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Context-sensitive behaviors are crucial for the adaptive success of many organisms.
Investigating neural processes that facilitate context-sensitive behavior requires
knowledge of the molecular signaling and anatomical brain connectivity within
and between relevant brain networks. Here, we outline the roles of oxytocin and
dopamine signaling systems in context-sensitive singing in songbirds. Additionally,
using the recently compiled songbird connectome, we review anatomical
connectivity between vocal-motor and social brain networks that may facilitate
context-sensitive singing. We present a model for context-sensitive adaptability
of singing behavior in songbirds. We propose that the medial preoptic nucleus of
the hypothalamus may serve as the output nucleus of the social behavior network,
influencing oxytocin-mediated dopamine delivery to the vocal control network,
in a context-sensitive manner. As many components of this model are conserved
across species, we speculate that this proposed model can be generalized to
facilitate context-sensitive motor behaviors across vertebrate species. Overall,
we emphasize the importance of investigating each component of our proposed
model, within a single species. This perspective aims to uncover how integrated
neural mechanisms give rise to behavior.
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1 Introduction
1.1 Context-sensitive singing behavior in a songbird

Oscine songbirds are a unique model system for studying context-sensitive modifications
to learned behavior. Over half of all avian species, which includes oscine songbirds, but also
parrots and hummingbirds, exhibit vocal learning, a rare trait among mammals. One avian
species in particular, the oscine zebra finch (Taeniopygia guttata) modifies the timing,
sequence stereotypy, and frequency stereotypy of their learned song when directing it toward
a potential mate, compared to songs not directed at an identified individual (Sossinka and
Bohner, 1980; Zann, 1996). Presentation of a female to juvenile male zebra finches can also
elicit this context-sensitive song phenotype, prior to the end of the song-learning
developmental phase (Kojima and Doupe, 2011). These context-specific song alterations are
extremely salient for females of this species, who spend more time in proximity of speakers
delivering audio playbacks of female-directed singing than undirected singing (Woolley and
Doupe, 2008), making context-sensitive song production advantageous for mate selection. In
the following review, we explore the contributions of two neural networks (i.e., vocal control
network, social behavior network) and two neurotransmitters (i.e., dopamine, oxytocin) in
the production of context-sensitive song. We primarily review data reported in zebra finches,
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as context-sensitive vocal-motor behavior in this species is extremely
well-studied, but include findings from other songbirds. Additionally,
we provide insight into the neural pathways underlying behavior in
non-avian model organisms that exhibit context-sensitive motor or
vocal-motor behaviors.

1.2 Dual control through vocal control and
social behavior networks

In songbirds, learning, production, and context-sensitive
modification of vocalizations are each reliant on a network of
nucleated brain regions that are specialized for vocal-control
(Nottebohm et al., 1976), analogues of which exist in humans (Jarvis
et al., 2005; Moorman et al., 2012). This “vocal control network” can
be split into two smaller pathways, one specialized for motor
production of learned vocalizations and a second specialized for vocal
plasticity. The posterior motor pathway includes a motor nucleus
HVC (proper name), the robust nucleus of the arcopallium (RA), and
the tracheosyringeal subdivision of the hypoglossal nucleus (nXII[ts]),
a brainstem nucleus that innervates vocal muscles. In this motor
pathway, HVC serves as the pattern generator for song such that
manipulations of neural spiking pattens in HVC neurons directly
correlate to alterations of resulting song (Long and Fee, 2008). The
anterior forebrain pathway includes a striatal region Area X (proper
name), the lateral magnocellular nucleus of the nidopallium (LMAN),
and the dorsolateral nucleus of the medial thalamus (DLM), creating
a cortical-basal ganglia loop, necessary for song plasticity during
development and generation of adaptive modifications (Bottjer et al.,
1984; Brainard and Doupe, 2000; Kao et al., 2005; (")lveczky et al.,
2005). These two sub-pathways are anatomically connected via two
projections from HVC to Area X and from LMAN to RA (as depicted
in Figure 1A). LMAN inhibits context-sensitive modifications to
fundamental frequency variation in song (Kao and Brainard, 2006).
Additionally, pharmacological inactivation of LMAN during a learned
syllable pitch-shift paradigm caused regression in the learned change
to pitch (Andalman and Fee, 2009). These data suggest that the
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anterior forebrain pathway contributes to variation in song frequency,
potentially utilizing the anatomical connection from LMAN to RA.

