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Statistical learning (SL) is a fundamental cognitive ability enabling individuals to detect 
and exploit regularities in environmental input. It plays a crucial role in language 
acquisition, perceptual processing, and social learning, supporting development from 
infancy through adulthood. In this review, we adopt a multidimensional perspective 
to synthesize empirical and theoretical findings on SL, covering experimental 
paradigms, developmental trajectories, and neural mechanisms. Furthermore, 
we extend the discussion to the emerging intersection between SL and affective 
processes. Although emotional factors have recently been proposed to modulate 
SL performance, this area remains underexplored. We highlight current insights and 
theoretical frameworks addressing the SL–emotion interaction, such as predictive 
coding theory, and propose directions for future research. This review provides a 
comprehensive yet focused overview of SL across cognitive and affective domains, 
aiming to clarify the scope and future potential of this growing field.
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1 Introduction

Statistical learning (SL) is a foundational cognitive mechanism that enables individuals to 
extract and utilize regularities from their environment to effectively predict changes. This 
unconscious process allows the detection and acquisition of statistical patterns across various 
sensory inputs, facilitating the prediction of future events. SL is widely regarded as a domain-
general mechanism that underpins various forms of learning, including language acquisition, 
music perception, and visual cognition. In this review, SL specifically refers to the ability to 
discern and predict transitional probabilities and distributional regularities within sequential 
streams. This capability is particularly critical for navigating dynamic, temporally structured 
environments. Previous research by Saffran and colleagues demonstrated that even 
8-month-old infants could segment linguistic streams based on statistical cues after only brief 
exposure (Aslin et al., 1998; Saffran et al., 1999). Further studies have revealed that newborns 
exhibit sensitivity to such statistical patterns, suggesting that SL emerges prenatally and plays 
a foundational role in early language development (Choi et al., 2020; Kujala et al., 2023). 
Prosodic features in speech, such as rhythm and intonation, have also been shown to enhance 
SL by clarifying phrase boundaries (James, 1988). Beyond the auditory-linguistic domain, SL 
has been demonstrated across various modalities. For example, individuals can acquire visual 
(Fiser and Aslin, 2002), tactile (Conway and Christiansen, 2005), and musical regularities 
(Ishida and Nittono, 2023; Jenny et al., 1999), often without conscious awareness. These 
findings underscore the robustness and flexibility of SL across sensory systems.
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In cognitive neuroscience, SL is acknowledged for its pivotal role 
in comprehending fundamental mechanisms of cognition and 
behavior. However, recent research has expanded the scope of SL by 
exploring its interaction with emotional processes. Emotional arousal 
can modulate attention and enhance the salience of stimuli, thereby 
influencing learning outcomes (Tyng et al., 2017). This suggests that 
emotions not only prioritize which environmental cues are processed, 
but also shape the manner in which these cues are statistically encoded.

To better understand the underlying mechanisms, SL has been 
situated within predictive processing frameworks. Predictive Coding 
Theory posits that the brain continuously generates hypotheses about 
incoming sensory input and updates these predictions to minimize 
prediction errors (Courville et  al., 2006; Friston, 2010; Knill and 
Pouget, 2004; Koelsch et al., 2019). Within this framework, emotional 
states may modulate prediction error responses and influence 
statistical learning outcomes—such as biasing categorical perception 
under threat-related conditions (Dale et  al., 2012; Hasson, 2017; 
Farmer and Smith, 2014).

This article presents a selective narrative review of statistical 
learning (SL). Rather than aiming for exhaustive coverage, we focus 
on representative and influential studies spanning multiple 
subdomains of SL. Relevant literature was identified through targeted 
keyword searches in databases such as PubMed and Google Scholar, 
using search terms related to specific themes (e.g., “statistical learning 
and development,” “emotional modulation of statistical learning,” 
“modality differences in statistical learning,” and “neural mechanisms 
of statistical learning”). Studies were selected based on their relevance, 
methodological rigor, and theoretical contribution to the field. While 
this approach allows for a multidimensional synthesis of key findings, 
we acknowledge that it may not capture the full breadth of research in 
this rapidly evolving area. This review aims to provide an integrated 
overview of SL across cognitive and emotional domains. We  first 
introduce core experimental paradigms and examine modality-
specific differences. We then discuss developmental trajectories and 
neural underpinnings, followed by a focused review of the interaction 
between emotion and SL, highlighting how affective states shape 
learning processes. Instead of conducting a quantitative meta-analysis, 
we adopt a thematic and conceptual framework to identify areas of 

theoretical convergence and highlight key gaps in the literature. Our 
goal is to offer a comprehensive, multidimensional perspective that 
bridges traditional cognitive accounts with emerging affective 
research, and to propose promising directions for future investigation 
in the field of statistical learning.

