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The phase slips are generally extracted from the EEG using Hilbert transforms 
but could also be extracted from the derivatives of EEG, providing additional 
information about the formation of cortical phase transitions. We examined this 
from the 30 s long, 256-channel resting state, eyes open EEG data of a 30-year-
old male subject. The phase slip rates, PSR1 from EEG, PSR2 from the first-order 
derivative of EEG, and PSR3 from the second-order derivative of EEG, respectively, 
were extracted. The study was performed in the alpha (7–12 Hz) band only. The 
spatiotemporal plots of the EEG and phase slip rates over a 3.0 s period with a 
0.5 s resolution were made with a montage layout of the 256 electrode positions. 
The spatiotemporal patterns of EEG and its derivatives exhibited shifting activity 
from posterior visual areas to the central and frontal regions over the 3.0 s period. 
The PSR1, PSR2, and PSR3 activity areas were different from the EEG and were 
distributed in larger areas as compared with the EEG and its derivatives. Also, 
the PSR2 and PSR3 activity areas and magnitudes were significantly different as 
compared with the PSR1 alone. This was also confirmed (p < 0.01) by the one-way 
ANOVA analysis of the means of PSR1, PSR2, and PSR3. These results show that 
PSR2 and PSR3 carry additional information that could potentially be biomarkers 
for studying the rate of formation of phase slips and the related cortical activity 
from the derivatives of EEG data.
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1 Introduction

The coordinated activity of a group of neurons at mesoscopic and sub-mesoscopic scales 
(~0.1–05 mm) is always in a state of criticality (Freeman et al., 2003; Kozma and Freeman, 
2017). Any slightest input, e.g., a visual stimulus or a thought, could trigger a phase transition, 
leading to small perturbations in the EEG data. These produce sharp episodic phase slips in 
the detrended unwrapped phase of the EEG, which can be extracted using Hilbert transform 
techniques (Ramon et al., 2023, 2024). These phase slips refer to the transition of neuronal 
activity between synchronous and asynchronous states, representing cortical phase transitions. 
Theoretical models of these cortical phase transitions are very similar to the Ising model of 
ferromagnetism (Beggs and Timme, 2012). A recent review paper summarizes many other 
examples of criticality and phase transitions in physics and biology (Heffern et al., 2021).

Typically, the phase slips are extracted from EEG. However, these can also be extracted 
from the first (d/dt) and second (d2/dt2) order derivatives of the EEG, giving us additional 
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information about how fast the cortical phase transitions are 
happening. This is the main theme of this study. The phase slips 
derived from the EEG and their derivatives provide unique 
opportunities to study the behavior of the cortical phase 
transitions. We have applied these new tools to study the cortical 
phase transitions from the resting state EEG in the alpha (7–12 Hz) 
band because its power is very high, and its phase-modulated 
activity changes during tasks (Ramon et al., 2023), the transition 
from wakefulness to drowsiness (Kalauzi et  al., 2015), brain 
stimulation (Aksenov et al., 2024), etc. However, these tools are 
generic and could be applied to any EEG data and in different EEG 
bands. The time-varying changes in EEG are related to the dynamic 
changes in the neuronal population at a mesoscopic scale that acts 
in a synchronized fashion (Pinotsis et al., 2012). Thus, the phase 
slip rates extracted from the EEG derivatives might help us better 
understand the underlying cortical neurodynamics and formation 
of burst oscillations. This understanding could have significant 
implications for resting-state brain behavior, event-related 
potentials, seizure evolutions, and many other aspects of brain 
function (Freeman and Quiroga, 2013). However, these need to 
be investigated with carefully designed studies.

