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Distractor anticipation during
working memory is associated
with theta and beta oscillations
across spatial scales
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1Neuroscience Graduate Program, University of Rochester, Rochester, NY, United States, 2Center for
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Introduction: Anticipating distractors during working memory maintenance is

critical to reduce their disruptive e�ects. In this study, we aimed to identify

the oscillatory correlates of this process across di�erent spatial scales of neural

activity.

Methods: We simultaneously recorded local field potentials (LFP) from the

lateral prefrontal cortex (LPFC) and electroencephalograms (EEG) from the scalp

of monkeys performing a modified memory-guided saccade (MGS) task. The

monkeyswere required to remember the location of a target visual stimuluswhile

anticipating distracting visual stimulus, flashed at 50% probability during the delay

period.

Results: We found significant theta-band activity across spatial scales during

anticipation of a distractor, closely linked with underlying working memory

dynamics, through decoding and cross-temporal generalization analyses. EEG

particularly reflected reactivation of memory around the anticipated time of a

distractor, even in the absence of stimuli. During this anticipated time, beta-

band activity exhibited transiently enhanced intrahemispheric communication

between the LPFC and occipitoparietal brain areas. These oscillatory phenomena

were observed only when the monkeys successfully performed the task,

implicating their possible functional role in mitigating anticipated distractors.

Discussion: Our results demonstrate that distractor anticipation recruitsmultiple

oscillatory processes across the brain duringworkingmemorymaintenance,with

a key activity observed predominantly in the theta and beta bands.

KEYWORDS

distractor anticipation,workingmemory, neural oscillations, non-humanprimates, local

field potentials, electroencephalography

1 Introduction

Imagine the moment just before serving in a tennis match. You plan to serve the ball

in a location well beyond your opponent’s reach. With this target in mind, you toss the

ball into the air. But just as you enter a service motion, your opponent suddenly moves

toward the intended location. This unanticipated movement distracts you, throwing off

your timing and, alas, resulting in a faulty serve. Your planned action faltered because your

working memory could not withstand the unexpected distraction.

Working memory is a cognitive function that allows for the temporary maintenance

and manipulation of information relevant to immediate goal-directed tasks (Baddeley,

1992; D’esposito et al., 1995; Miller and Cohen, 2001; Pasternak and Greenlee, 2005;

Miller et al., 2018). It emerges from the coordinated, sustained activation of neurons
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distributed across the brain capable of transiently encoding task-

relevant information (Pasternak and Greenlee, 2005; Christophel

et al., 2017; Leavitt et al., 2017; Sreenivasan and D’Esposito, 2019;

Dotson et al., 2018; Mejias and Wang, 2022). The lateral prefrontal

cortex (LPFC) plays a central role in maintaining and controlling

this information (Goldman-Rakic, 1995; Rainer et al., 1999; Miller

et al., 1996, but see Lara and Wallis, 2014; Konecky et al., 2017;

Mendoza-Halliday et al., 2024b), as implicated by its enhanced

memory-dependent activity (Kubota and Niki, 1971; Fuster and

Alexander, 1971; Funahashi et al., 1989) and communication with

other relevant brain areas (Salazar et al., 2012; Jacob et al., 2018;

Liebe et al., 2012) during the delay period of working memory

tasks. In the face of distractors, encoding of memory remains

uninterrupted in lateral prefrontal cortex (LPFC) (Sakai et al.,

2002; Miller et al., 1996; Yoon et al., 2006) and across the brain

(Hallenbeck et al., 2021) despite distractors’ detrimental effects on

behavior (Brown, 1958; Clapp et al., 2010; Lorenc et al., 2021).

While the effects of distractors on working memory are well-

documented, less is understood about how anticipating distractors

affects memory maintenance and associated neural dynamics

across spatial scales of brain signals.

Distractions are thought to be mitigated by either enhancing

memory representation or reducing distractor representation, or

a combination of both (Foxe and Snyder, 2011; Liesefeld et al.,

2020; Lorenc et al., 2021). Effective mitigation often relies on prior

knowledge of distractors, such as anticipatory cues or statistcal

regularities (Payne et al., 2013; Bonnefond and Jensen, 2012;

de Vries et al., 2019; van Ede et al., 2020; Gresch et al., 2021;

Nobre and van Ede, 2023; Magosso and Borra, 2024). In the tennis

example, if your opponent moves predictably you are less likely

to be distracted during your service. Anticipating forthcoming

events, like distractions, is known to modulate neural oscillations at

different frequency bands and spatial scales, as shown in monkeys,

for which prefrontal beta-band oscillations predict anticipation

of upcoming stimulus (Wimmer et al., 2016a), and humans, for

which scalp alpha-band oscillations reflects suppression of activity

when distractors are anticipated (Klimesch et al., 2007; Snyder

and Foxe, 2010; Foxe and Snyder, 2011; Bonnefond and Jensen,

2012; Banerjee et al., 2011). Yet, it remains unclear whether these

oscillatory patterns associated with anticipatory processes during

working memory maintenance are universal across brain signals of

different spatial scales. Furthermore, given the role of oscillations

in communication between brain areas (Fries, 2005), how these

oscillations facilitate communication among brain areas relevant

for working memory maintenance in the face of anticipated

distractors remains unclear.

In the present study, we examined how distractor anticipation

impacts the representation of encoded memory items and the

communication between the LPFC and the rest of the brain.

We simultaneously recorded local field potential (LFP) from

the LPFC and electroencephalogram (EEG) from the scalp of

monkeys performing a spatial working memory task, where

the monkeys had to remember the location of memory items

while ignoring a distracting visual stimulus, which appeared

with a 50% probability at a predictable time during the

delay period. We found that oscillations around the so-called

“theta” frequency range (approximately 5Hz) in the LPFC and

scalp EEG were related to working memory dynamics during

distractor anticipation through time-series and cross-temporal

decoding analyses. Memory-dependent signals in EEG theta-band

oscillations initially diminished during the memory delay period,

but reemerged after the anticipated time of the distractor when

no stimulus was presented. This reactivation of memory was

not observed when monkeys failed the task. In the LPFC, theta-

band oscillations reflected memory items encoded among LPFC

neurons in response to a distractor, which was not observed

when the monkeys failed the task. However, unlike EEG theta-

band oscillations, no spontaneous reactivation of memory was

observed during the anticipated distractor time. We also found

that beta-band oscillations (13–30 Hz) reflected strong interareal

coherence across the brain, with a notable interaction detected

between the LPFC recorded intracortically and EEG overlying

the occipitoparietal cortex. The strength of beta-band coherence

transiently enhanced around the anticipated distractor time, but

only in successful trials, implicating its possible functional role in

mitigating anticipated distractions.

2 Materials and methods

2.1 Subjects

Three adult male macaque monkeys (Macaca mulatta),

identified as “R” (7 yrs old), “W” (7 yrs), and “T” (9 yrs), were used

in this study. All experimental procedures were approved by the

University of Rochester Committee on Animal Resources (UCAR)

and adhered to the guidelines established by the National Institutes

of Health (NIH) Guide for the Care and Use of Laboratory Animals

(National Research Council, 2011). Surgeries were performed

using asceptic technique under isoflurane general anesthesia with

perioperative opiate analgesics and antibiotics.

The monkeys were housed either individually or in pairs at the

primate facility of the University of Rochester on a 12-hour light-

dark cycle (from 7 am to 7 pm) and provided with a nutritionally

balanced diet, monitored by on-site veterinarians and animal

facility staff. Water intake was regulated, ensuring a minimum of

20 ml/kg/day during experimental sessions and a minimum of 60

ml/kg on non-experimental days. Regular health assessments were

performed by trained personnel, including onsite veterinarians and

experienced laboratory members familiar with primate care.

Each monkey was surgically fitted with a titanium head

post to facilitate head stabilization during experimental sessions.

Additionally, two monkeys (R and W) underwent implantation

of high-density microelectrode arrays for intracranial neural

recordings in the LPFC (area 46v) (Figure 1a). These surgeries

were guided based on structure magnetic resonance imaging

(MRI) scans obtained with a 3T scanner and intraoperative visual

confirmation of the LPFC by identification of arcuate and principal

sulci during surgery. Monkey R had a 128-channel NeuroNexus

Matrix microelectrode array (NeuroNexus, Ann Arbor, MI, USA)

implanted in the left hemisphere. The Matrix array had 16 shanks,

each 2 mm long, arranged in a 4 × 4 grid with 400 µm inter-

shank spacing; each shank consisted of 8 recording sites spaced

200 µm apart, with the deepest site 38 µm from the tip of the

shank.MonkeyW received a 96-channel Utahmicroelectrode array

(Blackrock Microsystems, Salt Lake City, UT, USA) in the right

hemisphere (Figure 1a). The Utah array consisted of 100 shanks,
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FIGURE 1

Approximate implant sites for microelectrode arrays used for LFP recording in the LPFC (a). Monkey R received a 128-channel NeuroNexus Matrix

array in the left LPFC, while monkey W received a 96-channel Utah array in the right LPFC. The 32-channel EEG electrode cap montage (b).

Electrodes that maintained stable contact with the scalp across all monkeys are marked with filled circles (N = 21 channels). Frontal EEG channels

are highlighted in green (N = 12 channels; labeled 1–12), and occipitoparietal channels in red (N = 9 channels; labeled 13–21).

each 1 mm long, arranged in a 10 × 10 grid with 400 µm inter-

shank spacing, with a single recording site at the tip of each shank.

Four of the sites were not active (96 active sites). These electrode

array implantations were performed once the monkeys learned

the task.

2.2 Behavioral task

Monkeys were trained on a modified version of a memory-

guided saccade (MGS) task (Figure 2), a well-established paradigm

for studying working memory in primates (Funahashi et al., 1989;

Gnadt and Andersen, 1988; Chafee and Goldman-Rakic, 1998;

Reinhart et al., 2012). Each trial began with the onset of a circular

blue central fixation point (CFP) (RGB: 0, 0, 255; 7 pixels in

radius or 0.23 degrees of visual angle (DVA)) at the center of

the screen. Once the monkeys successfully fixated on the center

fixation point for 500 ms, a target visual stimulus (RGB color:

255,0,255; a 25 pixel radius or 0.81 DVA magenta circle) was

briefly presented (50 ms for monkeys R and T, or 100 ms for

monkey W; adjusted based on monkeys’ behavioral performance)

on one of four possible locations with equal probability (45◦,

135◦, 225◦, and 315◦ relative to the rightward horizontal direction

from the CFP; distance from the CFP to the target was 171 pixels

or 5.5 DVA).

Monkeys were required to remember the location of a

briefly-shown target visual stimulus (the “memory item”, or

simply “item”) while fixating on the CFP for a ∼2000-ms delay

period. In half of the trials, a checkerboard visual stimulus (a

high contrast, contrast-reversing, checkerboard-pattern stimulus;

8 video frames, 8.33 ms per frame, checksize 100 pixels or

3.2 DVA, eight rows and columns) was flashed (67 ms total)

during the delay period (700 ms after the target onset). When

the CFP disappeared at the end of the delay period, monkeys

were required to saccade to within 2◦ of the center of the

remembered target location. A correct saccadic response rewarded

monkeys with a few drops of water or juice; otherwise, no

reward was delivered. The inter-trial interval was fixed at 500 ms

when correctly performed; otherwise, the inter-trial interval was

longer (1000 ms).