2 Experimental paradigms in statistical 
learning

SL has been extensively studied across different modalities such 
as auditory, visual, and even cross-modal learning. The experimental 
design of SL tasks typically involves two phases: the learning 
(familiarization) phase and the testing phase.

During the learning phase (Figure 1), participants are exposed to 
sequences of stimuli with varying transitional probabilities (TP). High 
TP between adjacent stimuli indicates a strong association, while low 
TP suggests weaker or no association. For instance, in an auditory 
sequence of syllables (e.g., “nu-ra-fi”), the syllables within a word have 
a TP of 1.0, whereas the TP between different words (e.g., “nurafi” and 
“gamilu”) is lower (Aslin et al., 1998). Similarly, in visual SL tasks, 
participants are exposed to sequences of visual shapes, and TP is 
reflected in the likelihood of one shape following another in 
a sequence.

Following the learning phase, participants typically undergo a 
testing phase designed to assess their ability to recognize and group 
previously encountered patterns. This is often done using tasks such 
as the two-alternative forced-choice (2AFC), where participants select 
the more familiar sequence or pattern. Importantly, the design of the 
testing phase is crucial for accurately assessing SL. It should minimize 
biases in order presentation and ensure a balance between familiar 
and novel stimuli.

In addition, SL is influenced by a variety of factors, including 
individual experience, cognitive impairments, and sensory input 
channels. These factors collectively shape how individuals perceive 
and process statistical regularities in their environment.

Individual Experience: Performance in statistical learning is 
influenced by multiple language experience, which significantly 

FIGURE 1

Experimental paradigm. (A) The auditory task consists of continuous exposure to four repeating tri-syllabic words followed by a testing phase 
employing a two-alternative forced choice (2AFC) task. (B) The visual task involves a temporal series of four repeating tri-shape sample images 
followed by a testing phase. (C) The visual task includes a spatial arrangement of sub-shape images followed by a testing phase.
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impacts infants’ language performance (Kuhl et  al., 1992). For 
instance, individuals experienced in Mandarin demonstrate superior 
auditory statistical learning of Mandarin compared to those without 
such experience (Potter et  al., 2017). Actually, prior knowledge 
broadly affects statistical learning (Finn and Hudson Kam, 2008; Toro 
et  al., 2011), which suggests that individual differences prevent a 
simplistic classification of statistical learning as either “good” or “bad” 
(Forest et al., 2023).

Prior study has demonstrated that newborns’ neural responses to 
sounds significantly depend on the context (Todd et  al., 2022). 
Specifically, when common and rare sounds were presented with 
predetermined probabilities, newborns’ neural responses did not 
differ, while a notable variance in responses was observed when these 
sounds alternate with equal probability (Todd et al., 2022), which 
highlighted the influence of sound sequence structure on 
statistical learning.

Cognitive impairment: Cognitive impairments also affects 
SL. Children with specific language impairment tend to perform 
worse on SL tasks compared to their typically developing peers (Obeid 
et al., 2016), likely due to challenges in predictive coding and semantic 
processing. Moreover, individuals with developmental dyslexia 
perform poorly on both linguistic and non- linguistic SL tasks 
(Pavlidou et al., 2010).

Sensory deprivation: Auditory deprivation, particularly early in 
life, can significantly impair SL abilities (Conway et al., 2011). This 
deprivation can lead to significant reorganization of cortical functions, 
affecting how the brain processes sensory information (Kral et al., 
2016). However, studies have also indicated that congenitally deaf 
children with cochlear implants, who are later exposed to auditory 
stimuli, may retain some auditory SL capabilities (Pesnot Lerousseau 
et al., 2022), suggesting that exposure to auditory input can mitigate 
some of the deficits associated with early auditory deprivation. These 
findings highlight the complex interplay between sensory experiences 
and cognitive development in shaping SL.

3 Developmental patterns of statistical 
learning

Recent research on statistical learning (SL) has expanded beyond 
basic pattern recognition to encompass its developmental trajectory, 
modality-specific characteristics, and the influence of various intrinsic 
and extrinsic factors. This section explores how SL develops across the 
lifespan, varies across sensory modalities (auditory, visual, and 
cross-modal).