In general, the first and second-order differencing of the time 
series EEG data is not a common procedure in EEG data analysis. 
In the past, it has been used to identify and eliminate the false 
ripples in the EEG data (Al-Bakri et al., 2022; Kobayashi et al., 
2021), tracking of alpha band activity during anesthesia (Obert 
et al., 2022), and to analyze self-organized criticality and the phase 
reset (Thatcher et  al., 2009, 2014). However, the application of 
derivatives of EEG to study the cortical phase transitions is 
relatively a new procedure, to our knowledge. The first and second-
order differentiations act like high pass filters which eliminate the 
linear trends and enhance the high-frequency signals in a given 
time series data set. The differentiation also causes the slope 
reversal which helps in better identification of the location of peaks 
in a time-series data (Mukhopadhyay et al., 2012; O’Haver, 2023). 
Similarly, the application of the Hilbert transform introduces a ± π, 
i.e., a total of 2π phase shift at the locations of changes in the slope 
and perturbations in the given time series data. This should 
be noted that the ±π phase shifts are not related to the amplitude 
of EEG or ECoG (Ramon et  al., 2024; Ramon et  al., 2023). 
Therefore, in summary, it is a possibility that a combination of 
differentiation and Hilbert transform might help to extract phase 
slips related to tiny perturbations in the EEG data which might 
be buried in the background random noise. Of course, one has to 
apply biological constraints to separate the phase slips due to 
biological processes as compared with the phase slips from the 
random noise (Ramon et al., 2023). Our reported results indicate 
that this is what is happening and this possibly could give us 
additional biomarkers to study the formation of cortical phase 
transitions from the derivatives of EEG data. Just as a note, in our 
previous work (Ramon et al., 2024), we took the derivatives of PSR 
by differentiating them. In contrast, in the current work, the PSR 

is computed from the derivatives of EEG, which relate directly to 
the changes in the neuronal populations.

In the following sections, we  give details of our methods, 
results, discussion, and conclusions.

2 Materials and methods

2.1 EEG data and phase slip rate 
computations

The phase slip rates (PSR) were extracted from the EEG and 
the EEG data’s first and second-order derivatives of the 
256-channel resting state, eyes open EEG data of a 30-year-old 
male subject. The data was collected with an ANT Neuro 
256-channel system at Reykjavik University, Iceland, under 
Iceland’s approved human subjects guidelines. The data was 
originally collected at a 16,384 Hz sample rate for 5 min. Randomly 
selected data of continuous 30 s duration was imported into 
MATLAB and down-sampled to 1,024 Hz for further analysis. The 
data was filtered with an equiripple filter in a broad band of 
3–49 Hz and then re-referenced to the common averaged 
reference. By use of the ICA (independent component analysis) 
techniques, the muscle, eyeblink, and heartbeat artifacts were 
removed. For this, we used the EEGLAB software. This cleaned-out 
EEG data was then filtered in the alpha (7–12 Hz) band with an 
equiripple filter and then used for phase slip extraction and PSR 
computations. The sawtooth patterns of the phase were extracted 
from the EEG data using Hilbert transform, which on unwrapping 
and detrending shows phase slips at the location of small 
perturbations in EEG data related to cortical phase transitions. A 
pictorial representation of these mathematical procedures is given 
in Figure  1. Some large phase slips are marked. These were 
obtained by taking the derivative of the unwrapped phase, which 
will be in the units of rad/s. Dividing this by 2π gives us the phase 
frequency in cycles/s or Hz.

The PSR from the phase slips was calculated in a stepping window 
of 10 ms duration with a step size of one digitization point which is 
equal to 1/1,024 s = 0.97 ms. These procedures were repeated for the 
EEG data’s first and second-order derivatives also. EEG and PSR 
spatial plots were constructed with a montage layout of 256 electrode 
positions [(Ramon et al., 2023); Refer to Figure 3] on a flat surface 
that included the approximate location of some prominent functional 
areas on the scalp surface (Dixon et  al., 2017; Gazzaniga and 
Mangun, 2014).

