decreased ordered movements, particularly in 
these body regions. In contrast, positive coefficients for AUC and 
MAX (ranging from β = 0.02 to 0.10; all p < 0.001) highlight that 
autistic traits correlate with increased movement in these same 
regions. Across all models, interaction effects of AQ score with Task 
were not significant. There were also no significant effects based on 
sex and age. Results are presented in Table 3.

3.2 Communication and kinematic features

Similarly, there were significant relationships between the 
Communication subscale scores, and various kinematic features 
represented by Entropy, AUC, and MAX metrics at the reference levels: 
(ROI = Lower Extremity) and (TASK = Fear). Notably, a positive beta 
coefficient (0.07) with a significant p-value (0.005) in the context of 
Entropy suggests that the more neurodivergent the participant’s 
communication style was, greater randomness or variability manifested 
in their movements. Conversely, negative beta coefficients for AUC 
(−0.18) and MAX (−0.20), significant at p = 0.014 and p < 0.001, 
respectively, indicate that elevated scores on the communication 
subscale correlate with lower peak values and less area under the curve 
in movements, potentially reflecting more restrained motion. Further 
analysis reveals significant interactions between communication scores 
and specific ROIs. For instance, elevated communication scores 
predicted a decrease in Entropy, relative to reference level, in all three 
ROIs (Head: β = −0.06, LH: β = −0.11, RH: β = −0.12, all p < 0.001). The 

positive beta values for AUC and MAX across these ROIs, relative to the 
reference, indicate that the volume and intensity of movements in these 
ROIs tend to increase with elevated communication subscale scores. No 
significant interaction effects of communication skills with Task were 
observed. There were also no significant effects based on sex and age. 
Results are presented in Table 4.

3.3 Social skills and kinematic features

At reference level, positive beta coefficient (β = 0.06, p = 0.003) for the 
relationship between social skills and entropy indicates that individuals 
with higher scores in the social skills domain of the AQ tend to have 
greater complexity in their emotional movement patterns. Conversely, 
significant negative coefficients for both AUC (β = −0.23, p < 0.001) and 
MAX (β = −0.22, p < 0.001) reflect that elevated social skills scores are 
associated with decreased overall volume and peak movement values, 
respectively. Examination of interactions between social skills and 
specific ROIs revealed consistent patterns. Negative coefficients, relative 
to reference level, for entropy across all ROIs (Head: β = −0.05, LH: 
β = −0.09, RH: β = −0.10; all p < 0.001) suggest that higher social skills 
subscale score correlate with less randomness or more structured 
movements in these regions. Positive coefficients for AUC and MAX in 
these ROIs indicate that individuals with elevated autistic features in the 
social skills domain, reflective of a more neurodivergent social style, may 
engage in more pronounced movements. For all models, there were no 
significant sex differences or age effects. Furthermore, the interaction 
effects of social skills with specific tasks (anger and happiness) were not 
statistically significant. Results are presented in Table 5.

3.4 Attention to detail and kinematic 
features

The positive coefficient for entropy (β = 0.06, p = 0.018) at the 
reference level suggests that higher subscale scores in attention to detail 
are associated with increased complexity or randomness in movement 
patterns. Scores on the attention to detail subscale were not associated 
with AUC at reference. The significant negative coefficients for MAX 
(β = −0.20, p < 0.001) indicate that elevated attention to detail sores 
correspond with lower overall peak values. This could reflect a more 
controlled or restrained motor output among individuals who focus 
intensively on details. Negative coefficients for entropy in these specific 
ROIs (Head: β = −0.05, LH: β = −0.09, RH: β = −0.10; all p < 0.001) 
reveal that higher attention to detail is linked with less variability in 
these specific areas. The positive coefficients for AUC and MAX 
(ranging from β = 0.09 to 0.37; all p < 0.001) further suggest that 
individuals with high attention to detail may engage in more 
pronounced movements. For all models, no significant sex differences 
or age effects were found. Interaction effects between attention to detail 
scores and Task was not significant. Results are presented in Table 6.