Facilitating context-sensitive singing, the vocal control network
exhibits context-sensitive neural spiking and context-sensitive neural
activity-dependent gene expression (Jarvis et al., 1998; Hessler and
Doupe, 1999; Kao et al., 2008). Such dynamic context-sensitive neural
activity patterns may influence downstream molecular processes, such
as gene translation (Whitney and Johnson, 2005). Early efforts to
explore the songbird singing transcriptome via the creation of whole
brain or telencephalon cDNA libraries examined undirected and
female-directed singing adult male zebra finches (Jarvis et al., 2002;
Wada et al., 2006). Unfortunately, more recent studies utilizing
RNA-sequencing in zebra finches and other songbird species have
primarily focused on one singing condition or have excluded singing
status from their analyses altogether (Drnevich et al., 2012; Whitney
et al., 2014; Burkett et al., 2018; Ko et al., 2021). In the vocal control
network, mRNA expression of 10% of transcribed genes in the
songbird genome are induced by singing in isolation (Whitney et al.,
2014). Many of these song-regulated genes are uniquely transcribed
in one of the four cortical nodes of the vocal control network (HVC,
RA, Area X, or LMAN) (Whitney et al., 2014). There is a significant
lack of high-resolution transcriptomic analysis of social influence on
the singing transcriptome in any songbird species. Nonetheless, the
general mechanisms by which the isolated vocal control network
manages context-sensitive song production are well-studied, but the
integration of other defined neural systems (i.e., the social behavior
network) that likely drive context-sensitive changes to behavior are
less understood.

Studies in songbirds suggest that a social behavior network is
involved in context-sensitive behavior. The social behavior network
exhibits context-sensitive activation during singing (Heimovics and
Riters, 2007; Anderson et al., 2023), alluding to a functional role for
this network in context-sensitive singing. Evidence suggests that this
social behavior network is fully interconnected and conserved across
vertebrates (Newman, 1999; Goodson, 2005). In songbirds, the
following brain regions compose six nodes of this social behavior
network: the anterior hypothalamus (AH), medial bed nucleus of the

FIGURE 1

arrowheads indicate reciprocal connections.

Dopamine Input

Receptor Expression
D1-iike | [ D2-lke |

Dopamine signaling across the vocal control and social behavior networks. Expression of D1-like (green icon) and D2-like (red icon) dopamine
receptors within the (A) vocal control network and (B) social behavior network. Innervation by dopamine synthesizing regions, or local synthesis of
dopamine, is represented by an orange ring around the node. Arrowheads between nodes indicate anatomical connectivity, connecting lines without
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stria terminalis (BSTM) and nucleus taenia (TnA), central gray (CG)
and intercollicular nucleus (ICo), lateral septum (LS), medial preoptic
nucleus of the hypothalamus (POM), and the ventromedial nucleus of
the hypothalamus (VMH). In this proposed social network, the
songbird TnA is considered homologous to the mammalian medial
amygdala (Goodson, 2005). Additionally, considering similarities of
the distribution of several neuropeptides across the songbird CG and
ICo and the mammalian periaqueductal gray (PAG) (Kingsbury et al.,
2011; Goodson and Kingsbury, 2013), we consider CG and ICo to
serve together as the node of the social behavior network homologous
to mammalian PAG. Investigations of the songbird social behavior
network have highlighted its functional role in innate social behaviors,
like proximity to adult conspecifics (Goodson et al., 2005), nest
building behaviors (Edwards et al., 2020), or other behaviors related
to parental care (Fazekas et al., 2020; Kumari et al., 2022). Overall, the
social behavior network could function as a hub for integrating diverse
signaling mechanisms that influence context-sensitive singing.