To separate the phase slips arising from the biological 
processes versus the random noise, several criteria were applied. 
These include: (1) phase slip frequency is within the alpha band 
of 7–12 Hz, (2) sign of the positive or negative peaks did not 
change for at least three consecutive time steps, and (3) the 
magnitude of the three consecutive peaks was within the 
mean ± 1.05σ of the three peaks. Application of these criteria 
helped to significantly reduce the counting of phase slips due to 
random noise and at the same time maximize the counting of 
phase slips from the biological processes. The differentiation of 
the EEG signal reduces the low-frequency signal while amplifying 
the high-frequency signal and the background noise (Chaddad 
et al., 2023; Mensen et al., 2017). This could potentially introduce 

Abbreviations: RMS, Root Mean Square; PSR, Phase Slip Rates; PSR1, Phase Slip 

Rate derived from EEG data; PSR2, Phase Slip Rate derived from the first derivative 

(d/dt) of the EEG data; PSR3, Phase Slip Rate derived from the second derivative 

(d2/dt2) of the EEG data.
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an error in phase slip computations from the derivatives of the 
EEG signal. However, it is important to note that these biological 
constraints still help to reduce the erroneous counting of phase 
slips from the amplified random noise. The next section will 
provide further insights into this. The reason is that the amplified 
random noise will likely have different slopes for consecutive time 
steps, and their amplitudes might be out of bounds for a given 
frequency band.

2.2 Surrogate data testing

After filtering in the alpha band, the PSR of random noise was 
computed from the randomly shuffled EEG data. We used the 
‘randperm’ command in the MATLAB software for this. These 
techniques have been used before by us (Ramon et  al., 2024; 
Ramon et al., 2023) and also described in a recent paper (Lancaster 
et al., 2018) on surrogate data analysis. The power spectral density 
of the randomly shuffled EEG data was significantly different 
from the original EEG data, and it was close to a white noise. The 

phase slips were extracted from the randomized EEG data and 
then randomly shuffled. After that, the PSR was computed in a 
stepping window of 10 ms duration with a step size of one 
digitization point. The mean and standard deviations of PSR were 
found to be  zero after averaging over n = 100 trials. A similar 
analysis was also performed on the PSR derived from the first and 
second-order derivatives of the randomly shuffled EEG data. It 
was found that in these cases, the mean and standard deviations 
of PSR from the shuffled data were also zero after averaging over 
n = 100 trials. This shows that our reported results are from the 
biological processes extracted from the EEG data above the 
random noise.

2.3 Computational resources

The data analysis was performed on a desktop computer with an 
8-core CPU and 112 GB of memory using EEGLAB (Delorme and 
Makeig, 2004). For computations of PSR requiring more significant 
(>112 GB) memory, we  used MATLAB software at the UCSD 

FIGURE 1

A pictorial representation of the mathematical procedures to extract phase slips from the EEG data. (A) EEG trace in the alpha band from one of the 
electrodes in the left occipital area, back of the head, (B) saw tooth pattern of the spontaneous phase after taking Hilbert transform of the EEG, 
(C) unwrapped phase showing some episodic phase shifts, and (D) phase slips after taking the derivative of the unwrapped phase.
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(University of California, San Diego) supercomputing center using 
their NSG (Neuroscience Gateway) portal.

3 Results

3.1 Temporal plots of one electrode

The EEG, its derivatives, and the PSR computed from these 
for one of the electrodes in the front central area are given in 
Figure 2. The top row is for the EEG voltage, y (μV), first-order 
derivative, y′ (μV/s), and the second-order derivative, y″ (μV s−2). 
The bottom row is for the PSR derived from the EEG and its 
derivatives. Here EEG voltage is represented as a time series data: 
y = y1 + y2 + … + yn, as used earlier (Kobayashi et al., 2021). The 
PSR1 is from the EEG, the PSR2 is from the first derivative of 
EEG, and the PSR3 is from the second derivative of EEG, 
respectively.