3.5 Attention switching and kinematic 
features

Although scores on this subscale did not predict entropy at the 
reference level, significant negative coefficients for AUC (β = −0.23, 
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p < 0.001) and MAX (β = −0.20, p < 0.001) were observed at the 
reference levels showing that higher attention-switching subscale 
scores were associated with a reduction in acceleration volume and 
peak values in movements. Similarly, the interactions between 
attention switching scores and specific ROIs revealed negative 
coefficients for Entropy across these ROIs (Head: β = −0.05, LH: 
β = −0.09, RH: β = −0.10; all p < 0.001). In contrast, there were positive 
coefficients for AUC and MAX in these ROIs (ranging from β = 0.09 
to 0.38; all p < 0.001), indicating attention-switching scores may drive 
more pronounced movements in upper ROIs. No significant sex 

differences or age effects emerged from the analysis. Additionally, the 
interaction effects of attention switching with Task did not reach 
statistical significance. Results are presented in Table 7.

3.6 Imagination and kinematic features

Finally, a notable positive coefficient for Entropy (β = 0.10, 
p = 0.003) at the reference level suggests that individuals with higher 
scores in the imagination subscale of the AQ exhibited more 

TABLE 3 Mixed effects model results for total score of the Autism Spectrum Quotient (AQ) as the feature.

Entropy AUC MAX

Feature Beta 95% CIa p-value 
(adjusted)b

Beta 95% CIa p-value 
(adjusted)b

Beta 95% CIa p-value 
(adjusted)b

AQ 0.01 0.00, 0.02 0.013 (>0.9) −0.05 −0.08, 

−0.02

0.002 (0.021) −0.05 −0.08, 

−0.03

<0.001 (0.005)

Sex

  Female — — — — — —

  Male −0.12 −0.27, 0.03 0.10 (>0.9) 0.23 −0.27, 0.73 0.4 (>0.9) 0.17 −0.19, 0.53 0.3 (>0.9)

Age 0.00 −0.02, 0.01 0.7 (>0.9) 0.05 −0.01, 0.11 0.13 (>0.9) 0.02 −0.02, 0.07 0.3 (>0.9)

AQ * ROI

  AQ * head −0.01 −0.02, −0.01 <0.001 (<0.001) 0.02 0.02, 0.03 <0.001 (<0.001) 0.03 0.02, 0.03 <0.001 (<0.001)

  AQ * LH −0.02 −0.03, −0.02 <0.001 (<0.001) 0.10 0.09, 0.11 <0.001 (<0.001) 0.10 0.10, 0.11 <0.001 (<0.001)

  AQ * RH −0.03 −0.03, −0.02 <0.001 (<0.001) 0.10 0.09, 0.11 <0.001 (<0.001) 0.10 0.10, 0.11 <0.001 (<0.001)

  AQ * task

  AQ * anger 0.00 −0.01, 0.00 0.4 (>0.9) 0.01 0.00, 0.02 0.2 (>0.9) 0.00 −0.01, 0.01 0.9 (>0.9)

  AQ * happy 0.00 0.00, 0.01 0.6 (>0.9) 0.00 −0.01, 0.01 0.9 (>0.9) 0.00 −0.01, 0.01 0.7 (>0.9)

aCI = Confidence interval.
bHolm. AUC = area under curve, MAX = maximum acceleration (MAX), ROI = region of interest, LH = left hand, RH = right hand. Reference level, ROI = lower extremities (LE) and Task = fear, 
is the row with AQ as feature. Reference factor levels not labeled in the table.

TABLE 4 Mixed effects model results for the communication subscale of the Autism Spectrum Quotient (AQ) as the feature.