2 Role of dopaminein
context-sensitive vocalizations

2.1 Dopamine production and functional
role

First described in macaque monkeys (Macaca fmcicularis),
dopamine has a key role in denoting the reward prediction error
signal that is critical for reinforcement learning (Schultz et al., 1993,
1997). This dopamine-mediated signal often facilitates motor learning
(Uehara et al., 2019). Dopamine is primarily synthesized in the ventral
tegmental area (VTA; dopamine cell group A10) and substantia nigra
(SN; dopamine cell group A9), which together form a continuous
region this is herein referred to as VTA. In zebra finches, VTA exhibits
context-sensitive activation (Heimovics and Riters, 2005) and neural
spiking patterns that are sensitive to self-perceived errors in vocal
production (Gadagkar et al., 2016), facilitating subtle adjustments to
song from rendition to rendition. The VTA and social behavior
network node CG (contains dopamine cell group A11), each innervate
three key regions of the songbird vocal control network: HVC
(Appeltants et al., 2000; Tanaka et al., 2018), Area X (Lewis et al., 1981;
Castelino et al., 2007; Gale et al., 2008), and RA (Appeltants et al.,
2002). While these two dopamine-producing regions innervate the
same regions for vocal-motor control, the relative densities of these
connections are unknown. In canaries, lesioning CG selectively blocks
female-directed song while leaving undirected song unaffected
(Haakenson et al., 2020; Ben-Tov et al., 2023), suggesting that even if
the density of CG projections to the vocal control network are less
than that of VTA, the potential contributions to context-sensitive
signing is significant. These data suggest that dopamine, either from
the VTA or CG, plays a critical role in linking external information
(e.g., social cues and self-perceived errors) to learned vocal production.

In the zebra finch, G-protein-coupled dopamine receptors are
classified into two major types (Kubikova et al., 2010), excitatory
D1-like receptors (D1a, D1b, Dlc, and D1d) and inhibitory D2-like
receptors (D2, D3, and D4) (Palacios et al., 1988; Neves et al., 2002;
Neve et al., 2004; Platania et al., 2012). All cortical regions of the
songbird vocal control network express D1-like and D2-like dopamine
receptors, while the thalamic node expresses only D1-like dopamine
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receptor mRNA (Kubikova et al., 2010) (Figure 1A). Dual expression
of both DI-like and D2-like receptors suggests that dopamine-
mediated signaling in the vocal control network could be additionally
dependent on secondary signals from local interneurons or inputs
from other brain areas. Blockade of D1-like receptors in HVC reduces
the amount of female-directed singing in adult male zebra finches,
compared to those who received a saline control (Ben-Tov et al.,
2023), suggesting that D1-like receptor activation in HVC may
be critical for context-sensitive singing.

A comprehensive analysis of dopamine receptor distribution
across the social behavior network has not been performed in zebra
finches, although dopamine receptor distributions have been reported
in other songbird species. In European starlings (Sturnus vulgaris), all
social behavior network nodes express D1-like dopamine receptors
(Heimovics et al., 2009), while POM expresses both D1-like and
D2-like dopamine receptor mRNA (Heimovics et al., 2009; Polzin
et al,, 2023), and is bidirectionally connected to VTA (Riters and
Alger, 2004). Additionally in POM of European starlings, D1 receptor
expression is tightly correlated with high singing amounts in the
presence of a female (DeVries et al., 2015) (Figure 1B). In zebra
finches, localization of tyrosine hydroxylase and absence of dopamine
beta-hydroxylase has been reported in multiple social behavior
network nodes (Bottjer, 1993; Mello et al., 1998; Alger et al., 2011),
indicating dopamine ligand availability. Tyrosine hydroxylase
localization in VMH is higher in female zebra finches whose male
partners attempted courtship compared to females whose partners did
not (Alger et al,, 2011), suggesting that dopamine delivery to the social
behavior network is sensitive to external cues. Overall, this potential
for dopamine-signaling across the social behavior network may
facilitate the transmission of socially-informed, rewarding cues to
other circuits in the brain, like the vocal control network.