The variable, y, is the EEG filtered in the alpha (7–12 Hz) band 
with sinusoidal amplitude varying between ±7 μV. The first-order 
derivative, y′ (μV/s), represents the rate of change of the EEG signal 
and its amplitude varies between ±0.4 μV/s. The second derivative, y″, 
is the acceleration of the EEG signal, y, and its amplitude varies 
between ±0.02 μV s−2. One can also see the slow spindling oscillations 
of theta (3–7 Hz) band over the carrier frequency of the alpha 
(7–12 Hz) band. These are observable in the EEG signal y, and also in 
the derivatives, y′, and y″.

The magnitude of the PSR1 varies between 1.7 and 9.0 counts/
(10 ms), or #/(10 ms). Here # refers to the number of counts. The 
magnitude of the PSR2 varies between 0.12 and 2.6 #/10 ms. The 
magnitude of the PSR3 varies between 0.0 and 2.12 #/10 ms.

As anticipated, taking the derivatives of EEG removes the 
linear trends in the EEG data and slightly amplifies the high-
frequency perturbations in the EEG data. The one-way ANOVA 
(analysis of variance) analysis was performed on the PSR1, PSR2, 
and PSR3. It was found that the means of all three quantities were 
significantly (p < 0.01) different from each other. A similar 
ANOVA analysis was performed on the PSR of all other 255 
electrodes. It was found that for each electrode, the means of PSR1, 
PSR2, and PSR3 were significantly (p < 0.01) different from 
each other.

3.2 Spatial plots

For the spatial plots, we have computed the root mean square (RMS) 
values for the EEG and its derivatives, i.e., y, y′, and y″. For a sinusoidal 
time-varying signal, it is better to use RMS values as compared with the 
mean of the signal. The RMS values were computed within a stepping 
window of 0.5 s covering the period of 0.0–3.0 s. This was an arbitrary 
choice to show the changes in six frames of spatiotemporal patterns 
during the range of 3.0 s as shown in Figure  3. However, a shorter 
window could also be used for finer details.

Figure 3 is divided into three sections, (A), (B), and (C). The top two 
rows in section (A) refer to the spatial plots of RMS EEG, i.e., RMS y 
(μV), and the mean values of associated phase slip rate, i.e., mean of PSR1 
(#/(10 ms)), respectively. The RMS and mean values were computed in 
the stepping window of 0.5 s duration. Similarly, the middle two rows 
marked as section (B) are the spatial plots of the RMS value of the first-
order derivative of EEG, i.e., RMS y′ (μV/s), and the mean values of its 
associated phase slip rate, PSR2 (#/(10 ms)), respectively. The bottom two 
rows marked as section (C) are the spatial plots of the RMS values of the 

FIGURE 2

The EEG and its first and second derivatives are in the top row, followed by the phase slip rates in the bottom row. The PSR1 is the phase slip rate 
extracted from the EEG, y. The PSR2 is the phase slip rate extracted from the first-order derivative of EEG, y′. The PSR3 is the phase slip rate extracted 
from the second-order derivative of EEG, y″.
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second-order derivative of EEG, i.e., RMS y″ (μV s−2), and the mean 
PSR3 (#/(10 ms)), respectively. The temporal duration for each frame 
and the frame numbers are given at the top.

Looking at Figure 3A, the focus of the spatial location of RMS y shifts 
from the left visual (posterior left) in Frame 1 to the front central area in 
Frame 4 and then again to the left visual area in Frame 6. This would 
suggest that during the 3.0 s period, the brain activity shifts from the left 
visual to the front central and then to the left visual area again. Another 
point to note is that in the majority of the frames, the midline central 
areas have very low activity. In comparison to y, i.e., RMS EEG potentials, 
the mean values of the PSR1 are spread in wide areas in each frame. In 
addition, there are some noticeable spatial differences from one frame to 
the next frame. In Frame 1, most activity is on the left side visual, 
posterior, and central areas. Then in Frame 2 and Frame 3, it shifts 
slightly in the frontal and the right front central areas. The activity is 
reduced in magnitude all over in Frame 4, but the spatial pattern is 
similar to Frame 3. After that in Frame 5, it is mainly concentrated in the 
left temporal and frontal areas. It is widespread all over in Frame 6 with 

maximum activity in the left visual area which matches with the activity 
area of RMS y. Similar spatiotemporal differences between EEG activity 
and the PSR have been observed earlier in a visual evoked potential study 
(Ramon et al., 2023).