Entropy AUC MAX

Feature Beta 95% CIa p-value 
(adjusted)b

Beta 95% CIa p-value 
(adjusted)b

Beta 95% CIa p-value 
(adjusted)b

Communication 0.07 0.04, 0.10 <0.001 (0.005) −0.18 −0.27, 

−0.09

<0.001 (0.014) −0.20 −0.27, 

−0.13

<0.001 (<0.001)

Sex

  Female — — — — — —

  Male −0.12 −0.27, 0.02 0.10 (>0.9) 0.27 −0.21, 0.76 0.3 (>0.9) 0.21 −0.15, 0.56 0.2 (>0.9)

Age 0.00 −0.02, 0.01 0.7 (>0.9) 0.05 −0.01, 0.11 0.084 (>0.9) 0.03 −0.02, 0.07 0.2 (>0.9)

Communication * ROI

  Communication * head −0.06 −0.08, −0.04 <0.001 (<0.001) 0.11 0.07, 0.16 <0.001 (<0.001) 0.12 0.07, 0.17 <0.001 (<0.001)

  Communication * LH −0.11 −0.13, −0.09 <0.001 (<0.001) 0.45 0.40, 0.50 <0.001 (<0.001) 0.46 0.41, 0.51 <0.001 (<0.001)

  Communication * RH −0.12 −0.14, −0.10 <0.001 (<0.001) 0.44 0.39, 0.49 <0.001 (<0.001) 0.45 0.40, 0.50 <0.001 (<0.001)

  Communication * task

  Communication * anger −0.01 −0.03, 0.01 0.5 (>0.9) 0.04 −0.01, 0.10 0.12 (>0.9) 0.02 −0.03, 0.06 0.5 (>0.9)

  Communication * happy 0.00 −0.02, 0.02 >0.9 (>0.9) −0.01 −0.06, 0.05 0.8 (>0.9) −0.02 −0.06, 0.03 0.4 (>0.9)

aCI = Confidence interval.
bHolm. AUC = area under curve, MAX = maximum acceleration (MAX), ROI = region of interest, LH = left hand, RH = right hand. Reference level, ROI = lower extremities (LE) and Task = fear, 
is the row with AQ as feature. Reference factor levels not labeled in the table.
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TABLE 5 Mixed effects model results for the social skills subscale of the Autism Spectrum Quotient (AQ) as the feature.

Entropy AUC MAX

Feature Beta 95% CIa p-value 
(adjusted)b

Beta 95% CIa p-value 
(adjusted)b

Beta 95% CIa p-value 
(adjusted)b

Social skills 0.06 0.03, 0.08 <0.001 (0.003) −0.23 −0.32, 

−0.14

<0.001 (<0.001) −0.22 −0.29, 

−0.16

<0.001 (<0.001)

Sex

  Female — — — — — —

  Male −0.12 −0.26, 0.03 0.12 (>0.9) 0.22 −0.28, 0.72 0.4 (>0.9) 0.16 −0.20, 0.52 0.4 (>0.9)

Age 0.00 −0.02, 0.01 0.7 (>0.9) 0.05 −0.01, 0.11 0.13 (>0.9) 0.02 −0.02, 0.07 0.3 (>0.9)

Social skills * ROI

  Social skills * head −0.05 −0.07, −0.03 <0.001 (<0.001) 0.10 0.06, 0.14 <0.001 (<0.001) 0.11 0.06, 0.15 <0.001 (<0.001)

  Social skills * LH −0.09 −0.11, −0.07 <0.001 (<0.001) 0.40 0.36, 0.44 <0.001 (<0.001) 0.41 0.37, 0.45 <0.001 (<0.001)

  Social skills * RH −0.10 −0.12, −0.08 <0.001 (<0.001) 0.39 0.35, 0.43 <0.001 (<0.001) 0.41 0.37, 0.45 <0.001 (<0.001)

  Social skills * task

  Social skills * anger −0.01 −0.03, 0.00 0.12 (>0.9) 0.04 0.00, 0.09 0.074 (0.96) 0.02 −0.02, 0.05 0.4 (>0.9)

  Social skills * happy 0.00 −0.02, 0.02 >0.9 (>0.9) 0.00 −0.05, 0.05 >0.9 (>0.9) −0.01 −0.05, 0.03 0.6 (>0.9)

aCI = Confidence interval.
bHolm. AUC = area under curve, MAX = maximum acceleration (MAX), ROI = region of interest, LH = left hand, RH = right hand. Reference level, ROI = lower extremities (LE) and Task = fear, 
is the row with AQ as feature. Reference factor levels not labeled in the table.