3.1 Developmental trajectory of statistical 
learning

SL is not only shaped by experimental design but also by 
developmental trajectories that vary across individuals and sensory 
modalities. Auditory SL is present early in life, even in newborns. 
Infants are able to detect transitional probabilities within syllabic 
sequences, enabling them to segment words from continuous speech. 
This ability has been shown to extend to fetuses, suggesting that 
statistical learning for language may begin before birth (Kujala et al., 
2023). Interestingly, while auditory SL in language seems to mature 

early, other forms of SL, particularly in visual domains, continue to 
develop throughout childhood, with adults generally outperforming 
children in visual SL tasks. For instance, Saffran et al. (2006) found no 
significant differences in auditory statistical learning between six-year-
olds and adults, suggesting early maturation in this domain. In 
contrast, non-linguistic auditory and visual statistical learning abilities 
tend to improve throughout childhood, with adults generally 
outperforming children in visual statistical learning tasks (Campbell 
et al., 2012; Arnon, 2019). In a word, the SL evolves over time also 
varies across different sensory modalities. Auditory SL has been 
shown to emerge earlier and develop with more stability compared to 
visual SL, which typically requires more experience and exposure to 
reach optimal performance. This suggests a possible innate 
predisposition for processing linguistic information, though the lack 
of developmental change in auditory-syllable statistical learning 
remains intriguing.

Notably, measurement methods also play a critical role in 
capturing developmental changes in SL. As reviewed by Forest et al. 
(2023), direct measures (e.g., two-alternative forced-choice tasks) 
assess recognition of learned sequences, while indirect measures (e.g., 
reaction times or neural responses) can detect learning that occurs 
implicitly during exposure (Fiser and Aslin, 2001; Forest et al., 2019; 
Jacoby, 1991; Schlichting et al., 2017). The choice of method may affect 
the interpretation of developmental patterns and learning efficacy.

3.2 Modality-specific constraints in 
statistical learning

Extensive empirical evidence indicates that statistical learning 
(SL) is modality-specific (Frost et al., 2015; Walk and Conway, 2016). 
Individuals can simultaneously learn statistical regularities in different 
sensory modalities without interference (Conway and Christiansen, 
2006; Mitchel and Weiss, 2011). Additionally, significant performance 
differences have been observed across various sensory modalities 
(Emberson et al., 2011; Kemény and Lukács, 2019; Qi et al., 2018). 
Auditory statistical learning tends to develop earlier and more rapidly 
than visual statistical learning, highlighting distinct characteristics 
and impacts across modalities (Emberson et al., 2019). Although both 
rely on transitional probabilities during the learning phase, a study 
found a relatively low correlation between performance in visual and 
auditory modalities (Siegelman and Frost, 2015).

Auditory SL: Most auditory statistical learning studies utilize a 
paradigm developed by Saffran et al. (Aslin et al., 1998; Saffran et al., 
1999). Early research demonstrated that infants can track syllable 
probabilities in continuous speech. These findings have been 
interpreted as evidence that learning mechanisms may rely on 
predictions about both timing and content (Wilson, 2003). Neural 
imaging studies showed that the left posterior temporal gyrus 
responds to embedded speech regularities in auditory linguistic 
statistical learning but not in non-linguistic contexts (Schneider et al., 
2024). Using multivoxel pattern similarity analysis, researchers 
identified similarities between the neural representations of auditory 
linguistic statistical learning and language processing, specifically 
within the left posterior temporal gyrus (Schneider et al., 2024).

Visual SL: Kirkham et  al. (2002) conducted visual statistical 
learning tasks with infants aged 2, 5, and 8 months and found no 
significant differences in learning performance among these ages. 
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However, 11-month-old infants successfully learned visual regularities, 
indicating an age-related increase in capability (Natasha Z. Kirkham 
et al., 2007). Further studies show that 16-month-old infants struggle 
with recognizing altered facial images, suggesting basic processing 
capabilities (Antovich et al., 2020). A study involving 183 children 
aged 5 to 12 years revealed that longer visual stimulus durations 
correlated with improved performance as age increased, highlighting 
the influence of age and stimulus duration on statistical learning 
(Arciuli and Simpson, 2011).

Cross-modality SL: Our environment offers structured 
information across sensory modalities, with statistical learning 
influenced by cross-modal cues that can either enhance or inhibit 
learning. Learners can extract multiple statistical regularities when 
cross-modal coherence is present. Contrary to prior models, statistical 
learning in one modality is not independent of other modalities, 
especially when cross-modal relationships are inconsistent. The 
McGurk illusion, for example, supports learning of transitional 
probabilities between audio-visual inconsistent yet integrated percept 
(Mitchel et al., 2014). Research demonstrates that statistical learning 
can be enhanced or reduced based on cues from a second modality 
(Duato et  al., 2023; Glicksohn and Cohen, 2013; Mitchel and 
Weiss, 2011).