A one-way ANOVA analysis was performed on the six frames of 
RMS y and it was found that they were significantly (p < 0.01) different 
from each other. Similarly, a one-way ANOVA analysis was also 
performed on the six frames of the mean PRS1 and it was found that they 
were significantly (p < 0.01) different from each other. Overall the spatial 
patterns of the mean PSR1 activity are significantly different from the 
RMS y activity. This was confirmed by the paired t-test for each frame 
between the two variables, RMS y and mean PSR1. It was found that they 
were significantly (p < 0.01) different for each of the six frames.

In Figure 3B, the spatial plots for six frames for the RMS y′ and 
the mean of PSR2 are given. These spatial plots of RMS y (Figure 3A) 
and RMS y′ (Figure 3B) are very similar. This would suggest that the 
EEG and its first derivatives are spatially in the same place, i.e., at the 
same electrodes. In comparison, the spatial plots of the means of PSR1 

FIGURE 3

Spatiotemporal plots of the root mean square (RMS) values of EEG and its derivatives, and their associated mean values of phase slip rates. The RMS 
and mean values were computed in the stepping window of 0.5 s duration. The temporal duration for each frame is given at the top. (A) The top two 
rows are for the RMS y (μV) and the mean PSR1 (#/(10 ms)), respectively. (B) The middle two rows are the for the RMS y′ (μV/s) and the mean PSR2 (#/
(10 ms)), respectively. (C) The bottom two rows are the RMS y″ (μV s−2) and the mean PSR3 (#/(10 ms)), respectively. Notice the spatial changes in going 
from one frame to the next.
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and PSR2 are very different. In Frame 1, the mean PSR1 activity is 
spread on the left side in a wide area, while the mean PSR2 activity is 
strongly focused in the left visual area. Similar differences are 
observable in the other frames also. One thing to note is that the 
spatial patterns of RMS y′ and the PSR2 are very similar with 
heightened activity in the visual and the frontal regions in most of the 
frames. A one-way ANOVA analysis was performed on the six frames 
of RMS y′ and it was found that they were significantly (p < 0.01) 
different from each other. Similarly, a one-way ANOVA analysis was 
also performed on the six frames of the mean PRS2 and it was found 
that they were significantly (p < 0.01) different from each other. The 
paired t-test for each frame between the two variables, RMS y′, and 
mean PSR2 was performed. It was found that they were significantly 
(p < 0.01) different from each other for all of the six frames.

The spatial plots of RMS y″ and the mean PSR3 are given in 
Figure 3C. The spatial patterns of RMS y, RMS y′, and RMS y″ are very 
similar. However, spatial patterns of the mean PSR2 and mean PRS3 
are very different in each of the six frames. There are some similarities 
between the spatial plots of the mean PRS1 and the mean PRS3. A 
one-way ANOVA analysis was performed on the six frames of RMS 
y″ and it was found that they were significantly (p < 0.01) different 
from each other. Similarly, a one-way ANOVA analysis was also 
performed on the six frames of the mean PRS3 and it was found that 
they were significantly (p < 0.01) different from each other. The paired 
t-test for each frame between the two variables, RMS y″, and the mean 
PSR3 was performed. It was found that they were significantly 
(p < 0.01) different from each other for all of the six frames.