disorganized movement patterns (more entropy). Conversely, the 
substantial negative coefficients for AUC (β = −0.48, p < 0.001) and 
MAX (β = −0.44, p < 0.001) indicate a pronounced decrease in the 
overall volume and peak values of movement for individuals with 
elevated Imagination subscale scores. This suggests that while 
movements are more disorganized and varied, they are characterized 
by lower intensity and smaller overall motion extents. The interactions 
between imaginative capabilities and specific regions of interest (ROI) 
indicate significant negative coefficients for Entropy across these ROIs 
(Head: β = −0.09, LH: β = −0.15, RH: β = −0.17; all p < 0.001). In 
contrast, there were positive coefficients for AUC and MAX (ranging 
from β = 0.16 to 0.69; all p < 0.001). The modeling did not reveal 
significant effects based on sex and age, nor interactions between 
imagination scores and Tasks. Results are presented in Table 8.

4 Discussion

In this study, we explored the nuanced interplay between autistic 
traits and their influence on kinematic features across neurotypical 
individuals. The essence of our research lay in capturing the natural, 
spontaneous micro-movements that individuals exhibited when asked 
to represent emotions, rather than the accuracy or theatrical quality 
of the emotional portrayal. The subtleties in the kinematics were the 
primary variables of interest, which did not require trained 
performative skills. Leveraging mixed effects modeling, our analysis 
unveiled significant associations between an individual’s score on the 
Autism Spectrum Quotient (AQ) and the order, volume, and 
magnitude of their emotional movement patterns. These findings 
expand our understanding of the intricate relationship between 
autistic traits and their kinematic characteristics, underscoring the 
broader autism phenotype’s heterogeneity across multiple levels of 
analysis. Notably, our results demonstrate that the various BAP 

constructs, tapped into by the AQ subscales, including 
communication, social skills, attention to detail, attention switching, 
and imagination, can influence the movement kinematics of emotional 
behaviors. Furthermore, the implications of this research extend to 
improving the capture and feature extraction of the movement 
signatures that accompany autistic traits, with the potential to refine 
strategies for autism phenotyping and filial screening.

Our investigation revealed several notable trends that shed light 
on the complex dynamics between autistic traits and movement 
patterns. Firstly, a consistent pattern across most autistic traits 
revealed that as the scores increased, movements in the lower 
extremities became less structured, exhibiting higher entropy. In 
contrast, the upper ROIs, specifically the head and hands, 
demonstrated more structured and predictable movements, indicating 
lower entropy with higher cores. Secondly, a converse relationship was 
observed for the AUC (indicating the volume of movement) and MAX 
(the peak magnitude of movement). Elevated autistic trait scores were 
associated with a reduction in both the volume and magnitude of 
movement in the lower extremities. However, in the upper ROIs, these 
scores tended to correlate with an increase in the volume and 
magnitude of movement, suggesting a more expansive range of 
movements in these areas for individuals with higher levels of autistic-
like traits.

Thirdly, the consistency of these patterns regardless of the 
emotional expression being conveyed suggests that the kinematic 
characteristics associated with autistic traits were stable across the 
emotion types. This stability implies that the motor signatures 
identified are features of the individuals’ movement repertoire, rather 
than being contextually driven by the nature of the emotional task. 
Fourth, the variables of sex and age did not significantly contribute to 
the variance in our data, indicating that the kinematic patterns 
we observed can be attributed more confidently to the broader autism 
phenotype (BAP) features rather than to these demographic factors. 
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Lastly, not all AQ subscales showed significant effects on kinematic 
differences. Specifically, the attention to detail and attention switching 
showed no effects in the LE (lower extremities) ROI regarding AUC 
and entropy, respectively, possibly suggesting that these autistic 
features have greater influence on upper body kinematics. The patterns 
observed in our study suggest that the kinematic idiosyncrasies 
associated with certain autistic traits could reflect remnants of 
movement-related characteristics of the broader autism phenotype 
(BAP), akin to traditional descriptions of social and behavioral traits 
initially encapsulated in the conceptualization of the BAP.