2.2 Context-specific activation patterns

VTA activation is positively correlated with female-directed song
production and dependent on social context (Heimovics and Riters,
2005). More specifically, VTA neurons that preferentially fire during
female-directed singing fire less during undirected song, and vice
versa (Yanagihara and Hessler, 2006), indicating that unique
populations of neurons within VTA may be responsive to song within
a single social context. Additionally, dopamine in Area X is higher in
female-directed conditions than in undirected conditions (Sasaki
etal, 2006; Thle et al., 2015). Together these data suggest that neurons
within the VTA are sensitive to the social context in which a bird is
singing and that context-sensitive signaling from VTA may lead to an
upregulation of dopamine in Area X of the vocal control network in
female-directed singing contexts. In other songbird species, dopamine
signaling is also associated with social singing contexts. In social
aviaries, high-singing male and female European starlings express
more D1-like (D1b) and D2-like (D2) mRNA in POM of the social
behavior network than starlings who sing less (Polzin et al., 2023),
increasing sensitivity to dopamine signaling in the social behavior
network with increased levels of song. Additionally in starlings,
expression of an activity marker in POM and VTA is tightly correlated
with singing amount in female-directed contexts, but not in
undirected contexts (Heimovics and Riters, 2005). Of course, it is
important to note that while these data support a hypothesis that
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dopamine-mediated activation or inhibition of POM may influence
the context-sensitive firing of VTA and ultimate release of dopamine
into Area X of the vocal control network, direct influence of the social
behavior network on context-sensitive song remains untested.

In one case, a chemical lesion of the locus coeruleus (LoC), a
region canonically known for producing a catecholamine
norepinephrine positioned immediately next to CG, altered the motor
production of song in zebra finches, but chemical lesions within VTA
had no effect on song production (Hara et al., 2007). Due to the
proximity of LoC and CG, chemical lesioning LoC, likely also lesioned
the CG, meaning that the disruption of song may have been due to a
disruption of dopamine-synthesizing cells in CG. Similarly, agonizing
gamma-aminobutyric acid (GABA,), increasing inhibitory signals, in
CG resulted in delayed song onset in male canaries (Serinus canaria)
when presented with a female (Haakenson et al., 2020). The exact
interplay between the dopaminergic innervation of the vocal control
network by VTA and CG is an unknown, but likely fruitful research
question. As outlined in this review, both nodes serve some role in
context-sensitive singing.

3 Role of oxytocin and vasotocin in
context-sensitive song

3.1 Oxytocin and vasotocin in vocal
modulation

Two related molecules, oxytocin and vasotocin, may serve a
primary role in facilitating context-sensitive behaviors. Oxytocin and
vasotocin are paralogous nonapeptides that bind to a family of
G-protein-coupled receptors. There are four orthologous oxytocin-
family receptors expressed in avian species: OXTR, VTR1a, VTR1b,
and VTR2a (Theofanopoulou et al., 2021). In isolation, activation of
the oxytocin receptor or vasotocin receptors by oxytocin or vasotocin,
respectively, is typically an excitatory signal (Omura et al., 1999; Bakos
et al., 2018). While downstream effects of oxytocin or vasotocin
binding to oxytocin-family receptors may be similar, the neural
distribution of each receptor subtype is unique and variable across