3.3 Results from other data segments

Similar analyses as given in Figure 3 were performed on 10 randomly 
selected EEG data of 3.0 s duration out of 30 s long data. For each trial 
RMS values of y, y′, and y″ over a 3.0 s duration were computed. Also, the 
mean values over a 3.0 s period for PSR1, PSR2, and PSR3 were 
computed. This gives us 256 electrode values for each variable, i.e., RMS 
y, RMS y′, etc. A one-way ANOVA analysis was performed on the RMS 
values of y, y′, and y″, and also on the mean values PSR1, PSR2, and 
PSR3. It was found that the RMS values of y, y′, and y″ were significantly 
(p < 0.01) different from each other. Similarly, the mean values PSR1, 

PSR2, and PSR3 were also significantly (p < 0.01) different from 
each other.

Later on, the quantities were averaged over all 256 electrodes and are 
written as: y , y′, y′′, 1PSR , 2PSR , and 3PSR . To get y , first, the RMS 
value of the EEG potentials for each electrode was computed for the time 
period of 3.0 s and then averaged over the values for all 256 electrodes. 
For the computation of 1PSR , first, the mean value of the PSR1 for each 
electrode was computed for the time period of 3.0 s and then averaged 
over the values for all 256 electrodes. Similar procedures were used for 
the remaining quantities and all are tabulated in Table 1.

A one-way ANOVA analysis with two groups was performed. One 
group was: y , y′, and y′′. The other group was: 1PSR , 2PSR , and 3PSR . 
It was found that values for each group were significantly different from 
each other (p < 0.01). This statistical analysis shows that the information 
contained in PSR1, PSR2, and PSR3 is significantly (p < 0.01) different 
from each other and will suggest that one can derive additional 
information from the first and second-order derivatives of EEG data.

4 Discussion

Our results indicate that PSR obtained from the first and second 
derivatives of the EEG data have additional information as compared with 
the PSR derived from the EEG data alone. This was the main objective of 
this investigation. This additional information might be related to how 
fast the phase slips are arising which in turn relates to how fast and how 
many neurons are taking part in the cortical phase transitions. In general, 
coordinated activity of neurons happens at the minicolumn level which 
is about 28–40 μm in size and contains about 80–120 neurons (Bennett, 
2020; Mountcastle, 1957; Sporns et al., 2005). These minicolumns are also 
called microcolumns in the literature. Neurons in these minicolumns are 
interconnected, have common inputs and outputs, and form basic 
computational units for the genesis of burst oscillations and subsequent 
local field potentials in the cortex and then the scalp EEG potentials 
(Friston et al., 2015; Pinotsis et al., 2012). The coordinated activity of 
neurons at minicolumn resolution could also be considered as a building 
block of cortical phase transitions (Freeman and Vitiello, 2006, 2010; 
Freeman and Quiroga, 2013) which give rise to the phase slips in the EEG 
data. Thus, in a sequential causative fashion, the phase slips and the PSR 
derived from the EEG and the derivatives of EEG give us additional 

TABLE 1 Averaged values for each trial.

Trial number y  (μV) y′  (μV/s) y′′  (μV s−2) 1PSR  #/(10 ms) 2PSR  #/(10 ms) 3PSR  #/(10 ms)

1 3.16 0.20 0.0129 4.20 1.03 1.20

2 2.83 0.17 0.0108 5.12 1.25 1.20

3 2.56 0.15 0.0096 5.53 1.34 1.21

4 2.39 0.14 0.0085 5.82 1.38 1.21

5 2.35 0.14 0.0085 5.95 1.38 1.16

6 2.51 0.15 0.0090 6.15 1.41 1.16

7 3.33 0.19 0.0120 6.33 1.51 1.21

8 3.49 0.20 0.0122 6.61 1.57 1.29

9 3.45 0.20 0.0120 6.51 1.55 1.29

10 2.72 0.15 0.0091 6.44 1.46 1.27

Mean ± std 2.88 ± 0.44 0.17 ± 0.03 (10.5 ± 2) × 10−3 5.87 ± 0.75 1.39 ± 0.16 1.22 ± 0.05