The heightened entropy, and attenuated amount and magnitude, 
in lower extremity movements with increasing AQ scores could reflect 
a greater variance in motor control or a difference in sensory-motor 
integration, as typically seen in autism (Fournier et al., 2010; Hannant 
et al., 2016; Parma and De Marchena, 2016; Amoruso et al., 2018). A 
significant body of literature has established that individuals with ASD 
often exhibit notable differences in stability and gait patterns 
compared to neurotypical peers (Fournier et al., 2010; Calhoun et al., 
2011; Memari et al., 2014; Fears et al., 2023). These variations are 
characterized by increased postural sway and distinct gait patterns 

TABLE 6 Mixed effects model results for the attention to detail subscale of the Autism Spectrum Quotient (AQ) as the feature.

Entropy AUC MAX

Characteristic Beta 95% CIa p-value 
(adjusted)b

Beta 95% CIa p-value 
(adjusted)b

Beta 95% CIa p-value 
(adjusted)b

Attention to detail 0.06 0.03, 0.10 <0.001 (0.018) −0.17 −0.27, 

−0.07

0.001 (0.1) −0.20 −0.27, 

−0.12

<0.001 (<0.001)

Sex

  Female — — — — — —

  Male −0.12 −0.27, 0.03 0.12 (>0.9) 0.26 −0.25, 0.76 0.3 (>0.9) 0.18 −0.19, 0.54 0.3 (>0.9)

Age 0.00 −0.02, 0.01 0.7 (>0.9) 0.05 −0.01, 0.11 0.12 (>0.9) 0.02 −0.02, 0.07 0.3 (>0.9)

Attention to detail * ROI

  Attention to detail * head −0.05 −0.06, −0.04 <0.001 (<0.001) 0.09 0.06, 0.11 <0.001 (<0.001) 0.10 0.07, 0.12 <0.001 (<0.001)

  Attention to detail * LH −0.09 −0.10, −0.08 <0.001 (<0.001) 0.36 0.34, 0.39 <0.001 (<0.001) 0.37 0.35, 0.40 <0.001 (<0.001)

  Attention to detail * RH −0.10 −0.11, −0.09 <0.001 (<0.001) 0.36 0.33, 0.38 <0.001 (<0.001) 0.37 0.34, 0.40 <0.001 (<0.001)

  Attention to detail * task

  Attention to detail * anger 0.00 −0.02, 0.01 0.7 (>0.9) 0.02 −0.02, 0.06 0.3 (>0.9) 0.00 −0.03, 0.04 0.8 (>0.9)

  Attention to detail * happy 0.00 −0.01, 0.02 0.7 (>0.9) 0.00 −0.04, 0.04 0.9 (>0.9) 0.00 −0.03, 0.03 0.9 (>0.9)

aCI = Confidence Interval.
bHolm. AUC = area under curve, MAX = maximum acceleration (MAX), ROI = region of interest, LH = left hand, RH = right hand. Reference level, ROI = lower extremities (LE) and Task = fear, 
is the row with AQ as feature. Reference factor levels not labeled in the table.

TABLE 7 Mixed effects model results for models with the attention switching subscale of the Autism Spectrum Quotient (AQ) as the feature.

Entropy AUC MAX

Characteristic Beta 95% CIa p-value 
(adjusted)b

Beta 95% CIa p-value 
(adjusted)b

Beta 95% CIa p-value 
(adjusted)b

Attention switch 0.05 0.02, 0.08 0.002 (0.21) −0.23 −0.33, 

−0.12

<0.001 (0.004) −0.20 −0.28, 

−0.13

<0.001 (<0.001)

Sex

  Female — — — — — —

  Male −0.12 −0.26, 0.03 0.12 (>0.9) 0.24 −0.26, 0.74 0.3 (>0.9) 0.17 −0.19, 0.53 0.4 (>0.9)

Age 0.00 −0.02, 0.01 0.7 (>0.9) 0.04 −0.01, 0.10 0.14 (>0.9) 0.02 −0.02, 0.07 0.3 (>0.9)

Attention switch * ROI

  Attention switch * head −0.05 −0.06, −0.04 <0.001 (<0.001) 0.09 0.07, 0.12 <0.001 (<0.001) 0.10 0.07, 0.13 <0.001 (<0.001)