10.3389/fnint.2025.1650323

songbird species (Leung et al., 2011; Davis et al., 2022; Marcinkowska
etal., 2022). A summary of oxytocin-family receptor expression that
has been reported in two songbird species, zebra finch and white-
throated sparrows (Zonotrichia albicollis), is shown (Figure 2).
Oxytocin and vasotocin are primarily synthesized in the
paraventricular nucleus of the hypothalamus (PVN) and the
supraoptic nucleus of the hypothalamus (SON) in both songbird and
mammalian species, with additional oxytocin synthesis occurring in
the BSTM/lateral bed nucleus of the stria terminalis (BSTL) and POM
(Montagnese et al., 2015; Grinevich and Neumann, 2021; Haakenson
et al,, 2022). Many and social brain regions across songbirds receive
oxytocin and/or vasotocin ligands. Reported ligand localization in
zebra finches and blue tits (Cyanistes caeruleus) is collectively
summarized (Figure 2). Interestingly, oxytocin ligand distribution has
only been reported in one node of the vocal control network, HVC
(Haakenson et al., 2022). We wish to highlight the mismatch between
reported ligand localization and receptor expression across the vocal
control and social behavior networks. This could indicate that nodes
with receptor expression but no reported ligand localization could
encounter oxytocin-family ligands that are delivered via non-synaptic
routes (i.e., diffusion, secretion). Additionally, this could simply
be attributed lack of data
immunohistochemical tools for detecting oxytocin-family ligands in

to a reported. Currently,
the songbird are limited. In the future, as GPCR-based sensors for
detecting small peptides become more applicable to non-mammalian
species (Lee and Kwon, 2022; Ahmed et al., 2023; Qian et al., 2023), a
more comprehensive catalogue of oxytocin-family ligand distribution
can be compiled in songbirds.

In songbirds, oxytocin and vasotocin have often been studied in
relation to non-learned social behaviors. For example, antagonism of
oxytocin receptor-mediated signaling in zebra finches reduces the time
spent in proximity to conspecifics in large groups (Goodson et al., 2009)
and the time spent allopreening (Klatt and Goodson, 2013), suggesting
that oxytocin plays a key role in innate affiliative behaviors in this
species. Delivery of either oxytocin or vasotocin to juvenile zebra
finches decreases or increases, respectively, song similarity to the tutor
template (Baran et al., 2017), potentially due to disrupted affiliative
behavior. Additionally, adult male zebra finches sang less tutee-directed

FIGURE 2

Potential contributions for oxytocin-family signaling to context-sensitive song. Localization of oxytocin receptors (blue icon), vasotocin-family
receptors (pink icon), oxytocin ligand (blue outline), and vasotocin ligand (pink outline) in the (A) vocal control network and (B) social behavior network.
Arrowheads between nodes indicate anatomical connectivity, connecting lines without arrowheads indicate reciprocal connections.
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song to juvenile zebra finches who were treated with an oxytocin
antagonist than to saline-treated control juveniles (Pilgeram et al.,
2023), suggesting that adults of this species are sensitive to disrupted
social systems in conspecifics. Other studies have further investigated
the effect vasotocin signaling on modulating learned singing behavior
compared to innate behaviors. For example, adult male zebra finches
who were treated with a vasotocin antagonist or vasotocin exhibited no
change in occurrence of female-directed songs compared to males who
received a saline control, but occurrence of aggressive behaviors in these
males increased and decreased, respectively, compared to males who
received a saline control (Goodson and Adkins-Regan, 1999). While
these studies highlight the innate social and learned singing behavioral
effects of oxytocin and vasotocin signaling, less is known about the
direct mechanisms by which these neuropeptides exert their influence.

3.2 Complementary role with dopamine

Mechanisms for social behavior in mammals highlight an integral
pathway from PVN to VTA to motor circuits (Hung et al., 2017; Xiao
et al,, 2017; Borland et al., 2019). Oxytocin-expressing projection
neurons in PVN that synapse directly and selectively onto
dopaminergic neurons in the VTA are more active following social
encounters, increasing firing rates of dopamine neurons in VTA
(Hung et al.,, 2017; Xiao et al., 2017). Additionally, in mammals,
disruption of oxytocin signaling in the SN decreases dopamine
delivery to a striatal motor region (Sanna et al., 2021). Homologous
axonal projections from PVN to VTA in two songbird species, the
house finch (Haemorhous mexicanus) and white-crowned sparrow
(Zonotrichia leucophrys gambelii) (Singletary et al., 2006; Ubuka et al.,
2012), suggest that a similar mechanism may regulate the context-
sensitive switch from more-variable undirected song to directed song
in the presence of a potential mate in songbirds. Additionally, in
songbirds, oxytocin fibers are present in the VTA (Haakenson et al.,
2022), further supporting that a similar mechanism of oxytocin-
mediated activation of dopamine neurons occurs in songbirds.