Studies comparing visual and auditory language learning in 
children aged 5 to 12 years show that visual learning improves with 
age, while auditory performance remains stable (Raviv and Arnon, 
2018). In adults, auditory statistical learning improves significantly 
when accompanied by visual stimuli, whereas infants show no 
significant differences (Thiessen, 2010), highlighting developmental 
differences between auditory language and vision (Moreau et al., 2022; 
Saffran et  al., 2006). fMRI studies reveal increased activity in the 
superior temporal sulcus and frontal cortex when processing linked 
stimuli across different modalities, indicating these regions’ 
importance in cross-modal statistical learning (Frost and Monaghan, 
2016). Comprehensive explanations of multisensory statistical 
learning are necessary to fully understand these processes.

4 Neural mechanisms in statistical 
learning

The neural mechanisms underlying SL involved in SL spans both 
temporal dynamics, as revealed by electroencephalography (EEG), 
and spatial patterns, as investigated using functional magnetic 
resonance imaging (fMRI). This discussion will examine the evidence 
for each of these aspects, delving into their distinct contributions to 
our understanding of SL processes. By analyzing these dimensions 
separately, we can better appreciate the complex interplay between the 
timing of neural activity and the spatial localization of brain regions 
involved in SL.

4.1 Dynamic temporal dimension

Recent EEG studies have highlighted the importance of neural 
entrainment in predicting statistical learning performance (Choi et al., 
2020). Neural entrainment involves the alignment of brain oscillations 
to the rhythmic patterns of external stimuli, thereby synchronizing 
neural activity with cognitive processes (Calderone et  al., 2014). 

During the learning phase, repeated exposure to stimuli enhances 
neural entrainment, and the strength of this activity predicts the 
ability to differentiate between familiar and novel words (Choi 
et al., 2020).

A previous study has shown that both full-term and preterm 
infants exhibit neural entrainment to syllable and word frequencies 
in continuous speech stimuli (Kabdebon et al., 2015). Furthermore, 
infants demonstrate learning capabilities during sleep, with 
increased power and phase-locking values (PLV) in the occipital 
and temporal lobes for word frequencies (Benjamin et al., 2023; Fló 
et  al., 2019). Event-related potential (ERP) studies consistently 
reveal that newborns can recognize word boundaries using 
prosodic cues, with electrodes in the frontal, temporal, and parietal 
regions of the right hemisphere showing higher responses 
compared to those in the left hemisphere (Teinonen et al., 2009). 
Interestingly, despite differences in experience, the neural responses 
to syllables in infants and adults are remarkably similar (Choi 
et al., 2020).

Additionally, words elicit a larger N400 effect compared to 
non-words during the learning phase, emerging rapidly after just 
1 min of exposure (Cunillera et  al., 2009). The N400 component, 
characterized by a negative deflection around 400 milliseconds post-
stimulus, is extensively used to investigate language processing and 
semantic memory (Kutas and Hillyard, 1980). Balaguer et al. also 
confirmed that the N400 amplitude increases with exposure time, with 
greater effects observed in the second minute compared to the first, 
indicating dynamic changes in neural activity during statistical 
learning (De Diego-Balaguer et al., 2007). These findings suggest that 
neonates possess inherent auditory capabilities for language learning, 
including the ability to segment speech, detect word boundaries, learn 
words, and extract prosodic cues. Moreover, intracranial EEG studies 
show that early stages of processing involve lower-level features, while 
higher-level units are handled in later stages (Henin et al., 2020).

4.2 Spatial dimension

In adults, non-linguistic auditory statistical learning studied via 
magnetoencephalography (MEG) revealed increased neural 
synchrony under structured conditions (e.g., 12 tones divided into 
four three-tone combinations) compared to random conditions (e.g., 
12 tones presented randomly). Source analysis indicated that neural 
synchrony in the left central frontal gyrus and right temporo-frontal 
area could predict behavioral performance (Moser et al., 2021). In 
addition, neural activity in the inferior frontal gyrus during structured 
sequence exposure was higher than during random sequence 
exposure, observed in both adults and children (Karuza et al., 2013; 
McNealy et al., 2010). The involvement of the inferior frontal gyrus 
suggests sensitivity to structured sequences, reflecting specific 
transitions in stimulus presentation (Schapiro et al., 2013).

Humans typically segment continuous sequences into smaller 
units during processing, such as words and events. Previous fMRI 
studies have demonstrated significant activation of the left inferior 
frontal gyrus, which is associated with the ability to differentiate 
between sequences with high statistical coherence (e.g., words) and 
lower coherence (e.g., part-words; Karuza et al., 2013). Activation in 
this region increases with greater exposure to items from the same 
group, indicating sensitivity to specific relationships within structured 
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streams, similar to transitions observed in visual statistical learning 
(Schapiro et al., 2013).