  Attention switch * LH −0.09 −0.10, −0.07 <0.001 (<0.001) 0.37 0.34, 0.39 <0.001 (<0.001) 0.38 0.35, 0.41 <0.001 (<0.001)

  Attention switch * RH −0.10 −0.11, −0.08 <0.001 (<0.001) 0.36 0.34, 0.39 <0.001 (<0.001) 0.38 0.35, 0.41 <0.001 (<0.001)

  Attention switch * task

  Attention switch * anger 0.00 −0.02, 0.01 0.7 (>0.9) 0.01 −0.03, 0.05 0.6 (>0.9) −0.01 −0.04, 0.02 0.6 (>0.9)

  Attention switch * happy 0.01 −0.01, 0.02 0.4 (>0.9) 0.00 −0.04, 0.03 0.8 (>0.9) −0.01 −0.04, 0.03 0.7 (>0.9)

aCI = Confidence interval.
bHolm. AUC = area under curve, MAX = maximum acceleration (MAX), ROI = region of interest, LF = left hand, RH = right hand, LF = left foot, and RF = right foot.
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(Kindregan et al., 2015; Gong et al., 2020; Lum et al., 2021), pointing 
to a fundamental divergence in motor control and proprioceptive 
integration (Palmer et al., 2015; Arthur et al., 2019). Gouleme et al. 
(2017), for example, compared postural sway for children with ASD 
versus neurotypical children while they were exploring emotional 
faces in a lab setting. The authors reported that those with ASD 
showed more postural sway while exploring faces with negative 
emotions, particularly fear. Work by Naito et al. used accelerometer 
data to demonstrate that children with ASD display more movements 
during periods of the day when one’s body should be more still such 
as at night (Naito et al., 2019). The authors also showed that more 
movement during periods of stillness correlated with increased social 
impairment. Our study’s findings, which highlight increased entropy 
and lower AUC and MAX in the lower extremities, dovetail with these 
documented motor differences.

Interestingly, these associations in consideration with certain 
subscales could cast a light on different facets of the observed 
movement idiosyncrasies. For example, given that social 
communication involves behavior, it is not all that surprising to 
see the communication and social skills subscales contribute to 
movement idiosyncrasies. However, the observation that 
individuals scoring higher in the attention to detail subscale 
manifest a more variable and complex pattern of movements in 
the lower extremities (higher entropy) could possibly indicate a 
tendency to over-emphasize movement production during 
communicative behavior. Of course, this remains to be  tested. 
Similarly, the elevated attention switching subscale scores 
associated with less predictable movement in the lower extremities, 
could possibly reflect an increased variability in moment-to-
moment changes when producing social movements. Finally, 
elevated scores in the Imagination subscale were also associated 
with increased entropy in lower extremity movements. Such a link 
points to a possibility of diverging internal models (Wolpert et al., 

1995) of emotional movements that could manifest through 
idiosyncrasies in movement kinematics.

Conversely, the greater regularity or structure of upper body 
movements might reflect subtle restricted and/or repetitive 
movement patterns often observed in individuals with higher 
autistic-like traits (Smith et al., 2009) contributing to predictability 
in their actions and consequently lower entropy in these regions (see 
Figure 3). Interestingly, these patterns of results resemble findings 
by Vabalas et al. in which motion tracking of simple pointing and 
aiming movements of the hand in individuals with and without ASD 
revealed slower, more restricted, and accurate movements in ASD 
compared to typically developing individuals (Vabalas et al., 2019). 
The notion of more restricted kinematics in the autism spectrum is 
also consistent with recent work by Zhao and colleagues (e.g., Zhao 
et al., 2021, 2022) in which entropy and amplitude was measured 
during arm oscillations in children with ASD and typically 
developing controls. Children with ASD showed lower entropy 
values, indicating more restricted movements. One interpretation of 
Zhao et al.’s finding is that children with ASD may deviate less from 
the preferred movement, resulting in less complexity over time 
(Zhao et  al., 2021). This reduction in the complexity of body 
movement also extends to face-to-face interactions with an 
experimenter (Zhao et al., 2022). Although more research is needed, 
it is possible that such movement characteristics may extend to 
neurotypical individuals with elevated autistic-like traits. An 
intriguing observation from our findings was that individuals with 
elevated Communication subscale scores tended to exhibit upper 
body movements with increased structure and predictability (lower 
entropy). This relationship may suggest that in social interactions, 
where nonverbal cues are pivotal, those with elevated autistic traits 
may rely more on deliberate movements to convey their intent.