2.3 Visual stimuli and experimental setup

Experiments were performed in a sound-attenuated, darkened

room. Visual stimuli were generated in MATLAB (MathWorks,

Natick, MA, USA) using the Psychophysics Toolbox extensions

(Brainard, 1997; Pelli, 1997; Kleiner et al., 2007) and displayed

on a gray background (52 cd/m2) on a gamma-corrected 24-inch

ViewPixx monitor (VPixx Technologies, QC, Canada) covered

with a transparent acrylic sheet. The viewing distance was

approximately 49 cm from the monitor relative to the nasion of

the monkey. A digital synchronization output from the ViewPixx

monitor was used to synchronize the onset of visual stimuli with

neural recordings.

2.4 Oculomotor tracking

We used the EyeLink 1000 Plus system (SR Research Ltd.,

Ottawa, ON, Canada) to track eye position at a sampling rate

of 1 kHz. The EyeLink 1000 Plus Camera and EyeLink PM-910

Illuminator Module were positioned above and in front of the

monkey’s head, while a coated mirror that transmitted visible light

(e.g., from the ViewPixx monitor) and reflected infrared light

(e.g., infrared eye tracker from the EyeLink system) was placed

at an angle in front of the monkey’s head. For each session, the

monkey’s eye position was calibrated using custom experimental

control software written in MATLAB and monitored online during

the experiment.

2.5 Neural recordings

We recorded LFP and EEG at 30 kHz sampling rate using the

Ripple Grapevine Neural Interface Processor (NIP) system (Ripple,

Salt Lake City, UT, USA).

LFP was recorded from the LPFC of monkeys R and

W following a two-week recovery period post-microelectrode

implantation surgery to ensure stable LFP acquisition (Figure 1a).

It is noteworthy that the Matrix array spans from the superficial to

deep layers, while the Utah array is fixed in the superficial layer (1
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FIGURE 2

A modified MGS task with a checkerboard stimulus flashed during the delay period (a). Each trial began with a 500 ms display of the CFP. After

successful fixation on the CFP, a target visual stimulus (item) briefly appeared on the screen (50 ms or 100 ms, depending on monkey). In half of the

trials, the checkerboard visual stimulus flashed for 67 ms during the delay period (700 ms relative to the item onset). Monkeys then made a saccade

to the remembered location of the item at the end of the delay period to receive a reward. (b) Saccadic reaction time (in ms; ±1 SEM). (c) Saccade

endpoint variance (in ◦2; 90% percent bootstrap confidence interval) for each trial and item condition. ND, No Distractor; WD, With Distractor. *p <

0.05, **p < 0.01; ***p < 0.001.

mm electrode length). As the common cortical reach for these two

different arrays was the superficial layer of the LPFC, we focused

on analyzing LFP collected from the superficial (1 mm) layers of

both arrays. This included LFP collected from 32 channels of the

NeuroNexus array in monkey R and 96 channels of the Utah array

in monkey W.

For EEG recordings, we utilized a custom 32-channel Sn

electrode EEG cap (Electro-Cap International, Inc., Eaton, OH,

USA) with a custom montage based on the International 10–

20 system (Jasper, 1958). We used a conductive gel (Parker

Signagel Electrode Gel; Parker Laboratories, Inc., Fairfield, NJ,

USA) to maintain electrical contact with the scalp. Recordings were

made from the electrodes that established stable contact with the

monkey’s scalp, as some electrodes failed to maintain stable contact

due to external head implants, such as a head post. Therefore, out

of the 32 available electrodes, 21 electrodes that made stable contact

across all monkeys were used for analysis (Figure 1b). Physical EEG

electrode positions on the monkey’s head were measured using a

Fastrak digitizer (Polhemus Inc., Colchester, VT, USA).

In some sessions, we simultaneously recorded LFP and EEG

data from monkeys R (N = 6 sessions) and W (N = 7 sessions).

2.6 Data analysis

2.6.1 Data preprocessing
LFP and EEG data were processed and analyzed in MATLAB

(MathWorks, Natick, MA, USA) primarily using the FieldTrip

MATLAB toolbox (Oostenveld et al., 2011) and the Chronux

Toolbox (Mitra and Bokil 2008, http://www.chronux.org). Power

line noise was removed with a band-stop Infinite Impulse Response

(IIR) filter using a MATLAB’s built-in filtfilt function (a 2nd-

order two-pass Butterworth filter with a cutoff band of 55 Hz

to 65 Hz). We then epoched the data in trials from -500 ms to

2500 ms relative to the onset of the target visual stimulus. The

epoched data were high-pass filtered at 0.05 Hz using a 4th-order

two-pass Butterworth filter (ft_preprocessing) then trials and the

channels that did not meet our criteria were discarded using the

FieldTrip visual artifact rejection function (ft_rejectvisual). Trials

with excessively high z-values (e.g., 3 times the standard deviation),

variance, kurtosis, or voltage amplitude were discarded. Trials

were then re-referenced (i.e., common averaging re-reference),

detrended, and downsampled to 100 Hz. For LFP, we removed

the channels with excessively high variance and amplitudes. For

EEG, as noted inMaterials andMethods, we discarded the channels

without stable scalp contact across monkeys (refer to Figure 1b).

2.6.2 Oculomotor movement analysis
To calculate saccadic reaction time, we measured time

difference between the time when the CFP disappeared at the end

of the delay period of theMGS task and the time when themonkey’s

saccade landed within the target location.

To quantify saccade endpoint variance, we computed the

generalized variance (GV) of saccadic endpoints for each target

location. A saccade endpoint was a two-dimensional gaze position

where the monkey’s saccade landed on the target location. Each

saccade endpoint was centered by subtracting the centroid of all

saccade endpoints corresponding to that target. The GV (unit:
◦2) was then quantified by calculating the determinant of the

covariance matrix (Wilks, 1932). To test for significant change

in saccade endpoint variance between the No Distractor (ND)

and With Distractor (WD) conditions, we performed F-tests,

followed by the calculation of the 90% confidence interval using

bootstrapping (iterated 10,000 times).

2.6.3 Power spectral analysis
Although the approximate frequency and function of neural

oscillations seems reasonably conserved across animals (Buzsáki

et al., 2012), rather than using “consensus” values for oscillatory

frequencies of interest, we instead identified the dominant

oscillatory frequency bands for each individual subject and neural

data set (LFP and EEG) in an objective and data-driven way.
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First, we reduced the dimensionality of each neural data set using

principal component analysis (PCA) implemented in the FieldTrip

ft_componentanalysis function (parameter: method = “pca”), and

focused on the first principal component (PC1), which represents

the greatest variance in the data set. To identify significant

oscillatory bands, we computed average power spectral density

estimates from PC1 using the Chronux mtspectrumc function

(frequency range: 1–12 Hz, 2 Slepian tapers with a time-bandwidth

product of 3; frequency range: 12–40 Hz: 3 Slepian tapers with

a time-bandwidth product of 5) (Slepian and Pollak, 1961).

We then characterized the significant oscillatory bands from the

average power spectral density estimates using the FOOOF (Fitting

Oscillations and One Over F) toolbox, which tests oscillatory

(periodic) components against against the aperiodic component

(parameters: peak_width_limits = [2, 12], max_n_peaks = 4,

min_peak_height = 0.05, peak_threshold = 2.0, aperiodic_mode

= “fixed”) (Donoghue et al., 2020).

2.6.4 Time-frequency analysis
To examine LFP and EEG data in both time and frequency

domains, we performed time-frequency analysis on individual

PC (principal component) trials using a complex Morlet Wavelet

Transform (CWT) via our custom MATLAB script. The following

parameters were used for CWT: for both LFP and EEG, the number

of cycles (n) was selected according to the frequency (scale) and was

logarithmically increased from 2 to 20 for a frequency range of 2 Hz

to 40 Hz at 2 Hz resolution. First, we zero-padded the PC trials by

adding a vector of 512 zeros before and after the trial. Then the

complex Morlet wavelet (φ) at each time point, t, was calculated for

each frequency of interest (f ):

φ(t) = e2jπ fte
−t2

2σ

where j is the imaginary unit, and the width of the Gaussian (σ )

depended on the number of cycles for each frequency of interest:

σ =
n

2π f

The output of the CWT was first converted to instantaneous

power by squaring the output values and then converted to decibel

scale relative to the baseline average power computed in the pre-

trial period (from -300 ms to -100 ms relative to target onset) and

averaged across trials and sessions for visualization.

2.6.5 Time-series decoding
To correlate workingmemory behavior with oscillatory activity,

we decoded the location of the memory item using EEG or LFP

oscillatory activity, specifically during the time periods around the

target and the distractor onsets.

2.6.6 Filtering data into the oscillatory bands of
interest

Before proceeding with decoding analysis, we filtered the

processed trials into the frequency bands identified in a data-driven

way from our spectral analysis results (Figure 4). For EEG, theta-

band activity was filtered between 1 Hz and 6 Hz. For LFP, we

filtered theta (4–8 Hz) and beta bands (13–30 Hz), then converted

to instantaneous amplitude by taking the absolute values of their

Hilbert transformed signals. All filters were 4th-order two-pass

Butterworth filters implemented via the MATLAB filtfilt function.

2.6.7 Decorrelating LFP and EEG
To reduce the influence of noise sources that were correlated

across channels, we applied zero-phase component analysis (ZCA)

whitening using the noise covariance matrix estimated from pre-

trial activity to decorrelate the feature space in the trial activity of

interest (Bell and Sejnowski, 1997; Kessy et al., 2018; Greene and

Hansen, 2020; Engemann and Gramfort, 2015). We first calculated

the pre-trial whitening matrix W from the pre-trial activity that

satisfies the following equation:

Zpre = WXpre

whereW satisfies the criterion:

WTW = 6−1
pre

Here, 6pre is the noise covariance matrix estimated from pre-

trial activity. Then we forced W to be symmetrical to satisfy the

ZCA criterion:

WZCA
= 6

−1/2
pre

This ZCA whitening matrix, WZCA, was then used to whiten

the trial activity of interest, X:

Z = WZCAX

This was performed at the single-trial level. Once all trials were

whitened, we normalized Z across time and channels by applying a

Z-score transformation, subtracting the mean and dividing by the

standard deviation.

2.6.8 Decoding approach
Before decoding, we first sorted epoched trials into no

distractor (ND) and with distractor (WD) conditions. We balanced

the number of trials for each trial and item condition (e.g., target

item location) by subselecting at random from the larger set to

prevent skewed class distribution across conditions. To improve

signal-to-noise ratio, we averaged multiple trials within each trial

condition and location by sampling four trials without replacement,

averaging them, and repeating this process until all trials were

exhausted (Grootswagers et al., 2017).

We decoded using linear discriminant analysis (LDA) (Hastie

et al., 2009). In a preliminary step, we tested and confirmed that

LDA produced comparable and faster results when compared

to other classification techniques, such as a support vector

machine. We performedmulti-class categorization using the Error-

Correcting Output Codes (ECOC) approach to break down a single

multi-class classification task into a series of binary classification
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tasks (Dietterich and Bakiri, 1994). We used the MATLAB built-in

functions: templateDiscriminant for LDA and fitcecoc for ECOC.