Early fMRI studies identified significant activation in the bilateral 
superior and middle temporal gyri during language word 
segmentation tasks (McNealy et  al., 2006). Compared to adults, 
children exhibited stronger neural responses in these areas (McNealy 
et al., 2010), indicating that children were more sensitive to statistical 
learning. This is consistent with early findings that infants were 
sensitive to word units (Teinonen et al., 2009), suggesting children 
exhibit a higher sensitivity in words. Additionally, cortical activity in 
the temporal lobe shows pronounced left lateralization when 
processing sounds containing statistical and speech cues (McNealy 
et al., 2006). The striatum was also activated during word segmentation 
tasks (Seger and Spiering, 2011), a response observed not only in the 
auditory domain (Karuza et al., 2013; McNealy et al., 2006) but also in 
the visual domain (Turk-Browne et al., 2009).

Neuroimaging studies on children reveal that auditory statistical 
learning involves cooperation between the superior temporal gyrus 
and frontal lobe areas (Figure 2), a pattern also observed in early 
childhood stages (Finn et al., 2019; McNealy et al., 2010; Schlichting 
et al., 2017). The superior temporal gyrus plays an integrative role in 
speech perception (Bhaya-Grossman and Chang, 2022). Furthermore, 
research indicates a close correlation between statistical learning 
performance and activation of the left arcuate fasciculus (López-
Barroso et al., 2013). Numerous memory system areas, including the 
putamen and caudate in the temporal lobe, are also involved in 
statistical learning (Karuza et al., 2013; Frost et al., 2015).

Recent studies indicate that the hippocampus played a pivotal role 
in word segmentation tasks (Finn et al., 2019; Schlichting et al., 2017). 
An intracranial EEG study on seven patients with intractable epilepsy, 
exposed to a stream of 24 trisyllabic speech stimuli, found that while 
the auditory cortex primarily responds to syllable frequency, the 
hippocampus generates responses to word frequency, underscoring its 
significant role in speech segmentation processing (Ramos-Escobar 
et al., 2022). This suggests a hierarchical relationship between the 
auditory cortex and hippocampus in speech processing. Consistently, 
previous research has shown that individuals with hippocampal 
impairment perform worse in visual statistical learning tasks (Cerreta 

et al., 2018), highlighting the critical role of the hippocampus in such 
learning tasks. Moreover, the cortical thickness of the left inferior 
frontal gyrus and the volume of the right hippocampus have been 
shown to predict statistical learning performance, particularly in older 
children (Finn et al., 2019). Accordingly, animal model studies have 
demonstrated that damaging one system could improve performance 
on tasks dependent on another system, revealing a possible 
competitive mechanism between the hippocampus and striatal 
memory systems (Poldrack and Packard, 2003). These findings 
collectively indicate the complex role of the hippocampus in statistical 
learning and language processing, and its interactions with other brain 
regions, such as the inferior frontal gyrus.

Independent component analysis of MRI data indicates that 
statistical learning generally activates auditory and premotor area 
networks. In some individuals, high auditory-motor synchrony 
selectively activates the frontoparietal network, correlating positively 
with improved learning performance (Orpella et al., 2022). These 
studies highlight the complexity of statistical learning in cognitive 
processing and neural mechanisms, as well as the specific roles of 
different neural networks during the learning process.

5 Emotion in statistical learning

Previous studies on statistical learning (SL) have primarily focused 
on its cognitive aspects, considering it as a fundamental mechanism 
in human cognition (Bogaerts et  al., 2020; Sherman et  al., 2020). 
However, the role of emotion in statistical learning—both in how 
emotions are developed through SL and how SL is modulated by 
emotions—is critical for a comprehensive understanding of the 
human brain. Recent research has begun to explore these questions, 
though they remain under-examined. Understanding the interaction 
between emotions and SL is essential for several reasons.

Firstly, emotions fundamentally shape human experiences and 
behaviors. Investigating how SL influences emotional development 
can provide insights into the mechanisms by which individuals learn 
emotional responses from their environments. Secondly, exploring 
how emotions modulate SL can reveal how emotional states impact 

FIGURE 2

Statistical learning involves several key brain regions, including the hippocampus, inferior frontal gyrus (IFG), superior and middle temporal gyrus (STG/
MTG), and the putamen and caudate within the temporal lobe (Karuza et al., 2013; Frost et al., 2015; Mcnealy et al., 2006; Turk-Browne et al., 2009).
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the ability to detect and predict patterns, crucial for adaptive behavior 
and decision-making. This dual perspective enhances our 
understanding of the interplay between cognition and emotion, 
potentially leading to applications in improving learning strategies, 
therapeutic interventions for emotional disorders, and the design of 
emotionally intelligent artificial intelligence systems. Consequently, 
integrating the study of emotions with SL is imperative for a holistic 
understanding of the human brain and its complex functionalities. 
Then, the following sections will review related empirical research and 
propose a tentative explanatory framework using Predictive Coding 
(PC) Theory to reveal how SL and emotion interact.