The augmented volume and magnitude of upper body movements 
observed in our study also aligns with this notion of repetitive 

TABLE 8 Mixed effects model results for the imagination subscale of the Autism Spectrum Quotient (AQ) as the feature.

Entropy AUC MAX

Feature Beta 95% CIa p-value 
(adjusted)b

Beta 95% CIa p-value 
(adjusted)b

Beta 95% CIa p-value 
(adjusted)b

Imagination 0.10 0.05, 0.14 <0.001 (0.003) −0.48 −0.61, 

−0.34

<0.001 (<0.001) −0.44 −0.54, 

−0.33

<0.001 (<0.001)

Sex

  Female — — — — — —

  Male −0.12 −0.27, 0.03 0.11 (>0.9) 0.22 −0.27, 0.71 0.4 (>0.9) 0.17 −0.19, 0.52 0.4 (>0.9)

Age 0.00 −0.02, 0.01 0.7 (>0.9) 0.04 −0.01, 0.10 0.13 (>0.9) 0.02 −0.02, 0.07 0.3 (>0.9)

Imagination * ROI

  Imagination * Head −0.09 −0.11, −0.06 <0.001 (<0.001) 0.16 0.10, 0.21 <0.001 (<0.001) 0.17 0.11, 0.23 <0.001 (<0.001)

  Imagination * LH −0.15 −0.18, −0.13 <0.001 (<0.001) 0.66 0.60, 0.71 <0.001 (<0.001) 0.68 0.62, 0.74 <0.001 (<0.001)

  Imagination * RH −0.17 −0.19, −0.14 <0.001 (<0.001) 0.66 0.60, 0.71 <0.001 (<0.001) 0.69 0.63, 0.75 <0.001 (<0.001)

  Imagination * Task

  Imagination * anger −0.01 −0.04, 0.02 0.6 (>0.9) 0.03 −0.04, 0.11 0.4 (>0.9) 0.00 −0.06, 0.06 >0.9 (>0.9)

  Imagination * happy 0.01 −0.02, 0.04 0.5 (>0.9) −0.01 −0.08, 0.07 0.9 (>0.9) −0.01 −0.07, 0.05 0.7 (>0.9)

aCI = Confidence interval.
bHolm. AUC = area under curve, MAX = maximum acceleration (MAX), ROI = region of interest, LH = left hand, RH = right hand. Reference level, ROI = lower extremities (LE) and Task = fear, 
is the row with AQ as feature. Reference factor levels not labeled in the table.
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movement patterns often noted in autism research (Mahone et al., 
2004). This increase could also indicate underlying motor planning 
and control nuances, mirroring challenges identified in previous 
kinematic studies. Building on the insights from Granner-Shuman 
et al. which correlate higher levels of autistic traits with a reduced 
ability to synchronize movements and faster initiation of motor plans 
(Granner-Shuman et  al., 2021), we  might interpret the increased 
volume (AUC) and magnitude (MAX) of upper body movements in 
our study as related phenomena. The elevated movement volume and 
intensity could reflect a divergent motor strategy among neurotypical 
individuals with higher levels of autistic-like traits, to achieve clearer 
communication through more pronounced physical gestures. The 
enhanced magnitude could also be a kinematic reflection of the faster 
movement execution observed by Granner-Shuman et al. (2021).