Some suggest that the oxytocinergic POM to dopaminergic VTA
pathway in songbirds could function similar to the oxytocinergic PVN
to dopaminergic VTA pathway in mammals to regulate context-
(Riters 2004;
Theofanopoulou et al., 2017). However, it should be recognized that

sensitive behavior in songbirds and Alger,
in songbirds, POM is bidirectionally connected to the PVN. Activation
of PVN and POM is correlated during female-directed, but not
undirected, singing contexts (Anderson et al,, 2023). This dual
activation of POM and PVN suggests a functional relationship
between POM and PVN in regulating context-specific singing
behavior in songbirds. These findings connect POM to the well-
documented PVN-to-VTA pathway, which mediates context-sensitive
behaviors in mammalian species.

4 Connectivity between vocal control
and social behavior networks

4.1 Functional connectivity

Correlational activity between distinct brain regions, i.e.,
functional connectivity evidence, links the songbird social behavior
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network to the vocal control network in context-sensitive singing.
Distinct patterns of neural activity-dependent gene expression across
the social behavior network in adult male zebra finches is correlated
with context-specific singing (Anderson et al., 2023). Furthermore,
correlated activity between node pairs within this social network is
dependent on social context (Anderson et al., 2023). For example,
after a period of undirected singing, activation of POM is positively
correlated with that of CG, but after female-directed singing POM
activation is no longer correlated with CG, but instead correlates with
activity in the BSTM, LS, AH, and VMH (Anderson et al,, 2023). In
another songbird species, European starlings, unique patterns of
neural activity-dependent gene expression further demonstrate the
context-specific activity of the social behavior network. In breeding-
contexts, neural activity-dependent gene expression in LS is negatively
correlated with singing, while expression of the same gene in VMH
increases with singing (Heimovics and Riters, 2007). Together, these
finding demonstrate a functional relevance for the social behavior
network in regulating context-sensitive song, likely through dynamic
reorganization of its activity across different social contexts. However,
it is important to note that context-sensitive expression of an activity-
dependent gene in various nodes of the social behavior after song
production, is simply correlational evidence that activity in the social
behavior network is involved in context-sensitive singing.

4.2 Anatomical pathways

Few studies have reported direct anatomical connectivity between
the social behavior network and the vocal control network. Notably,
CG of the social behavior network, which produces dopamine,
innervates HVC, Area X, and RA (Appeltants et al., 2000, 2002;
Castelino et al., 2007; Tanaka et al., 2018) (Figure 3A). Additionally,
HVC innervates TnA, potentially allowing for vocal-motor feedback
to the social behavior network (Cheng et al., 1999) (Figure 3A).
However, this limited number of studies does not necessarily imply a
lack of connectivity between these networks, this could reflect of
songbird research to the vocal control network. As of 2024, the only
nodes of the songbird brain that have been directly injected with an
axonal tract tracer in over 10 different studies are HVC, Area X,
LMAN, RA, and the caudolateral nidopallium (NCL) (Savoy et al.,
2024). The vast majority songbird brain regions have only been the
direct target of a tracer study one or zero times (Savoy et al., 2024).