The interaction between statistical learning (SL) and emotion 
manifests in two primary aspects (Figure  3). Firstly, emotional 
development may utilize SL mechanisms. Recent studies suggest a 
close intertwining of language and emotions, where the acquisition of 
emotional categories parallels language acquisition processes (Ruba 
et al., 2022). The formation of emotional categories results from the 
interplay of genetic and environmental factors, contributing to the 
ongoing nature versus nurture debate (Cowen and Keltner, 2021). As 
a cross-domain mechanism, SL applies similarly to the domain of 
emotions (Frost et al., 2015). Secondly, the interaction of emotion and 
cognitive processing reveals that emotions can influence and regulate 
cognitive processes (Dreisbach, 2022; Todd et al., 2020; Tyng et al., 
2017). This interaction may introduce biases in information processing 
during SL, with emotions potentially modulating this process. The 
emotion-SL interaction spans various fields, including emotional 
development, musical psychology, social cognitive processing, and 
clinical psychology.

5.1 Emotional statistical learning

In terms of emotional development, emotion perception, emotion 
category learning, and emotion experience are acquired and developed 
through SL. While some argue that humans have universal, 
evolutionarily constant basic emotions (Ekman, 1992), children’s 
emotional perception, understanding, and behavior are shaped by 
their diverse emotional environments over time (LoBue and Ogren, 
2022). The statistical patterns in the socioemotional inputs children 
encounter influence their emotional learning by enabling them to 
discern regularities in their social environment (Plate et al., 2022b). 
SL is likely a mechanism for emotional learning, allowing learners to 
sift through extensive and intricate inputs to identify patterns and 
regularities in the social world.

Developmentally, SL has been observed to emerge in infants—
even neonates—and follows different trajectories from infancy to 

adulthood for direct and indirect measures (for a review, see Forest 
et  al., 2023). Indirect measures, such as reaction time, saccade 
latencies, and neural responses, suggest minimal changes in SL across 
development. In contrast, direct measures, such as performance on 
two-alternative forced-choice (2AFC) post-tests, demonstrate 
improved SL for auditory non-linguistic and visual inputs from young 
children to adults.

Milestones in emotional development illustrate the role of SL in 
shaping emotion concepts. By 6 months, infants can discriminate 
between different facial expressions, such as anger, sadness, fear, and 
happiness (Haviland and Lelwica, 1987; Hoehl and Striano, 2008; 
Izard et al., 2010). By ages two to three, young children begin to show 
distinct emotion concepts, and older children aged four to nine 
expand these concepts to include fear, surprise, and disgust (Widen 
et al., 2015). Emotion concepts refine throughout development, and 
large-scale MRI data involving children aged 5 to 15 years for 
emotional encoding suggest that emotion concept representations 
become relatively stable by mid to late childhood, with synchronization 
observed during adolescence (Camacho et al., 2023). These findings 
underscore the intrinsic connection between SL and emotional  
development.

Existing studies have used traditional SL paradigms to investigate 
emotional perception and category learning across different age 
groups, including facial expressions, tone of voice, and body language. 
These studies demonstrate that individuals acquire emotional cues 
from their surroundings using frequency distributions and 
transitional probabilities to infer and predict behavior (Plate et al., 
2022b; Ruba et  al., 2022). For instance, research has shown that 
12-month-old infants can extract statistical information from 
sequences of emotional faces, indicating their capacity to discern 
differences in transitional probabilities within streams of emotional 
stimuli (Mermier et  al., 2022), foundational for early social 
interactions. Subsequent studies support this finding, illustrating 
infants’ ability to learn dynamic patterns of emotional transitions 
from caregivers (Nencheva et al., 2024). Plate et al. (2019) found that 
children (aged 6 to 8 years) and adults (aged 18 to 22 years) rapidly 
changed their boundary judgments of facial expression categories 
after exposure to facial expressions with different statistical 
distributions. This supports the hypothesis that SL underpins the 
formation of emotion categories (Woodard et  al., 2021, 2022). 
Learners demonstrate flexibility in updating emotional category 
boundaries to adapt to environmental experiences. For instance, 
children aged 6 to 12 years exhibited more flexible SL abilities for 
emotional information compared to other types of information (Plate 
et al., 2023). Similarly, adults display differential responses in SL to 
visual stimuli based on emotional valence, with emotional cues 

FIGURE 3

Emotion-SL interactions.
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enhancing sensitivity to transitional probabilities relative to neutral 
stimuli (Everaert et al., 2020).