First, the RMS values of EEG, y, and its derivatives, y′, and y″ over a 3.0 s period were computed and then averaged over all 256 electrode values. These quantities are: y, y′, and y′′ . For the 
phase slip rates, PSR1, PSR2, and PSR3, the mean values over a 3.0 period were computed and then averaged over all 256 electrode values. These quantities are: 1PSR , 2PSR , and 3PSR .
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information about the cortical phase transitions. However, all of this 
needs to be ascertained through large-scale simulation studies which 
we hope some research groups will take on this task. Another point to 
note is that, in general, the coordination of the neuronal activity happens 
at the minicolumn level. However, minicolumns in different parts of the 
brain are connected through axonal pathways. Thus, one could see this 
coordination of neuronal activity at the local and global levels in the whole 
cortex and this is what generally is observed in phase synchronization and 
phase slip studies from the EEG and ECoG data (Freeman et al., 2003; 
Ramon and Holmes, 2015; Ruiz et al., 2010).

The phase slip rate, PSR1 is extracted from the EEG data and tells us 
how many cortical phase transitions are happening in a given time 
window. Here we have used a stepping time window of 10 ms which 
gives us PSR1 in the range of 0–10 counts/(10 ms). The PSR2 is extracted 
from the first derivative (d/dt) of the EEG, y′ (μV/s). The PSR2 is related 
to the rate of change of EEG and it is not the derivative of PSR1. The rate 
of change of EEG, i.e., y′, would depend on how many neurons at any 
given moment are joining or leaving the process of cortical phase 
transitions. In a simple way, the PSR2 represents the rate of change of 
EEG which in turn relates to the rate of change of cortical phase 
transitions, and which in turn relates to the changes in the population of 
neurons taking part in the process of cortical phase transitions (Freeman 
and Vitiello, 2006, 2010). Similarly, the PSR3 will represent the 
acceleration, or deceleration, of the EEG which in turn will relate to the 
acceleration or deceleration of cortical phase transitions.

The spatial plots for PSR in the alpha band in our previous work 
[(Ramon et al., 2023), Figure 6] are significantly different as compared 
with PSR1 spatial plots (Figure  3A) of the current work. This 
difference, stemming from the previous study’s focus on visual object 
naming tasks and the current research on the resting state eyes open, 
could potentially be a reason. The electrical activity related to the 
default mode networks for the resting state is spread in the broader 
brain area that is deactivated and replaced with focused brain areas 
during cognitive tasks (Menon, 2023; Zhang et al., 2022). This needs 
further investigation with a properly designed study.

Our main objective in this study was to develop a new technology 
for computing PSR from the derivatives of EEG and show its efficacy in 
studying cortical phase transitions. Our results have reliably shown this 
from one subject in the alpha (7–12 Hz) band. These findings should 
be further studied in the different EEG bands, such as in theta (3–7 Hz), 
beta (12–30 Hz), low gamma (30–50 Hz) and high gamma (50–80 Hz) 
bands. Further extension to a higher frequency (80–250 Hz) band might 
also be good which often are characterized by epileptogenic activities 
(Kobayashi et al., 2021; Ramon and Holmes, 2020; Ramon et al., 2018). 
Similarly, the application of these procedures to other types of EEG data 
sets will also be helpful.

Overall, we  summarize that the PSR derived from the first and 
second-order derivatives of EEG provide additional information to the 
PSR derived from the EEG alone. In this respect, this technique could 
be considered as an additional biomarker to the traditional methods, 
such as EEG power or phase-amplitude coupling, to study the brain 
behavior from the EEG data.

Author’s note

Some preliminary results were presented as a virtual poster at the 
10th Annual BRAIN Initiative Conference: celebrating a decade of 

innovation. June 17–18, 2024; Rockville, MD, USA and Virtual. 
Poster #349. Poster title: EEG derivative-related phase slips provide a 
deeper insight into cortical phase transitions.
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