Considering two- and three-synapse anatomical connections,
rather than direct ones, the social behavior network may communicate
with the vocal control network using interactions between oxytocin-
producing PVN and dopamine-producing VTA. Many nodes of the
social behavior network receive axonal input from PVN in songbirds
(Figure 3B), suggesting a role for PVN as a hub for oxytocin-mediated
modulation of the social behavior network. Further, in zebra finches,
POM is reciprocally connected to PVN (Riters and Alger, 2004),
potentially creating a feedback loop between the social behavior
network and PVN.

In non-songbird avians and mammals, PVN and VTA are
bidirectionally connected, whereas in songbirds, only a PVN-to-VTA
connection has been reported (Singletary et al., 2006; Ubuka et al.,
2012). Additionally, in two non-songbird avian species, the domestic
chicken (Gallus gallus) and the domestic mallard (Anas platyrhynchos
domesticus), LS innervates PVN (Korf, 1984; Montagnese et al., 2004).
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FIGURE 3

PVN and VTA serve as an anatomical bridge between the songbird vocal control and social behavior networks. (A) Direct anatomical connections
between the vocal control network and the social behavior network. (B) Indirect anatomical connectivity between the social behavior network and the
vocal control network, utilizing PVN and/or VTA as liaison nodes. All connections shown have been reported in at least one songbird species.

01O

The lack of reported songbird connections could be due to a bias to
investigate the specialized song system, rather than generalized
exploratory characterization studies of the rest of the brain.
Nonetheless, these findings suggest that PVN may act as an anatomical
bridge between the social behavior network and vocal control network.

5 Discussion

5.1 Proposed model of dopamine-oxytocin
interactions in context-sensitive singing

Considering molecular, anatomical, and functional brain data in
songbirds, we hypothesize that the POM may serve as the output
nucleus of the social behavior network, influencing oxytocin-
mediated dopamine delivery to the vocal control network, in a
context-sensitive manner (Figure 4). These neuromodulatory signals
may also engage feedback mechanisms enabling dynamic self-
regulation within the pathway to respond to changing social contexts
in real time. In highly stimulating social settings (i.e., immediately
following the presentation of a potential mate), activation of POM is
tightly correlated with activation of both PVN and VTA, compared
to periods of undirected singing where POM activity is correlated
with activation of CG. Potentially, in social environments, POM
activity is released from CG oversight to go on to activate oxytocin-
producing neurons in PVN. In turn, oxytocin PVN neurons synapse
onto dopamine neurons in the VTA that express oxytocin receptors,
curating a signaling relationship that is essential for the reinforcement
of social behaviors (Borland et al., 2018). This cascade resulting in
VTA activation could be responsible for the increase in dopamine
delivery to the vocal control network, as has been reported during
periods of female-directed singing. The anatomical connections to
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facilitate the proposed pathway have each been reported in songbird
species (Savoy et al., 2024), and functional data reported in many
songbird species seems to support this hypothesis. Reciprocal
connections among many of the social behavior network nodes,
PVN, and VTA suggests the potential for self-regulation within
this pathway.

5.2 Potential conservation of proposed
model across vertebrates

By drawing parallels with mammalian systems, the proposed
model for zebra finches provides an opportunity to uncover universal
principles governing social influence on motor behaviors, with specific
adaptations for vocal learning. Context-sensitive behavior, which is,
in essence, the adjustment of behavioral responses to stimuli based on
environmental and social contexts, is adaptive for many animal
species. Each vocal learning species can manipulate their vocalizations,
albeit speech or song, in some capacity. These species fall into two
major groups: mammalian (i.e., humans, elephants, whales, dolphins,
seals, bats) and avian (i.e., songbirds, parrots, hummingbirds). Like
humans, bottlenose dolphins (Tursiops truncatus) and African
elephants (Loxodonta africana) use specific vocalizations or alter their
vocalizations when addressing unique members of their community
(Sayigh et al., 2023; Pardo et al., 2024). Additionally, harbor seals
(Phoca vitulina) can also learn new vocalizations and use them in
specific contexts (Ralls et al., 1985; Duengen et al., 2024). Remarkably,
a few species can mimic human speech in socially rewarding contexts,
despite biological differences. The ability of vocal-learning species to
modify their vocalizations based on social and environmental contexts
raises intriguing questions about the neural mechanisms underlying
social influences on vocal modifications.
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FIGURE 4
Proposed model for context-sensitive singing. Context-sensitive modifications to song in the adult male zebra finch are potentially mediated by a
synaptic pathway moving through the social behavior network, PVN, VTA, and ultimately the vocal control network. (A) An increase in overall social
behavior network activation, potentially caused by social oxytocin and rewarding dopamine input signals, triggers a context-specific signature of
activation in the vocal control network, allowing for female-directed singing. (B) A decrease in overall social behavior network activity, potentially
caused by baseline or reduction in baseline oxytocin and dopamine input to the network, could facilitate undirected singing.