Furthermore, the experience of listening to music, often linked to 
SL and probabilistic prediction processes, demonstrates the emotional 
impact of SL (Koelsch et al., 2019; Pearce, 2018). For example, music-
evoked pleasure is predicted jointly by uncertainty and surprise 
(Cheung et  al., 2019). This view is supported by numerous brain 
imaging and computational modeling studies (Daikoku, 2019, 2023; 
Pearce et al., 2010; Stupacher et al., 2022), suggesting that emotional 
experiences, such as musical esthetics, can be shaped by SL.

5.2 Statistical learning modulated by 
emotion

The interaction between emotions and cognition illustrates how 
emotions influence our information processing (Dreisbach, 2022; 
Todd et al., 2020; Tyng et al., 2017). From an evolutionary perspective, 
emotions, particularly negative ones like fear or anger, were prioritized 
by the brain due to their survival importance. Studies show that the 
fusiform gyrus exhibits heightened neural responses to fearful 
expressions (Morris et  al., 1998; Surguladze et  al., 2003), a 
phenomenon potentially modulated by feedback from the amygdala 
(Vuilleumier et al., 2004). This highlights the neural mechanisms for 
allocating resources in response to emotional stimuli, which are 
further influenced by genetic factors, individual personality traits, and 
anxiety levels (Patrik Vuilleumier, 2005).

The impact of emotions on SL, a crucial cognitive mechanism for 
deciphering environmental regularities, is significant but not yet fully 
understood. For instance, Kverno (2000) found that anxiety traits 
influence individuals’ frequency estimates and performance in recall 
tasks for neutral and threatening words. Individuals with high anxiety 
traits focused more on threatening words during frequency estimation 
and made more errors in false recognition tasks, indicating emotional 
influences on SL.

The differential impact of emotional versus non-emotional stimuli 
on statistical learning has emerged as a significant area of study. 
Research has demonstrated that SL outcomes are superior with 
emotional stimuli compared to non-emotional ones (Plate et  al., 
2022a). These learning effects are more pronounced with consistent 
emotional cues, underscoring the role of emotional information in 
social interactions. In clinical psychology, researchers have explored 
the potential applications of SL in diagnosing and intervening in 
mental disorders and developmental disabilities (Saffran, 2018). 
Studies indicate that children with autism spectrum disorder (ASD) 
often exhibit poorer performance in SL tasks compared to typically 
developing children (Jones et al., 2018). Adults with high autism traits 
excelled in tasks with non-social stimuli compared to those with low 
traits, but only the latter showed significant learning with socially 
meaningful stimuli (Li et al., 2023). Recent reports suggest that autism 
symptoms may arise from impaired predictive processes, with reduced 
connectivity in neural networks, including those linking the prefrontal 
cortex and sensory areas, contributing to deficits in predictive 
processing observed in ASD (Lawson et al., 2014; Pellicano and Burr, 
2012). Atypical sensory processing in ASD may result from an 
inability to modulate sensory input based on prior expectations, 
leading to sensory overload or distress (Sinha et al., 2014). However, 
recent research in adult populations challenged these findings, 

indicating intact predictive processing in autistic adults (Pesthy et al., 
2023). Future research is needed to elucidate the origins of 
these discrepancies.

A study on patients with social anxiety disorder undergoing 
attention bias modification (ABM) therapy found that their SL ability 
could predict therapeutic outcomes (Alon et al., 2019). Another study 
explored the relationship between negative emotional symptoms (such 
as depression, anxiety, and stress) and cognitive biases in information 
processing, showing that emotional states influenced both SL and 
cognitive biases (Herff et  al., 2023). These findings highlight the 
critical role of emotional modulation in SL, enhancing our 
understanding of the interplay among emotion, cognition, and 
learning, with potential implications for psychological interventions 
and therapies.

5.3 Predictive coding theory in 
emotion-statistical learning interaction

Predictive processing is crucial for SL (Dale et al., 2012; Hasson, 
2017). Online measures of SL suggest that participants make implicit 
predictions as they learn (Farmer and Smith, 2014). Predictive Coding 
(PC) Theory offers a framework for understanding how the brain 
processes information, acquires emotion categories, and makes 
inferences (Barrett, 2017; Smith et  al., 2019; Wager et  al., 2015). 
Initially proposed by Friston, this theory integrates empirical Bayes 
theory and a hierarchical model of cortical processing, suggesting that 
the brain predicts sensory inputs and adjusts these predictions based 
on actual sensory data to minimize prediction errors (Arnal and 
Giraud, 2012; Friston, 2005, 2010; Friston and Kiebel, 2009; Huang 
and Rao, 2011). This process enables efficient responses to 
environmental stimuli (Courville et al., 2006; Friston, 2010; Knill and 
Pouget, 2004; Spratling, 2017).