We specifically adopted one-vs.-all coding (Rifkin and Klautau,

2004), wherein N binary classifiers are trained for N number of

classes, which each binary classifier distinguishing one class from

the other class. This approach exhibited higher computational

performance compared to one-verses-one coding (Nilsson, 1982),

as it required less computational time due to the fewer number of

binary classifiers to be trained.

Decoding was performed on the averaged trials for each 10-ms

time bin (sampling rate: 100 Hz) using the following classification

features for each signal type: For EEG decoding, 21 electrode

channels with stable scalp contact were used (Figure 1b), and for

LFP decoding, microelectrode channels in the superficial 1 mm

of the LPFC recording array were used (monkey R: the 32 most

superficial channels of the Matrix array; monkeyW: all 96 channels

of the Utah array). At each time bin, classifiers were trained and

tested using an N-fold cross-validation (CV) approach (monkey

R, N = 2 folds; monkeys W and T, N = 4 folds). A low N value

was chosen for monkey R to mitigate data overfitting during model

selection, as fewer total trials were available per recording session.

For a N-fold CV, we partitioned the data set into N non-

overlapping trial sets, with each set containing a balanced number

of observations selected at random. N-1 sets were randomly chosen

to train a classifier and the remainder set was left out to test

the classifier. Any excess trials after balancing were omitted. We

tested the trained classifier using the MATLAB predict function,

which returns predicted class labels (i.e., the location of target

visual stimulus) based on the held-out data set. The predicted

class labels were then compared to the true labels to calculate the

classifier’s accuracy, which was determined by dividing the number

of correctly classified trials by the total number of trials. Since

there were four item locations (classes), the chance-level decoding

accuracy was at 0.25 (or 25%), which was subtracted from the

actual decoding accuracy. This adjusted decoding performance

is referred to as 1p(decoding) throughout this paper. We also

decoded the items based on their visual hemifield location (left

vs. right or upper vs. lower), converting the decoding to binary

classification with a chance level of 0.5 (or 50%), which was

then subtracted from the actual decoding performance. Then the

Gaussian smoothing was applied using the MATLAB smoothdata

function (parameters: method = “gaussian”, window = 3). Once

we evaluated the classifier performance, we repeated this N-1 more

times to complete the CV. The entire decoding procedure, starting

from the data preparation step of averaging every 4 randomly

selected trials, was repeated 20 times to improve robustness when

rigorously testing different combination of averaged trials during

CV. Additionally, we decoded incorrectly performed trials by

evaluating them using classifiers trained on correct trials.

2.6.9 Isolating the contributions of frontal and
occipitoparietal EEG activity during decoding

To test how different brain areas contribute to workingmemory

maintenance during anticipated distraction, we re-trained and

cross-validated classifiers using subsets of EEG electrodes grouped

by their position (Figure 1b): (1) the frontal EEG channel group,

which included 12 electrodes channels (EEG channels 1–12), and

(2) the occipitoparietal EEG group, which included 9 electrode

channels (EEG channels 13–21). Using each group of EEG channels

as classifier features, we performed the same LDA-based decoding

analysis described earlier.

2.6.10 Cross-temporal generalization
To test similarity in oscillatory activity patterns across time

bins, we employed cross-temporal generalization (King and

Dehaene, 2014; Stokes, 2015; Grootswagers et al., 2017) (Figure 3).

This method was built upon the decoding procedure described

earlier, but instead of evaluating the classifiers only at the trained

time bin, each classifier was also tested across all other time bins. If

the classifier performs significantly above chance at different time

bins, it indicates that the classifier is generalizable and that the

underlying oscillatory activity patterns encoding the memory item

are similar across these time bins.

2.6.11 Statistical analyses of decoding accuracy
We compared the mean decoding accuracy (1p(decoding))

against the mean of trial-shuffled decoding accuracy (chance-

level performance, around 0) using cluster-based two-sample, one-

tailed permutation tests (Maris and Oostenveld, 2007; Groppe

et al., 2011), as follows. First, the trial-shuffled decoding accuracy

was calculated by running the same decoding analysis explained

previously but with class labels shuffled across trials. After t-testing

each time bin (α = 0.05), we identified clusters of contiguous bins

with significant t scores and summed these scores to obtain cluster-

level t masses. We then compared these t masses between the

actual and shuffled decoding performances to examine significance

(e.g., cluster α = 0.05). This same procedure was followed for all

cluster-based permutation tests described in this report (i.e., for

testing coherence and Granger causality). For comparing between

trial conditions (e.g., ND vs. WD), we employed cluster-based

two-sample, two-tailed permutation tests.

2.6.12 Visualizing activation patterns using the
classifier weights

To visually depict the contributions of individual EEG electrode

channels on decoding performance, we constructed topographical

maps based on the classifier weights of the trained classifiers.

Classifier weights themselves, however, need not necessarily

implicate the actual importance of the neural activity observed

at the corresponding channels, because the variance of individual

channels differs. For example, electrode channels detecting large

voltage amplitude changes can result in small classifier weights

whereas those with small voltage amplitude can result in large

classifier weights. To account for this, we instead calculated

the activation pattern by multiplying the classifier weights with

the covariance matrix of the training data (Haufe et al., 2014;

Fahrenfort et al., 2017). The activation pattern was then normalized

across electrodes by applying a Z-score transformation, subtracting

its mean across electrodes and dividing by its standard deviation

across electrodes. Then Z-scored activation patterns were averaged

across all EEG recording sessions for depiction.
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FIGURE 3

Cross-temporal generalization schematic (a). Decoding was performed at each time bin by training a classifier (e.g., C1) at one time bin (e.g., t = 1)

and evaluating it across all time bins of interest (e.g., 1 ≤ t ≤ 12). This generated a vector of decoding accuracies for each classifier. Repeating this

process across all time bins produced vectors of decoding accuracies that were concatenated into a matrix to complete the analysis. In the final

result of cross-temporal generalization, panel 1 shows generalization within the post-target period; panels 2 and 3 show generalization between the

post-target period and the post-anticipated-distractor/post-distractor period; panel 4 shows generalization within the

post-anticipated-distractor/post-distractor period. Color intensity reflects decoding accuracy, 1p(decoding), with values adjusted by one over total

number of classes (e.g., subtracted 1/4, when decoding based on the 4 item locations). Possible outcomes (b) include: sustained, reactivated,

dynamic, and unactivated. “Sustained” indicates consistent generalization over time, reflecting no significant change in the underlying neural activity.

“Reactivated” refers to common neural activity patterns at two distinct time periods, though not continuously. “Dynamic” indicates that the

underlying neural activity patterns di�er between distinct time periods. “Unactivated” occurs when no encoding of items is observed at stimulus

onset, here specifically at distractor onset.

2.6.13 Coherence analysis
To test the strength of functional connectivity with respect

to the LPFC, we estimated coherence between the dimensionally-

reduced LFP from the LPFC and EEG at each included EEG

electrode channel, using the cross-spectral density normalized by

the product of the two auto-spectral densities. To reduce noise and

dimensionality, we first applied PCA to the LFP data, then analyzed

the PC1. For the EEG data, we improved topographical localization

and reduced volume conduction by applying the surface Laplacian

transform using the FieldTrip ft_scalpcurrentdensity function

(parameters: method = “finite”, degree = 7) (Oostendorp and van

Oosterom, 1996; Huiskamp, 1991). After the pre-processing, we

used the Chronux coherencyc function (parameters: tapers= [5, 7],

pad = 1) to calculate coherence between the PC1 of the LPFC LFP

and the EEG signals at each EEG electrode channel.

Brain areas may appear functionally connected if they

independently respond to task stimuli or contexts within the

same oscillatory band. Therefore, we utilized a more stringent

measure called “excess coherence” (1coherence), which adjusts the

original coherence estimate (Snyder et al., 2018). Excess coherence

was calculated by subtracting coherence by the average of 200

trial-shuffled versions, where the trial order of the EEG data set

was randomly permuted for each iteration. We tested for excess

coherence significantly greater than zero using a cluster-based one-

sample, one-tailed permutation test. Throughout this paper, all

reported coherence values are excess coherence.

Coherence was computed using different time windows: longer

windows were used to visualize topographical maps of coherence,

while shorter windows were taken to examine the temporal

dynamics of coherence. To visualize overall functional connectivity

on topographical maps, we calculated coherence during the first

second of the task (0–1,000 ms relative to target onset) for each

recording session and then averaged across sessions. This analysis

was done separately for each monkey, as the microelectrode arrays

were implanted in different LPFC sites—one in the left hemisphere

and another in the right hemisphere—but both still in the area

46v. We also examined the temporal dynamics of coherence

across trial conditions, specifically testing whether functional

connectivity differed when monkeys remembered memory items

contralateral (CONTRA) vs. ipsilateral (IPSI) to the LPFC implant

site. Before estimating coherence, trials were grouped according

to these conditions. Coherence was then computed in a 500-

ms window with a 250-ms overlapping sliding step. Statistical

significance of coherence was examined using a cluster-based

one-sample, one-tailed permutation test against 0, as the coherence

values had already been subtracted from their mean trial-

shuffled counterparts.

2.6.14 Granger causality analysis
To examine the directed functional interactions between the

LFP and EEG, we performed Granger causality analysis (Granger,

1969; Geweke, 1982). The frequency-domain mathematics of

Granger causal analysis were described by Geweke (1982). We

first computed Fourier spectra of LFP PC1 and EEG using the

Chronux mtspectrumc function (range of frequency: 1 Hz–40 Hz;

7 Slepian tapers with a time-bandwidth product of 5; performed

on single trials with zero-padding applied). These computed

spectra were then input into the FieldTrip ft_connectivity analysis

function to calculate the bivariate Granger Causality Index (GCI).
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The implementation of frequency-domain Granger causality in

the FieldTrip toolbox is based on Brovelli et al. (2004). For

significance testing of GCI between directions, we used a cluster-

based two-sample, two-tailed permutation test comparing the

computed GCI to its trial-shuffled counterparts (i.e., chance-

level GCI), using the same procedure described in coherence

analysis.

3 Results

We investigated how oscillatory activities relate to distractor

anticipation during working memory maintenance. We tasked

monkeys with a modified MGS task, where a distracting visual

stimulus (i.e., checkerboard) was presented in half of the trials at a

fixed time during the delay period. To assess behavior, we measured

the effect of the distractor on saccadic reaction time and saccade

endpoint variance. For neural signals, we analyzed LFP recorded

from the LPFC and EEG from the scalp, testing how oscillations

in these signals were associated with distractor anticipation and

working memory maintenance.

3.1 Distractor negatively a�ected
behavioral performance

Overall, monkeys performed the task well, as shown by good

rates of correctly reporting the location of the remembered item.

Total hit rates (correct trials out of correct trials and incorrect trials)

for each monkey were 72.8% (2,829 of 3,886 trials), 95.7% (16,347

of 17,084 trials), and 80.8% (4944 of 6118 trials) for monkeys R,

W, and T, respectively. Mean hit rates across sessions for monkeys

R, W, and T were 72.1 ± 3.8% (mean ±1 SEM; N = 8 sessions),

96.5 ± 0.4% (N = 14 sessions) and 80.2 ± 2.3% (N = 8 sessions),

respectively. In addition, there was no significant difference in

hit rates with or without the presentation of the checkerboard

stimulus (two-sample t-test, two-tailed; monkeys R, W, and T:

p = 0.77, 0.47, and 0.17, respectively) (Supplementary Figure 1).