Our digital kinematics represent a subset of the available metrics 
that can be quantified from human movements. We selected these 
metrics based on their salience in the visual perception of movement 
and their suitability to analysis from the PLD data structure. Multiple 
dimensions of movement are captured across even these three metrics, 
and they are not strictly independent. For instance, the duration of the 
movement influences both the entropy (by permitting greater 
repetition of movement patterns) and AUC. Volume of movement as 
captured by AUC is also influenced by the MAX acceleration during 
the expression. Due to this covariation of movement features, 
we elected to explore each digital kinematic in its own model. Future 
extensions of this research must tackle the challenge of interpreting 
nuanced social movements without imposing this type of 
discretization. Human perception of movement is sensitive to each of 
these (and many more) dimensions of motion, and thus future work 
will integrate multiple kinematic dimensions in a multivariate analysis. 
At this early phase of exploratory analysis, these more complex models 
would have limited the interpretability of these results. A goal moving 
forward is to build visualization and interpretation tools to assist the 

autism research community in making use of these more 
nuanced results.

This study adds several additional insights. First, the results 
demonstrate that autistic traits are associated with distinctive, 
non-interactive movement patterns. That is, these traits can influence 
motor behavior independent of social engagement or interaction. In 
addition, consistent with previous research, the results show that the 
expression of these emotions is characterized not only by distinctive arm 
movements but also by head movements, in line with the idea that upper 
body regions play integral roles in the kinesthetic expression of emotions 
(De Meijer, 1989; Wallbott, 1998; Sawada et al., 2003). Finally, emotional 
expressions are vital communicative signals that transmit essential 
information about threats, social hierarchy, and individual states (Shariff 
and Tracy, 2011). Our study revealed that the kinematic properties of 
movements associated with expressing anger, fear, and happiness can 
be modulated by autistic traits, underscoring the impact of autistic traits 
on how emotions are physically manifested and highlight the need for 
further research into a wider array of emotional expressions and scenarios 
to uncover potential variations in how these traits interact.

One noteworthy limitation of this study, however, is that the 
sample acquired was predominantly female. Existing research 
highlights significant differences between males and females in the 
heritability and manifestation of autism (see Hull et al., 2017; Ferri 
et  al., 2018 for reviews). Despite autism diagnoses being more 
common in males (Baron-Cohen et al., 2011; Ferri et al., 2018), there 
are studies that indicate that females with ASD often display more 
pronounced social impairments (Kirkovski et al., 2013; Evans et al., 
2019). Given these facts, we controlled for possible sex differences in 
the linear mixed-effects models and found that across all models, the 
relationship between autistic-like traits and kinematic measures did 
not vary as a function of male versus female. Nonetheless, given the 
80:20 female: male ratio in our study, future work should examine 
whether these effects replicate in samples with more male participants.

FIGURE 3

Mean absolute value of acceleration in each 7-frame window across the expression of anger by subjects with low (left) and high (right) AQ scores. 
Acceleration profiles are based on the center of mass of all fiducial points. Note the periodic nature of the low-AQ exemplar (left), which corresponds 
to a lower entropy level due to the repeated patterning of movement and the pulsatile and abrupt nature of the high-AQ exemplar’s (right) movement 
which demonstrates lower AUC for a similar level of Max acceleration.
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In conclusion, this study marks the beginning of a research 
trajectory into the kinematic markers of the broader autism phenotype 
(BAP). Our initial findings offer a proof of concept for the application 
of digitized kinematics, captured by cameras, and analyzed via 
computer vision, as a powerful method for identifying movement-
based endophenotypic features of autism. Notably, our results present 
an initial understanding of how autistic traits are associated with 
specific motor patterns—increased movement and structure in the 
upper body and heightened entropy in lower extremities—as they 
relate to expression of emotions. This work illuminates the potential 
for deploying computer vision tools for two reasons: first, the data 
reduction possible for storing PLDs or their coordinate-based 
representations on the 2D plane of the camera are considerable, and 
second, reduction of human movement video to PLDs conceals 
personal identifiers while preserving relationship to the state of the 
individual nervous system. Future extension of this research will 
leverage these advantages to build a representative dataset of a broad 
sample of the human population to further refine models of the 
broader phenotype and its relation to movement. While mixed effects 
regression models afford a degree of interpretability that supports 
mechanistic investigations, as in this current work, subsequent phases 
will utilize machine learning methods to fully harness the nested 
nature of social movements. Digital kinematics, validated in their 
association with BAP through our work, stand as promising 
candidates for training these sophisticated models, with potential to 
significantly advance the phenotypic characterization of autism.
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