According to PC theory, the brain functions as a hierarchically 
organized system where higher processing levels attempt to predict 
the potential causes of sensory inputs received from lower levels. 
Neurons in higher layers generate predictions about incoming signals, 
continuously compared with actual signals from lower layers. This 
comparison allows the brain to reinforce or update its predictions 
based on whether they match the incoming signals. When predictions 
are incorrect, a prediction error signal is sent back to the predictive 
neurons, prompting adjustments. These recursive loops of predictions 
and error signals enable the brain to maintain accurate and up-to-date 
representations of both internal states and external stimuli. The 
concept of prediction error, a core element of PC Theory, has been 
applied to explore how individuals process and predict emotional and 
uncertainty information in social interactions, including decision-
making and impression management behaviors (FeldmanHall and 
Shenhav, 2019; Heffner and FeldmanHall, 2022; Heffner et al., 2021). 
This theory provides a framework for understanding the interaction 
between emotion and SL (Figure 4). Emotional statistical learning is 
a specific case of SL that can be implemented by predictive processing. 
The beliefs and predictive distributions during predictive processing 
dynamically shape human emotional experience and understanding.

To illustrate the modulation effect of emotions on statistical 
learning, we propose a tentative framework (Figure 5) base on the 
computational framework for investigating predictive processing 
developed by Skerritt-Davis and Elhilali (2021). This model maintains 
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a set of context beliefs or hypotheses representing previous input 
contexts, which are assumed to be inherently modulated by emotional 
factors such as emotional priority and negative bias (e.g., prioritizing 
emotional information and weighting more on negative emotional 
stimuli). This results in an emotion-modulated predictive distribution 
during processing. However, further validation of this interpretative 
framework is necessary through future empirical studies.

Bayesian computational models and theories of constructed 
emotion, aligned with neural computation and evolutionary biology 
principles, provide a novel perspective on the neural mechanisms 
underlying emotion (Barrett, 2017). The role of cross-modal social 

signals, such as facial expressions and vocal cues, in social cognition 
underscores the relevance of SL mechanisms. These mechanisms are 
pivotal in understanding emotion-related interpersonal 
communication and social cognition (Turesson and Ghazanfar, 2011). 
Researchers have developed computational models of implicit 
emotional learning based on prediction errors and statistical inference 
(Puviani and Rama, 2016; Puviani et  al., 2021). Additionally, 
mathematical models integrating emotional valence and arousal, 
grounded in the free energy theory, hold promise for applications in 
emotional intervention and computational approaches (Usuda and 
Yanagisawa, 2022).

FIGURE 4

Predictive coding theory on statistical learning (emotion SL as a specific case).

FIGURE 5

Emotion-modulated statistical learning based on predictive coding theory. Adapted from the computational framework for investigating predictive 
processing proposed by Skerritt-Davis and Elhilali (2021).
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6 Summary and open questions

SL research encompasses a broad range of domains, from behavioral 
studies to neural investigations, exploring its manifestations across 
auditory, visual, and tactile modalities and among diverse age groups. A 
notable trend is the increasing focus on how emotions influence SL, which 
promises to deepen our understanding of both cognitive and 
emotional processing.

Advancements in brain imaging technologies provide new avenues 
for examining the neural mechanisms underlying SL with both high 
temporal and spatial resolution. Future studies could explore how 
information is distributed across the brain and the effects of cross-modal 
integration, such as the interaction between auditory and visual 
information, on SL. Neuroimaging studies have identified key areas 
involved in SL tasks, including the hippocampus, inferior frontal gyrus, 
striatum, and superior temporal gyrus. Further exploration is needed to 
understand how these brain regions cooperate in the SL process.

In conclusion, SL is a fundamental cognitive mechanism with 
significant implications across developmental stages, neural foundations, 
individual differences, and states of consciousness. By elucidating the 
neural mechanisms and emotional modulation of SL, we can achieve a 
more comprehensive understanding of human learning processes. This 
understanding not only clarifies the complexities of cognitive development 
but also offers important theoretical insights for enhancing learning 
efficiency and developing targeted interventions. Future research should 
continue to explore these dimensions to fully grasp the intricate 
relationships between emotion, learning, and brain function.
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