These behavioral results suggest that the monkeys were well-

trained and showed consistent performance across recording

sessions.

Despite generally good performance on the task in the presence

of the checkerboard stimulus, we found two signatures of its

distracting effect on working memory performance (Figures 2b, c):

(1) slowing of saccadic reaction time and (2) increased saccade

endpoint variance.

Saccadic reaction times slowed in monkeys R and W when the

checkerboard stimulus was presented (WD, monkey R: 227.7 ±

0.8 ms, N = 737 trials; monkey W: 216.7 ± 0.3 ms, N = 8273

trials), as compared to when it was absent (ND, monkey R: 222.1

± 0.9 ms, N = 718 trials; monkey W: 212.3 ± 0.2 ms, N = 8122

trials; Wilcoxon rank-sum test, two-tailed; monkey R: p < 0.001,

z = −4.71; monkey W: p < 0.001, z = −14.1). Reaction times

were, however, not different between conditions formonkey T (ND,

261.8 ± 0.7 ms, N = 2178 trials; WD, 261.7 ± 0.7 ms, N = 2165

trials; Wilcoxon rank-sum test, two-tailed; p = 0.98, z = -0.0279),

suggesting individual variability in response.

The checkerboard stimulus generally increased saccadic

endpoint variance, reflecting increased error during memory recall

(Figure 2c). In monkey R, it significantly increased the variance

for target visual stimuli presented at 225◦ (F(260,231) = 1.38, p =

0.006) and 315◦ (F(337,328) = 1.32, p = 0.005). However, there

was no significant increase for stimuli at 45◦ (F(350,354) = 0.84, p

= 0.95) or 135◦ (F(207,240) = 1.13, p = 0.18). In monkey W, the

variance was significantly increased at 135◦ (F(2202,2188) = 1.12,

p = 0.005) and 315◦ (F(2168,2197) = 1.09, p = 0.025), while there

was no significant increase at 45◦ (F(2218,2205) = 0.97, p = 0.78) or

225◦ (F(2183,2180) = 1.00, p = 0.47). In monkey T, the variance was

significantly increased at 45◦ (F(586,600) = 1.20, p= 0.012) and 225◦

(F(607,605) = 1.19, p = 0.016), but not at 135◦ (F(609,615) = 0.96, p

= 0.68) or 315◦ (F(598,604) = 0.94, p = 0.79). Thus, for all three

monkeys, the presence of the checkerboard led to increased saccade

endpoint variance for two of the target locations, while the other

two locations showed no difference.

These behavioral metrics demonstrated that the checkerboard

stimulus during the task acts a salient distractor that captures

attention and hinders overall working memory performance.

3.2 Oscillatory characteristics in monkey
EEG and LPFC LFP

3.2.1 Theta and beta power predominates during
working memory maintenance

Because we were interested in the role of neural oscillations

in working memory, we first sought to characterize the center

frequencies, bandwidths and dynamics of the oscillatory activity of

our recordings during our spatial working memory task.

We identified dominant oscillations during the MGS task by

examining the spectral characteristics of LPFC LFP and scalp EEG

signals. Overall, theta- and beta-band power was prominent in both

signals as shown from power spectral analysis (Figure 4). In LFP,

the mean center frequency of the theta band across monkeys was

4.8± 1.8 Hz (±1 SEM), with amean bandwidth of 2.1± 2.7 Hz (±1

SEM) (Figures 4c, d; 1–12 Hz). The beta band had a mean center

frequency of 25.0 ± 4.5 Hz and a mean bandwidth of 6.6 ± 2.7

Hz (Figures 4c, d; 12–40 Hz). In EEG, the theta band had a slightly

lowermean center frequency of 4.4± 0.7Hz and amean bandwidth

of 1.8 ± 0.5 Hz (Figures 4j, k; 1–12 Hz), while the beta band had a

mean center frequency of 24.3 ± 5.0 Hz and a mean bandwidth of

8.3± 3.8 Hz (Figures 4j, k; 12–40 Hz), closely aligning with the LFP

beta band range. However, no dominant alpha-band power (8–13

Hz) was observed in either signal type.

We also examined the dominant spatiotemporal

dynamics of the neural signals by applying time-frequency

analysis to dimensionally reduced the signals using PCA

(Supplementary Figure 2). In the first principal component (PC1)

of the LFP, both monkeys exhibited robust power (estimated in

decibels relative to baseline) stretching from theta (4–8 Hz) to beta

(13–30 Hz) bands in response to target or distractor stimulus but

none in the absence of stimuli (Supplementary Figures 2a, c). In
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FIGURE 4

Representative examples of PC1 power spectra (blue traces) and their FOOOF model fits (orange traces) for LPFC LFP in monkeys R (a) and W (b) and

for EEG in monkeys R (g), W (h), and T (i), with aperiodic fits (dotted black traces). FOOOF results for LFP –center frequency (c), bandwidth (d),

adjusted power (e), and goodness-of-fit (r2) (f) –are shown for monkeys R and W. For EEG, the FOOOF results –center frequency (j), bandwidth (k),

adjusted power (l), and goodness-of-fit (m) –are shown for monkeys R, W, and T. Population mean of all monkeys shown in horizontal black bars.

the second principal component (PC2) of the LFP, only monkey

W showed beta-band activity that persisted beyond the anticipated

distractor onset (700 ms; Supplementary Figure 2d, ND). This

activity was briefly disrupted by the distractor presentation but

recovered before fading around 1,200 ms. Significant differences

between trial conditions (ND vs. WD were only found after

the distractor was presented (Supplementary Figures 2a–d). On

the other hand, the time-frequency representations of the EEG

PC1 showed subtle but distinct low theta-band activity (1–6

Hz) consistently across all monkeys, regardless of distractor

presence, while no noticeable beta-band changes were detected

(Supplementary Figures 2e, g, i).

Taken together, we concluded that the dominant oscillatory

activity during the working memory task occurs in the theta band

(LFP: 4–8 Hz, EEG: 1–6 Hz) and the beta band (LFP: 13–30 Hz).

3.3 EEG theta-band oscillations in working
memory maintenance and distractor
anticipation

Across spatial scales, theta-band oscillations were predominant

during the task, aligning with prior research on their possible

roles in working memory (Raghavachari et al., 2001; Itthipuripat

et al., 2013; Riddle et al., 2020). Given that the activity is

predominant during working memory task and appears to

modulate during task events as depicted from our time-frequency

analysis, we hypothesized that scalp EEG theta-band activity

reflects the information associated with the memory item during

the task. We also tested how presence of an anticipated distractor

modulated the theta-band activity. To test these hypotheses, we

conducted decoding and cross-temporal generalization analyses

on continuous EEG theta-band activity, focusing on the period

when the distractor appeared with 50% probability during the

delay. By comparing the results between correct and incorrect

trials, we attempted to deduce the information reflected by

this activity.

3.3.1 Theta-band activity at anticipated distractor
time predicted task performance

We first tested whether EEG theta-band activity was associated

with the memory item by decoding its location in 10-ms time

bins (because data were downsampled to a 100 Hz sampling rate)

throughout the task period.

When the monkeys performed the task correctly, we reliably

decoded the location of the memory item after its brief presentation

on the screen, with peak decoding accuracy occurring about 100

ms after target onset (peak 1p(decoding)= 0.13, i.e., 13 percentage

points above chance; 1 cluster, p< 0.001, cluster-based permutation

test with α<0.05, cluster α<0.05; N = 29 sessions combined across

monkeys; Figure 5b). However, this significant decoding did not

persist through the delay period, gradually receding to chance-level

performance. We also decoded the memory item following either

the anticipated distractor onset (i.e., ND condition) or the actual

distractor onset (i.e.,WD condition). In both conditions, significant
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FIGURE 5

Decoding approaches taken for EEG theta-band (1–6 Hz) activity (a). Location-based decoding for the post-target (b), post-anticipated-distractor

(ND) (c), and post-distractor (WD) (d) periods. Left-vs.-right visual hemifield decoding for the post-target (e), post-anticipated-distractor (ND) g, and

post-distractor (WD) (h) periods, with their corresponding time-resolved activation patterns (f, h and j, respectively). Upper-vs.-lower visual hemifield

decoding for the post-target (k), post-anticipated-distractor (ND) (m), and post-distractor (WD) (o) periods, with their corresponding time-resolved

activation patterns (l, n and p, respectively). Mean decoding accuracy (blue traces, ±1 SEM) and their trial-shu	ed results (black traces, ±1 SEM),

which represent chance-level performance. Horizontal red bars at the bottom of each plot indicate significant decoding clusters (p < 0.001, N = 26

sessions, combined across monkeys). Activation patterns normalized by Z-score transformation.
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decoding occurred a few hundred milliseconds after these onsets

(Figures 5c, d), as though the encoding strength of memory items

increases after the anticipated distractor time. Significant decoding

appeared earlier and lasted longer when distractor did not appear

(ND: peak 1p(decoding) = 0.04 at 1000 ms, lasting 240 ms; 1

cluster, p < 0.001) compared to when it actually appeared (WD:

peak 1p(decoding) = 0.03 at 1020 ms, lasting 50 ms; 1 cluster, p

< 0.001). Although the peak decoding occurred around the same

time (ND: 1000 ms; WD: 1020 ms) for both conditions, significant

decoding was delayed about 100 ms when the distractor was shown

(ND: 900 ms; WD: 1,010 ms), showing that the distractor briefly

disrupted memory encoding.

To test whether the spontaneously increased decoding accuracy

after the anticipated distractor time reflects memory-related

signals, we examined incorrectly performed trials, where the

monkeys failed to make a saccade to the correct location by

evaluating classifiers trained on correct trials with incorrect trials.

Compared to correctly performed trials, we found lower decoding

performance at target onset, reflecting a reduced representation of

memory items (peak 1p(decoding) = 0.06 at 100 ms, lasting 230

ms, 1 cluster, p < 0.001; Supplementary Figure 4a). Furthermore,

no significant decoding was seen during either the anticipated or

actual distractor periods (ND and WD; Supplementary Figure 4a).

These results suggest that EEG theta-band activity reflected

the information about memory items following the anticipated

distractor time only when the monkeys correctly performed

the task.

In addition, we tested whether EEG beta-band activity reflects

information about memory items using decoding analysis, given

the strong presence of beta-band activity in the EEG signal

(Figure 4). However, we found no evidence of enhanced memory

item encoding in the EEG beta-band activity at target onset or at the

anticipated or actual distractor onset (Supplementary Figure 11).

We also tested whether the theta band decoding performance that

we observed was related to the phase of oscillations as has been

recently reported for humans subjects (Ten Oever et al., 2020),

but we found no relationship between theta phase and decoding

performance for our data (Supplementary Figure 12).

3.3.2 Theta-band oscillations predominantly
reflected left vs. right visual hemifield location

Previous studies implied that the encoding of visual items relies

heavily on brain areas contralateral to the location of the item

displayed in the visual field (Funahashi et al., 1989; Sawaguchi and

Iba, 2001; Pasternak and Greenlee, 2005; Hagler Jr and Sereno,

2006; Wimmer et al., 2016b; Riddle et al., 2020). Therefore, we

tested whether EEG theta-band activity is primarily associated

with the visual hemifield location of memory items via decoding

analysis and examined resulting activation patterns mapped on

EEG topography during significant decoding time.

We decoded the left-vs.-right visual hemifield location of

memory items. Upon target onset, we observed decoding

performance significantly better than chance (peak 1p(decoding)

= 0.18 at 120 ms, lasting 280 ms; 1 cluster, p < 0.001; Figure 5e),

similar to the results for decoding individual memory location

(Figure 5b). The activation patterns mapped onto EEG topography

during this period showed a clear binarization along the midline

(Figure 5f), suggesting that decoding relied on differences in theta-

band activity between the two hemispheres. During the delay

period, significant decoding was observed regardless of whether

the distractor was delivered (ND: peak 1p(decoding) = 0.06 at

1060 ms relative to target onset, lasting 320 ms, 1 cluster, p <

0.001; WD: peak 1p(decoding) = 0.06 at 1,030 ms relative to

target onset, lasting 300 ms, 1 cluster, p < 0.001; Figures 5g, i),

consistent with our previous decoding results based on individual

item locations. Significant decoding also began early when no

distractor was shown (ND: from 800 ms to 1,130 ms; WD: from

880 ms to 1,180 ms). During this significant decoding time, time-

resolved activation patterns in both trial conditions (Figures 5h, j)

resembled those observed after target onset (Figure 5f), suggesting

that improved item encoding at the anticipated distractor time may

emerge through reactivation of the similar neural activity patterns

seen during initial item encoding.

When we applied left-vs.-right decoding on incorrectly

performed trials, significant but less robust results were observed

after either the anticipated distractor onset or actual distractor

onset (ND: peak 1p(decoding) = 0.05 at 870 ms, lasting 160 ms; 2

clusters, p < 0.001; WD: peak 1p(decoding) < 0.001 at 1080 ms,

lasting >110 ms; 1 cluster, p < 0.001; Supplementary Figure 4b).

Compared to correctly performed trials (Figures 5g, i), decoding

was weaker and its significant clusters were less contiguous,

suggesting reduced information related to memory items during

the delay period of incorrect trials.

We also decoded the upper-vs.-lower visual hemifield locations

of memory items and found significant decoding at target onset

(Figure 5k), but for a shorter duration and with lower accuracy

(peak 1p(decoding) = 0.07 at 40 ms, lasting 150 ms; 1 cluster, p <

0.001) compared to left-vs.-right decoding (peak 1p(decoding) at

0.18 and lasted 280 ms). This decoding appeared to be driven more

by the sensory response to the target stimulus than by memory

encoding as decoding accuracy sharply peaked after target onset

but immediately faded away. Consistent with this, we found no

significant decoding after the anticipated or actual distractor onset

(Figures 5m, o), and activation patterns were spurious over time

(Figures 5n, p). These results indicate that EEG theta-band activity

reflects more information about the encoding of left-vs.-right

visual hemifield locations compared to upper-vs.-lower hemifield

locations.

3.3.3 Theta-band oscillations reflected
reactivation of memory in anticipation of
distractor

Because we found significant decoding of memory items both

around target onset and during the anticipated distractor time,

one natural question is whether the same neural activity patterns

represent the memory item across these two distant periods. If

so, this could be consistent with the same neural activity that

originally encodes the target location being later "reactivated" in

support of distractor resistance. Alternatively, it could be the

case that representation of memory items during the delay relies

on different neural activity patterns than those used for the

initial encoding phase. To test whether the increased decoding

performance after the anticipated time of the distractor stems from
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FIGURE 6

Cross-temporal generalization using EEG theta-band activity based on locations of items for ND (a) and WD (b) conditions, along with their

di�erence (c). Similarly, cross-temporal generalization based on left and right visual hemifield location of items for ND (d) and WD (e) conditions with

their di�erence (f). In each subplot, panel 1 generalizes within the post-target period (0–500 ms); panels 2 and 3 generalize between post-target

period (0–500 ms) and post-anticipated-distractor or post-distractor period (700–1,200 ms); panel 4 generalizes within post-anticipated-distractor

or post-distractor period (700–1,200 ms); corresponding significant clusters are shown in black-and-white maps. Black triangle: target onset; green

triangle: anticipated distractor onset (ND); red triangle: distractor onset (WD). Color bars show decoding performance, in 1 p(decoding), above the

chance level (0).

similar activity patterns during initial encoding phase at target

onset, we applied a cross-temporal generalization analysis on the

EEG theta-band activity.

During target onset period (0–500 ms), we found significant

cross-temporal decoding between classifiers trained and tested

within temporally neighboring time bins (clusters, p < 0.001;

cluster-based permutation test with α<0.05, cluster α<0.05; N

= 29 sessions combined across monkeys; Figures 6a, b), showing

stability in the neural activity patterns representing the memory

items over short time scales. Significant decoding was also observed

when classifiers trained on data from the target onset period were

evaluated on data from the anticipated (ND) or actual distractor

(WD) onset period (700–1,200 ms) (clusters, p < 0.001; Figures 6a,

b). This showed that the classifiers were able to generalize learned

activity patterns across different temporal phases of the task. When

generalized within either the anticipated or actual distractor onset

periods, similar results were obtained between conditions (clusters,

p < 0.001; Figures 6a, b). However, the activity patterns were less

generalized during the actual distractor onset period likely due

to disrupting effect of the distractor (≥700 ms; Figure 6b), as

shown from previous decoding results (Figure 5).When comparing

between trial conditions (ND vs. WD), a significant difference was

found when classifiers trained on the target onset period were

generalized to the anticipated or actual distractor onset period

(1 cluster, p = 0.024) (Figure 6c). No significant difference was

observed in the reverse direction. This discrepancy may result

from noise introduced by the distractor flash, which could reduce

the information about the encoded memory items when training

classifiers on those time bins.

Since the left and right visual hemifield locations of memory

items significantly influenced decoding performance (Figures 5e–

j), we also performed a cross-temporal generalization analysis

based on these locations (Figures 6d, e). Our findings largely

mirrored those obtained from decoding individual memory item

locations but showed larger significant clusters overall (clusters, p

< 0.001). When comparing the ND and WD conditions, we found

a significant difference when classifiers trained on the target onset

period were generalized to either the anticipated or actual distractor

onset periods (two clusters, p= 0.043, 0.002) (Figure 6f), indicating

that the distractor interferes with memory reactivation.

In sum, cross-temporal generalization revealed that the EEG

theta-band activity patterns were similar across distinct periods,

consistent with “reactivating” memory items in the absence of a

stimulus during the delay period of the task.

3.3.4 Relative contributions of frontal and
occipitoparietal theta-band activity in distractor
anticipation during delay period

We aimed to disentangle the relative contributions of

frontal and occipitoparietal EEG theta-band activity to distractor

anticipation during workingmemorymaintenance. To achieve this,

we decoded the location of memory items using theta-band activity

exclusively from either frontal or occipitoparietal EEG channels as

classification features (groups shown in Figure 1b).

Decoding based on frontal theta-band activity showed a

temporal profile similar to that obtained when using all EEG

channels for classification (Figure 7a). At target onset, decoding was

significant (peak 1p(decoding) = 0.09 at 120 ms, lasting 260 ms; 1

cluster, p < 0.001), although slightly worse compared to using all

EEG channels (peak 1p(decoding) = 0.13; Figure 5b), suggesting

that memory-related information is not just present in the frontal

theta-band activity. After the anticipated or actual distractor onset,

we found significant decoding that also displayed similar temporal

profiles to the all-channel results but with decreased accuracy and a

short time span (ND: peak 1p(decoding)= 0.03 at 1000 ms, lasting

200ms; 1 cluster, p< 0.001;WD: peak1p(decoding)= 0.02 at 1020

ms, lasting 160 ms; 1 cluster, p < 0.001).

On the other hand, decoding using occipitoparietal theta-

band activity resulted markedly different outcomes (Figure 7b).
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FIGURE 7

EEG theta-band decoding based on the frontal (a) or occipitoparietal EEG channel group (b). Decoding results (blue traces, ±1 SEM) are aligned to

target onset (time = 0 ms), anticipated distractor onset (ND) and actual distractor onset (WD) (time = 700 ms) with their trial-shu	ed results in black

traces (±1 SEM). Horizontal red bars indicate significant decoding clusters (p < 0.001).

Shortly after the anticipated distractor onset, we observed weak

but significant decoding (ND: peak 1p(decoding) = 0.02 at

780 ms, lasting 90 ms; 1 cluster, p < 0.001), followed by a

similar significant decoding 220 ms later (peak 1p(decoding)

= 0.02 at 930 ms, lasting 120 ms; 1 cluster, p < 0.001).

While these effects were weak, they imply that memory-related

information emerges earlier in the occipitoparietal area compared

to the frontal area. This decoding never reached significance

when the distractor was actually delivered. This differs from

the frontal theta-band decoding that showed robust performance

even with distractor presentation. These findings reflect the

disruptiveness of the distractor on memory representations

in the occipitoparietal area, consistent with previous findings

showing reduced memory representation in the visual cortex

following distractor presentation (Bettencourt and Xu, 2016; Xu,

2017).

In summary, we found that theta-band activity in the frontal

area conveyed more information about memory items than in the

occipitoparietal area. The temporal profile of decoding using theta-

band activity from frontal EEG group resembled that of decoding

using theta-band activity collected from all EEG electrodes.

Although weak, decoding from the occipitoparietal theta-band

activity in the absence of stimuli may suggest the emergence

of memory-related signals during distractor anticipation. This

weak decoding may be attributed to the simple nature of

our target visual stimulus (i.e., a circle) that may not require

significant involvement of the occipitoparietal area. These results

suggest while both frontal and occipitoparietal areas involve

in enhanced representation of memory items during distractor

anticipation, a significantly greater contribution is made from the

frontal area.

3.4 Prefrontal LFP theta-band activity in
working memory maintenance and
distractor anticipation

Because the LFP recorded from LPFC also showed significant

theta-band activity, we hypothesized that the LPFC theta-band

activity is also associated with individual memory items during

the task. We also tested whether the task-irrelevant checkerboard

modulated activity in a way that allowed inferences about the

memory item. Such a memory-dependent modulation would be

consistent with latent representation of memory items (Stokes,

2015). We also hypothesized that if the LPFC involves in

enhancement of memory encoding during distractor anticipation,

we would observe increased decoding of items. To test these, we

decoded memory items based on their (1) individual locations and

(2) distributions across visual hemifields using the LFP theta-band

activity recorded from the LPFC.

3.4.1 LPFC theta-band activity reflects the
encoding of item in response to a distractor

We tested whether LFP theta-band activity of the LPFC is

associated with encoding of memory items by decoding based

on their individual locations. At target onset, we found accurate
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FIGURE 8

Decoding based on the location of individual memory items using LFP theta-band activity (4–8 Hz) for monkey R (a) and W (b), aligned to target

onset (t = 0 ms), anticipated distractor onset (ND; t = 700 ms), and actual distractor onset (WD; t = 700 ms). Mean decoding performance (blue

traces, ±1 SEM) and trial-shu	ed performance (black traces, ±1 SEM) are shown, with significant clusters (p < 0.01 or p < 0.001 depending on

monkey) indicated by horizontal red bars.

decoding well above chance in both monkeys (monkey R: peak

1p(decoding)= 0.08 at 190 ms, lasting 380 ms, 1 cluster, p= 0.002;

monkey W: peak 1p(decoding) = 0.11 at 100 ms, lasting 300 ms, 1

cluster, p < 0.001; Figures 8a, b). There was a non-significant trend

for decoding performance to appear to improve before target onset,

due likely to the slight non-casual effects of using two-pass filtering

(see Methods Section 3.6.1). During the delay period, significant

decoding was also detected in response to the distractor (monkey R:

peak 1p(decoding) = 0.09, onset 800 ms, lasting 130 ms, 1 cluster,

p= 0.002; monkeyW: peak 1p(decoding)= 0.05 at 800 ms, lasting

270 ms; 1 cluster, p < 0.001; Figures 8a, b; WD). However, when

the distractor was not shown, decoding performance generally did

not reach significance in either monkey, except for a short duration

(approximately 50 ms) in monkey R a few hundred milliseconds

after the anticipated distractor onset (peak 1p(decoding) = 0.04 at

950 ms; 1 cluster, p= 0.003; Figure 8a; ND). Overall results suggest

that improved memory encoding in anticipation of a distractor

was not reflected in LPFC theta oscillations, which contrasted

to our EEG theta-band results that showed significant decoding

around the anticipated distractor time (Figures 5c, d). Additionally,

our finding that the distractor not associated with the target

visual stimulus improved the encoding of items implicates that

the LFP theta-band response to the distractor reveals memory

items encoded by underlying LPFC neurons, consistent with prior

research that demonstrated that the LPFC neurons’ firing rate

reflect memory-dependent response to a task-irrelevant visual

stimulus, showcasing its capacity to reveal the latently represented

memory in the LPFC (Stokes et al., 2013).

To determine whether the significant decoding from the

LPFC theta-band activity actually reflected memory encoding

rather than mere sensory processing, we attempted to decode

memory items from LFPs during incorrectly performed trials

using classifiers trained on data from correctly performed trials.

If the theta-band activity simply reflected the feed-forwarding

processing of the target visual stimulus, we would observe increased

decoding at target onset whether the monkeys performed the

task correctly or not. However, when the monkeys performed the

task incorrectly, we did not find significant, contiguous decoding

at target onset, indicating that the decoded information reflects

the memory being encoded after a brief stimulus presentation

(Supplementary Figure 5). Furthermore, unlike during correctly

performed trials, distractor presentation did not improve decoding

performance, remaining at chance.

This analysis supports that the improved decoding observed

during target and distractor presentation in the correctly performed

trials reflected encoding of memory items.

To test which location properties of items were primarily

reflected by the theta-band activity, we performed decoding

analysis for all pairwise combinations of possible item locations

(4C2 = 6 pairs). For all combinations, no significant cluster was

found immediately following the anticipated distractor onset (time

≥700 ms) (Supplementary Figures 6a, b; ND). But at the later

time period (time ≥900 ms), significant decoding was observed in

monkey R but without a clear pattern (clusters; 45◦ vs. 135◦: p =

0.008, 45◦ vs. 225◦: p= 0.04, 45◦ vs. 315◦: p= 0.002, 135◦ vs. 315◦:

p = 0.03, 225◦ vs. 315◦: p = 0.01) and in monkey W (45◦ vs. 315◦:
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FIGURE 9

Cross-temporal generalization of LPFC LFP theta-band activity for monkeys R and W, based on item locations in ND (a,d) and WD (b,e) conditions,

with their di�erences (ND vs. WD) (c,f). Panel 1 generalizes within the post-target period (0–500 ms). Panels 2 and 3 generalize between the

post-target (0–500 ms) and post-anticipated-distractor/post-distractor periods (700–1200 ms). Panel 4 generalizes within the

post-anticipated-distractor/post-distractor period (700–1,200 ms). Significant decoding clusters shown in black-and-white maps. Black triangle:

target onset; red triangle: distractor onset (in WD); green triangle: anticipated distractor onset (in ND). Color bars show decoding performance, 1

p(decoding), above the chance level; values below chance are not shown.

p = 0.004). Although subtle, this increased decoding during the

anticipated distractor time appeared similar to what we observed

from the EEG decoding during this time period (Figure 5g). In

monkey W, a transient decoding was observed in the later time

(≥1000) only when comparing 45◦ vs. 315◦ (p= 0.02).

When the distractor was actually presented, significant

decoding was achieved in both monkeys especially when the items

were decoded based on their left or right visual hemifield location

(45◦ vs. 135◦: monkey R, p = 0.008, monkey W, p = 0.001;

45◦ vs. 225◦: monkey R, p = 0.002, monkey W, p = 0.003,

135◦ vs. 315◦: monkey R, p = 0.02, monkey W, p < 0.001, and

225◦ vs. 315◦): monkey R, p = 0.002, monkey W, p = 0.003)

(Supplementary Figures 6a, b; WD). And, in general, no significant

effect was found when decoding memory items that were shown

in the same visual hemifield (i.e., 45◦ vs. 315◦ and 135◦ vs. 225◦),

except in monkey W, where a significant effect (1 cluster, p <

0.001) was observed when decoding items within the hemifield

contralateral to the microelectrode implant site (i.e., 135◦ vs. 225◦).

Overall, These results indicate that LPFC LFP theta-band

activity also predominantly reflects left or right visual hemifield

locations of memory items, extending our findings from EEG

analysis (Figure 5).

3.4.2 Prefrontal theta-band oscillations did not
show reactivation of memory during distractor
response

We tested whether the theta-band activity patterns between

the target and distractor time periods were similar. We applied

cross-temporal generalization based on individual item locations

(Figure 9). In short, we did not find a similar activity pattern

between the two distinct time periods. When the distractor was

shown (time = 700 ms), we found significant decoding clusters,

generalized within neighboring time bins (monkey R: 1 cluster, p=

0.009; monkeyW: 1 cluster, p< 0.001; Figures 9b, e; panel 4). These

results suggested that different mixtures of LPFC neurons encode

items (i.e., dynamic coding) during the delay period compared to

the post-target period, as suggested by previous studies (Stokes

et al., 2013). In the ND condition, we observed a difference between

monkeys where a significant decoding cluster (p = 0.009) was

detected in monkey R (Figure 9a; panel 4) but not in monkey W

(Figure 9d; panel 4). Also, when compared between trial conditions,

no difference was observed in monkey R (Figure 9c) but in monkey

W (1 cluster, p= 0.02) (Figure 9f).

We also attempted to test whether the LPFC LFP beta-band

activity possibly reflects memory items during the delay period and

generalize across time. We found no evidence of this, as significant

decoding appeared only at target onset (Supplementary Figure 7).

To summarize, we observed increased encoding of memory

items specifically in the LPFC theta-band activity in response to

target and distractor stimuli. This implicates that the underlying

memory item encoded by LPFC neurons becomes revealed when

activated by an external impulse stimulus like our checkerboard

visual stimulus, consistent with prior research demonstrating that a

visual stimulus impulse that is irrelevant to working memory tasks

elicits neural responses that are dependent on encoded memory

(Stokes et al., 2013; Stokes, 2015). Moreover, unlike our EEG

findings (Figure 6), we found no evidence of memory reactivation

during distractor anticipation.

3.5 Functional connectivity between the
LPFC and the occipitoparietal cortex:
Strong intrahemispheric connections

Previous studies have reported that local rhythmic activity

can drive interareal synchronization between the frontal cortex

and other brain areas (Fries, 2005; Bastos et al., 2015). In the

context of working memory, interactions between the LPFC

and occipitoparietal brain areas are suggested to be crucial for
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maintenance and control of information (Salazar et al., 2012;

Antzoulatos and Miller, 2016; Jacob et al., 2018). Since both LFP

and EEG originate from the same underlying biophysical processes

but are sampled at different spatial scales (Buzsáki et al., 2012),

we wanted to examine how local activity in the LPFC influences

other brain areas during distractor anticipation. To test this, we

simultaneously recorded LFP from the LPFC and EEG from the

scalp, and estimated coherence and Granger causality index (GCI)

between these signals.

3.5.1 Beta-band activity facilitates
intrahemispheric, long-range functional
connectivity between the LPFC and the
occipitoparietal cortex

While our decoding analysis showed that theta-band activity

across spatial scales was most strongly associated with working

memorymaintenance and distractor anticipation (Figures 5, 8), our

coherence analysis instead showed significance predominantly in

the beta band (13–30 Hz) (Figure 10).

Within the frontal EEG group, we found significant beta-

band coherence between the LPFC LFP and the EEGs collected

near the LFP recording sites (monkey R: EEG channel 2, p <

0.05, N = 6 sessions; monkey W: EEG channels 4, 5, and 6 with

p < 0.05. N = 7 sessions; cluster-based one-sample, one-tailed

permutation test with α<0.05, cluster α<0.05), similar to a previous

study using a visual change-detection task (Snyder et al., 2018).

We compared between item conditions by computing coherence

after grouping items based on their left or right visual hemifield

location. Only in monkey W, we found significant differences

between the conditions in the frontal EEG group, specifically at

those EEG electrodes around the LFP array implant site (channels

4, 5, and 12 with p = 0.02, 0.04, and 0.02, respectively; N =

7 sessions; cluster-based two-sample, two-tailed permutation test

with α<0.05, cluster α<0.05; Figure 10b). As left items were items

shown contralateral to the LPFC implant site in monkey W, this

suggested that the higher coherence is observed when remembered

contralateral items. However, such was not observed in monkey R.

In addition, significant excess beta-band coherence was

observed broadly across the occipitoparietal brain area (monkey

R: EEG channels 13, 14, 16, 19, 20, and 21, clusters, p < 0.05, N

= 6 sessions; monkey W: EEG channels 13, 14, 15, 17, 18, 19, 20,

and 21, clusters, p < 0.05). But no significant difference between

item conditions were found. For both monkeys, these coherence

values tended to be higher on the hemisphere ipsilateral to the

LPFC implant site. There were weaker increases in coherence with

some occipitoparietal scalp sites contralateral to the LPFC array

near the midline, but it is difficult to conclude whether these

increases reflect increased interhemispheric functional connectivity

or rather effects of volume conduction. This enhanced coherence

between the LPFC and occipitoparietal area may play a crucial

role in distractor anticipation, possibly to support inter-areal

communication to remember the maintained representation of

working memory items.

To determine the directionality of interareal communication,

we computed GCI between the LPFC LFP and scalp EEG

(Figure 11). Overall, GCI was less noisy in monkey W compared

to monkey R. In both monkeys, we observed significant GCI, also

predominantly in the beta band, consistent with coherence analysis.

GCI from the LPFC LFP to the overlying scalp was greater thanGCI

in the other direction (monkey R, N = 6 sessions, EEG channel 2,

1 cluster, p = 0.04; monkey W, N = 7 sessions, EEG channel 5, 1

cluster, p= 0.03; cluster-based one-sample, one-tailed permutation

test with α<0.05, cluster α<0.05). Additionally, in monkey W,

several EEG channels overlying near the LPFC LFP recording site

showed significant beta-band GCI from the LFP (clusters, channels

6, 11, and 12 each with p = 0.02). Compared to the coherence

analysis, the increases in GCI seemed more clearly confined to

within-hemisphere interactions.

We also found significant beta-band GCI from the LPFC

LFP to the EEG overlying the occipitoparietal area (monkey

R, N = 6 sessions, EEG channel 13, 1 cluster, p = 0.03;

monkey W, N = 7 sessions, clusters, channels 14, 15, 20,

and 21 with p = 0.03, 0.008, 0.04, and 0.02, respectively)

(Figures 11a, b; occipitoparietal EEG group). In monkey R,

EEG channel 19 showed a trend toward a significant top-

down GCI but did not reach significance (however, this LFP-

EEG pair was significantly coherent; Figure 10a). Our findings

align with previous studies (Bastos et al., 2015), highlighting

the role of beta-band oscillations in top-down feedback to the

occipitoparietal area. In monkey W, we saw one LFP-EEG

pair with a significant bottom-up GCI compared to its top-

down GCI in the beta band (Figure 11b; EEG channel 15,

clusters, p = 0.04); however the source of this bottom-up

GCI was unclear and beyond the scope of this paper. Across

all monkeys, theta and alpha bands showed no differences in

GCIs across directions. Importantly, these directed frequency-

domain interactions were mainly observed in the brain areas

ipsilateral to the LPFC LFP recording site, showing that the

LPFC predominantly exert top-down signaling in the ipsilateral

occipitoparietal brain areas.

3.5.2 Interareal beta-band coherence briefly
fluctuates in anticipation of a distractor during
the delay period

To better understand the spatial distribution of the beta-band

coherence, we constructed LFP-EEG coherence topography by

averaging the largest coherence (Coherencemax) within the beta

band across recording sessions for each LFP-EEG pair for each

monkey (Figures 12a, b). We used the maximum value within the

beta band because the number of peaks and troughs appeared

varying at different frequencies across monkeys, as shown in our

power spectra examples (Figures 4a, b). Taking the maximum

ensured that we capture the most prominent oscillatory feature in

the desired frequency band, which could be more representative

of the neural activity’s peak influence compared to a mean, which

might obscure these key fluctuations.

We compared the coherence topography across trial conditions

(ND vs. WD) and relative item locations (contralateral vs.

ipsilateral to the LPFC array implant site), and found both

monkeys showed subtly stronger intrahemispheric coherence

when remembering items displayed on the contralateral

visual hemifield (CONTRA) than when remembering items
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FIGURE 10

Coherence between the LPFC LFP and scalp EEG, organized into frontal and occipitoparietal EEG channel groups. (a) Monkey R had the

microelectrode array implanted in the left LPFC near EEG channel 2 (red box; highlighted on the topography in the middle). (b) Same for monkey W

that had the array implanted in the right LPFC near EEG channel 5 (red box; also highlighted). Red traces (±1 SEM) represent coherence while

remembering items presented in the right visual hemifield, and green traces (±1 SEM) represent coherence when remembering items shown in the

left visual hemifield. Corresponding significance is shown in their respective colors at the bottom (clusters, p < 0.05). Significant di�erences between

item conditions are displayed in the black horizontal bars at the top (clusters, p < 0.05).

Frontiers in IntegrativeNeuroscience 17 frontiersin.org

https://doi.org/10.3389/fnint.2025.1553521
https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org


Jung et al. 10.3389/fnint.2025.1553521

FIGURE 11

Granger causality indices (GCI) between the LPFC LFP and scalp EEG, organized into frontal and occipitoparietal EEG channel groups. (a) Monkey R

received a microelectrode array implant in the left LPFC near EEG channel 2 (red box and also highlighted on the EEG topography). (b) For monkey

W, the implant site was in the right LPFC, near EEG channel 5 (red box and highlighted in the corresponding EEG topography). Red traces (±1 SEM)

represent GCI from LPFC LFP to EEG, while blue traces (±1 SEM) indicate the reverse direction, from EEG to LPFC LFP. Significant GCI are marked

with horizontal bars at the bottom in their respective colors (clusters, p < 0.05). Significant di�erences between the GCIs are indicated by black

horizontal bars at the top (clusters, p < 0.05).
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FIGURE 12

Beta-band coherence topography and time-resolved coherence between the LPFC LFP and scalp EEG. The vertical line at 700 ms marks the time of

either anticipated or actual distractor onset. The monkeys R (a) and W (b) topographies for each item (CONTRA and IPSI) and trial condition (ND and

WD) with their di�erences across conditions (CONTRA-IPSI and ND-WD). EEG channels that showed enhanced coherence with the LFP are marked

on the montage at the bottom left corner. (c, e, g) Time-resolved LFP-EEG coherencemax (±1 SEM) for monkey R across trial and item conditions. (d,

f, h) Same but for monkey W. CONTRA (in red traces) refers to trials where monkeys remembered items displayed in the visual hemifield contralateral

to the LPFC implant site, while IPSI (in green traces) refers to trials with items displayed in the visual hemifield ipsilateral to the implant site.

Di�erences across conditions in black traces (±1 SEM). Significance indicated by horizontal bars (cluster-based permutation test result with α = 0.05

and cluster α = 0.05) at the top of each plot with their respective colors.
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displayed on the ipsilateral side (IPSI) (Figures 12a, b; ND,

CONTRA-IPSI). We did not observe any clear changes in inter-

hemispheric coherence. When the distractor was displayed,

no difference was detected (WD, CONTRA-IPSI), likely

occluded by the strong effect of the distractor in both time

and frequency domains, as shown in our previous analysis

(Supplementary Figure 2).

We next wished to test the time course with which LFP-

EEG coherence evolved over time in a small window (i.e., 500-

ms window with a 250-ms overlapping step). We restricted this

analysis to the LFP-EEG pairs that most exhibited significant

difference in coherence between CONTRA and IPSI conditions in

the beta-band coherence topographies. To be specific, in monkey

R, we calculated LFP-EEG coherence with EEG channels 2, 13, and

19, which approximately overlie the left LPFC, left occipitoparietal

cortex, and left occipital cortex, respectively. For monkey W, we

used channels 5, 20, and 21, corresponding to the right LPFC, right

occipital cortex, and midline occipital cortex, respectively.

When monkey R performed the task correctly, coherence

between the LFP and EEG over the left LPFC (channel 2) stayed

significant above chance throughout the delay period of the task

(clusters, p < 0.01; a cluster-based one-sample, one-tailed test with

α < 0.05, cluster α < 0.05). However, no significant differences

emerged between conditions (Figure 12c), despite a subtle tendency

to increase when remembering contralateral vs. ipsilateral items in

the later time of the delay period (1700 ms; ND, CONTRA-IPSI).

Most importantly, we found a significant, transiently increased

coherence with the EEG over the left occipitoparietal cortex

(channel 13) around the anticipated distract time (1000 ms) in

CONTRA items compared to IPSI items (1 cluster, p = 0.02, N

= 6 sessions; a cluster-based two-sample, two-tailed permutation

test with α < 0.05, cluster α < 0.05; Figure 12e; ND, CONTRA-

ISPI). Distractor presentation briefly reduced interareal coherence

during CONTRA item maintenance (1 cluster, p = 0.03; ND-

WD, CONTRA) but not for IPSI items, suggesting that the

coherence between the two brain areas are modulated specifically

when memory item shown in the contralateral visual hemifield is

being retained.

In monkey W, similar results were obtained. Across trial

conditions, coherence between EEG overlying the right LPFC

site (channel 5) and the LPFC LFP was significant through out

the task (clusters, p < 0.001, N = 7 sessions), but showed a

different temporal profile compared to monkey R. Strength of

coherence progressively decreased until the end of the delay period

(<2000 ms) and abruptly increased during saccade (>2,000 ms)

(Figure 12d). Importantly, stronger coherence was detected during

the anticipated distractor time (around 750ms) when remembering

contralateral vs. ipsilateral items (1 cluster, p = 0.003; ND,

CONTRA-IPSI). Similarly, such transient coherence increase was

also observed around the anticipated distractor time between EEG

over themidline occipital area and the LFP (channel 21; around 750

ms, 1 cluster, p= 0.01; Figure 12h; ND, CONTRA-IPSI).

When the monkeys failed to perform the task correctly,

transient coherence increase around the anticipated distractor

time was not present in all representative LFP-EEG pairs

(Supplementary Figure 8; ND, CONTRA-IPSI for every LFP-EEG

pairs). This suggests that enhanced communication between the

LPFC and occipitoparietal area at the time of the anticipated

distractor may be crucial to successfully carry out the task.

We also investigated the behavior relevance of the transiently

increased coherence between the LPFC and occipitoparietal

areas by correlating beta-band coherence with trial-level

behavioral error estimates; saccadic reaction time and memory

recall error. However, no significant correlations were found

(Supplementary Figure 9). In addition, we analyzed the

relationship between these error estimates and mean LFP

band power, but no consistent or coherent effects were detected

across monkeys (Supplementary Figure 10). This suggests that the

distractor had negligible influence on systematic biases in memory

signals in the brain.

To summarize, we found enhanced interareal communication

between the LPFC, LFP, and the EEG over the occipitoparietal

cortex, primarily within the same hemisphere. This communication

was particularly notable around the anticipated distractor time,

especially when remembering the items displayed contralateral

to the LPFC location. While this increase did not correlate

with trial-wise behavioral errors, it seemed pertinent for

successful carrying out the task. These results suggest the

fronto-occipitoparietal coherence is modulated task-dependently

during distractor anticipation.

4 Discussion

This study investigated how brain oscillations in monkeys

across spatial scales—prefrontal LFP and scalp EEG—are associated

with distractor anticipation during working memory maintenance.

Theta-band oscillations were closely associated with the item being

remembered during the delay period of the MGS task. Large-scale

theta-band oscillations (EEG) also responded when anticipating

distraction—consistent with memory reactivation—a pattern not

observed in smaller-scale theta-band oscillations (LFP) within the

LPFC via decoding and cross-temporal generalization analyses.

EEG theta-band activity shortly after (<100 ms), compared to

before, the anticipated distractor onset more effectively encoded

items for a short period (<500 ms), with only subtle disruption

during the presentation of a distractor. In contrast, LPFC LFP

theta-band oscillations showed increased item encoding only

briefly after distractor onset (<100 ms), revealing the memory

item latently represented by underlying LPFC neurons (e.g.

Stokes, 2015). Across spatial scales, items were predominantly

encoded by their left or right visual hemifield locations, reflecting

the brain’s organization of spatial information during working

memory. In addition, we analyzed LPFC LFP and scalp EEG

together and found enhanced interareal communication between

the ipsilateral LPFC and occipitoparietal areas, specifically in the

beta band, during working memory maintenance, as indicated by

our coherence and Granger causality analyses. Intriguingly, this

intrahemispheric communication transiently strengthened around

the anticipation of distractor onset, reflecting a possible preparatory

mechanism toward the anticipated distractor. Together, these

findings show that distractor anticipation affects neural oscillatory

activity during working memory maintenance, with distinct effects
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across spatial scales and frequency bands, potentially protecting

working memory content from forthcoming distraction.

Humans andmonkeys, despite evolutionary divergence, exhibit

similar oscillatory characteristics due to structural and functional

homologies (Petrides and Pandya, 2002; Neubert et al., 2014;

Buzsáki et al., 2013). Comparative studies between humans and

monkeys showed similar oscillatory behaviors during working

memory (Reinhart et al., 2012), bridging gaps between human

and monkey electrophysiology. Distractor anticipation during

working memory maintenance suppresses alpha-band oscillations

in humans, suggesting their role in mitigating distractor-induced

interference (Foxe and Snyder, 2011; Bonnefond and Jensen, 2012;

Gutteling et al., 2022; Magosso and Borra, 2024). This human

alpha is also associated with visuospatial attention (Snyder and

Foxe, 2010; Worden et al., 2000; Rihs et al., 2007) and working

memory (Foster et al., 2016; Bae and Luck, 2018), providing neural

signatures to track either the attended or memorized locations.

These changes in alpha power in humans have been further broken

down to different subcomponents of task performance. Increased

alpha over sensory areas has been associated with the suppressed

processing of distracting stimuli (Snyder and Foxe, 2010; Foxe

and Snyder, 2011; Banerjee et al., 2011; Haegens et al., 2012).

In contrast, decreased alpha power over frontal areas has been

associated with activation of appropriate task-sets (Hanna et al.,

2024). The coordination of these alpha-band changes across large

scale networks seems to be mediated by long-range theta-band

coherence (Fiebelkorn et al., 2018; de Vries et al., 2020).

Therefore, in monkeys, we initially expected to see task-related

activity predominantly in the alpha band during our spatial

working memory task. However, we did not detect predominant

alpha-band oscillations (Figure 4, Supplementary Figure 2),

unlike some prior works in monkey neurophysiological studies

(Buschman et al., 2012; Reinhart et al., 2012; Lara andWallis, 2014;

Snyder et al., 2015; Holmes et al., 2018; but see Wimmer et al.,

2016a). However, despite some reports of alpha band oscillations

in monkeys, overall there has been disagreement about the precise

frequencies of the dominant oscillatory components in monkeys,

with many studies reporting greater activity in the so-called “beta”

band, ranging from 10 to 30 Hz (Mendoza-Halliday et al., 2024a),

as we found in this study. One explanation is that the brain areas

or cortical depth (i.e., superficial layer) we recorded from simply

do not show dominant alpha band activity (Mendoza-Halliday

et al., 2024a), thereby PCA could not capture the activity. Another

possibility is that the monkey homolog of the human alpha band

ranges across wider frequencies (or different frequencies entirely),

from 8 Hz to 16 Hz or even higher, overlapping with the beta

band that ranges between 13 Hz and 30 Hz. While some activity

was observed in the range, no clear-cut boundaries were found

to confidently isolate the alpha from the beta in both LFP and

EEG data (Figures 4c, j; 12–40Hz). In this study, we instead found

significant task-related oscillations in the theta and beta bands, just

outside the traditional alpha band range. Since we found a role

for beta band activity and long-range theta coherence, our results

could also be consistent with the emerging picture from human

research on alpha and theta oscillations in distractor mitigation in

working memory.

Studies with human participants have previously shown

strong associations between the theta-band activity and working

memory, such as increased theta-band power in proportion to

increased memory load (e.g., number of items being remembered)

(Gevins et al., 1997; Raghavachari et al., 2001; Jensen and

Tesche, 2002; Cohen and Donner, 2013) and modulated working

memory performance with theta-band-based brain stimulation

(improvement studies: Polanía et al., 2012; Hoy et al., 2016;

Albouy et al., 2017; Violante et al., 2017; Riddle et al., 2020;

disruption studies: Lee and D’Esposito, 2012; no effect study: Biel

et al., 2022). In monkeys, we as well observed that the scalp

EEG theta-band oscillations were pronounced during the MGS

task and, interestingly, exhibited transient memory-dependent

activities after the anticipated distractor time that were only

briefly disrupted by the distractor (Figure 5). Fuentemilla et al.

(2010) previously demonstrated that the theta-band oscillations

from human magnetoencephalogram (MEG) reflect a periodic

replay of visual information being remembered during a delayed

match-to-sample working memory task. What we observed from

monkeys is replay-like (that we called memory reactivation in

this paper) as demonstrated by our cross-temporal generalization

results showing that the neural activity patterns during the post-

target period resemble the patterns during the post-anticipated-

distractor period (Figure 6). Furthermore, decoding during this

period was not effective when the monkeys failed to successfully

carry out the task (Supplementary Figure 4). This may suggest

that the memory replay is related to successful execution of

working memory task during possible distraction. And during

this memory reactivation, we saw significant contributions from

the frontal theta-band activity (Figure 7). Weaker contributions

from the occipitoparietal theta-band activity could be attributed

to the simplicity of our target visual stimulus—a circle—which

may not demand substantial involvement of the modality-specific

brain areas, here the visual cortex, for information maintenance as

implicated by the sensory recruitment hypothesis.

In the LPFC, we did not observe memory reactivation in theta-

band activity. This may be due to lack of memory-dependent theta-

band activity in the LPFC (e.g., areas 8A and 9/46) during the

delay period of working memory tasks (Wimmer et al., 2016a;

Holmes et al., 2018). But, when a distractor was delivered, we could

decode memory items from the theta-band response (Figure 8).

Since the distractor was constant in appearance and timing,

and, importantly, lacked spatial relevance to memory items, the

decoded information was likely associated with the latent memory

representation encoded by LPFC neurons, consistent with prior

studies (Stokes et al., 2013;Wolff et al., 2017; TenOever et al., 2020).

This was further supported by the lack of decoding in incorrect

trials at both target and distractor onsets (Supplementary Figure 5).

In addition, our cross-temporal generalization results showed the

representation of memory items evolved over time (Figure 9),

aligning with the “dynamic coding” framework (Zaksas and

Pasternak, 2006; Stokes et al., 2013; Stokes, 2015), in which different

mixtures of neurons encode throughout memory maintenance

from the changes in their underlying functional connectivity and

tuning properties (Duncan, 2001). This may explain the absence

of memory reactivation after the anticipated distractor onset,

as different neurons mediate initial encoding and maintenance,

leading to distinct theta-band activity over time.

In the LPFC, we also observed anticipatory suppression

particularly in the theta band, which endured until the anticipated
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distractor time and was followed by a rapid recovery to a

pre-distractor level (Supplementary Figure 3). This is similar

to a previous study showing that LPFC neurons suppress

their spiking activity in anticipation of a distractor, with the

strongest suppression occurring when the distractor was displayed

farthest from remembered target location (Suzuki and Gottlieb,

2013). Possibly, anticipatory processes may shape LPFC activity

distractor-dependently, akin to human non-invasive studies that

showed that the salience of distractor modulates brain oscillations

at different intensity (Bonnefond and Jensen, 2012; Magosso

and Borra, 2024), but not memory-dependently. The recovery of

suppressed theta-band oscillations after the anticipated distractor

onset may spontaneously enhance theta-band-based coupling

(Liebe et al., 2012; Fuentemilla et al., 2010) or synchronization

(Sarnthein et al., 1998) widely across the hemisphere, leading

to memory replay that we observed in the EEG theta-band

oscillations. However, during this recovery period, interareal theta-

band coherence with respect to LPFC (i.e., LFP-EEG coherence)

was weak and not distinct between the LPFC and EEG (Figure 10).

Instead, we found task-related coherence specifically from the

beta-band oscillations between the LPFC and occipitoparietal area.

We found significant beta-band coherence between the LPFC

LFP and scalp EEG across monkeys (Figure 10), with Granger

causal influence predominantly from the LPFC to ipsilateral

occipitoparietal areas (Figure 11). The pattern of coherence

between the LPFC and EEG subtly differed across monkeys, likely

reflecting hemispheric asymmetry in connectivity and functions

(Falk et al., 1990; Jason et al., 1984; Scott et al., 2016; Xia et al.,

2020), and also individual variability in head size (Colby et al.,

2022), which may have affected EEG electrode positioning and

the recorded brain areas. Throughout the delay period, significant

beta-band coherence was observed between the LPFC and EEG

over the occipitoparietal cortex. Unlike the continuous memory-

dependent interareal interactions reported between LPFC and

parietal regions in previous studies (Salazar et al., 2012; Antzoulatos

and Miller, 2016; Jacob et al., 2018), we found transient increase

in memory-dependent coherence around the anticipated distractor

time, specifically when the monkeys remembered contralateral

items (Figure 12). This difference may be attributed to the spatial

extent of the beta-band activity, as LFP reflects activity captured

over a smaller brain volume compared to EEG (Buzsáki et al.,

2012). Furthermore, some previous studies have linked beta-band

modulation in anticipation of stimulus (Van Ede et al., 2011; Liang

et al., 2002; Gross et al., 2006). This transient beta-band coherence

may suggest temporal orienting of the anticipated distractor as

a mechanism to mitigate its deteriorating effect. Some previous

studies in humans found increases in interhemispheric connectivity

were associated with successful maintenance in the presence of

distractions, but, in contrast, the coherence and Granger causality

effects we observed were primarily confined to a single hemisphere.

For example, Plaska et al. (2022) used bilaterally-presented

images of natural scenes as memory items, and found that

successful maintenance during delays with distractors depended

on interhemispheric connectivity. One possible explanation for

this difference from previous human studies could be related

to the lateralized nature of our memory items compared to the

bilateral nature of our distractor. However, due to the bilateral

nature of the memory items that Plaska et al. (2022) used,

it could be that interhemispheric coordination is necessary to

maintain the image in memory, whereas maintenance of our small,

unilaterlaterally localized saccade targets can be maintained within

a single hemisphere.

Behaviorally, the distractor did not reduce the monkeys’ rate

of task completion but did induce trial-wise errors, reflected in

increased saccadic endpoint variability and response times, similar

to previous findings in primates (Brown, 1958; Reinhart et al., 2012;

Suzuki and Gottlieb, 2013; Oberauer et al., 2018; Hallenbeck et al.,

2021; for review, see Lorenc et al., 2021). However, unlike some

of these studies, we did not find systematic relationships between

our behavioral and neural metrics (Supplementary Figures 9, 10). A

key distinction is that these prior studies utilized distractor stimuli

that shared the same feature space as target stimuli (e.g., both target

and distractor stimuli are circular and spatially informative), which

can bias decision toward the distractor (also known as congruency

effect). In contrast, our task employed a checkerboard stimulus that

spanned much of the visual field and was spatially unrelated to

the task, not sharing the same feature space, thereby the feature of

the distractor minimally biases decision making at the end of the

delay period of working memory task. This is important because

it implies that the increased decoding of memory items in our

decoding analysis was not a result of systematic behavioral biases

toward a distractor.

In sum, we demonstrated that theta- and beta-band oscillations

across spatial scales in monkeys reflect anticipatory processes

to a potential distractor during working memory maintenance.

Overall, our findings highlight that interareal beta-band oscillations

may facilitate brain-wide memory reactivation in the theta band,

giving indirect support to previous proposals such that the beta-

band synchronization reactivates latent memory representations

(Spitzer and Haegens, 2017). On the other hand, as beta-band

oscillations are linked to both inhibition and top-down control

during working memory tasks (Miller et al., 2018; Lundqvist

et al., 2024), our results may also suggest that the beta-band-

based inhibition and disinhibition of theta-band oscillations

during distractor anticipation induce replay-like activity across the

brain, leading to memory-dependent activity after the anticipated

distractor onset. Future research should explore the interaction

between theta- and beta-band oscillations across brain regions

during distractor anticipation, specifically to determine whether the

observed memory replay reflects a conscious recall of information

or a spontaneous recall-like process induced by inhibition and

disinhibition of oscillatory activity.
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