While our proposed mechanism is specific to context-sensitive
singing behavior in songbirds, similar neural mechanisms may
facilitate context-sensitive behavior in non-vocal-learning species
(Figure 5). Homologous regions to the songbird social behavior
network, PVN, and VTA are found across vertebrates. In species
without direct analogs to the songbird vocal control network, VTA
may innervate a non-specified motor network, as it does in mouse
models to facilitate social-directed motor behaviors (Hung
etal., 2017).

In mice, experienced mothers respond quickly to distress calls
made by mouse pups outside of the nest, while naive females may
ignore the pups completely. Therefore, the motor response to mouse
pup calls is a learned, or experience-driven behavior. Naive females can
learn these pup care behaviors from experienced to naive females, in a
social process mediated by oxytocin-expressing PVN neurons (Carcea
et al., 2021). In adult female mice, activation of oxytocin receptor-
expressing neurons in POM is positively correlated with pup exposure,
and oxytocin expression is higher the PVN and SON of high pup
exposure groups compared to low pup exposure groups (Okabe et al.,
2017). Additionally, oxytocin-expressing PVN neurons are more active
during mouse pup care behaviors than during infanticide, and
optogenetic activation of these neurons reduced infanticide behaviors
(Li et al.,, 2024), linking oxytocin signaling to the learning of mouse
pup care behavior. Activation of VTA dopamine neurons is also
positively correlated with mouse pup retrieval; inhibiting these
neurons increases retrieval delay compared to response times in
uninhibited mice (Xie et al., 2023). Similarly, endogenous dopamine
release in the ventral striatum, a region influenced by VTA activity
1993). Given that POM
synthesizes oxytocin, it is unclear whether the activation of oxytocin

increases in maternal rats (Hansen et al,,

receptor neurons in POM is self-generated or mediated by another
nucleus. However, PVN innervates VTA in rodents, suggesting this
oxytocinergic signaling in PVN may directly trigger dopamine release
in the ventral striatum via VTA, facilitating context-sensitive motor
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behavior. Furthermore, oxytocin-mediated dopamine signaling in
vertebrate species may play a conserved role in social behaviors, as
recently reviewed (Rappeneau and Diaz, 2024). Of course, while the
adult female mice do not learn vocal responses to pup calls, they
exhibit a learned motor behavior that is socially driven. In this way, this
response is the mouse is context-sensitive and may be under control
of a neural mechanism similar to that in the songbird (Figure 5B).

In another vertebrate species, the midshipman fish (Porichthys
notatus), multiple nodes of the social behavior network are responsive
to mating-specific calls. The fish homologue of VMH (anterior tuberal
nucleus of the hypothalamus; AT) selectively responds to conspecific
mating calls and not calls from other fish species or ambient noise
(Mohr et al., 2018). Additionally, the continuous homologue of AH and
POM, express transcriptional profiles that are correlated with social
vocalizations, regardless of likelihood of eventual mating success (Tripp
etal., 2018). Additionally, in midshipman fish, many nodes of the social
behavior network express oxytocin receptors that are activated in males
performing mating-related vocalizations (Schuppe et al., 2022). While
oxytocin-mediated dopamine signaling has not been reported in the
midshipman fish in reference to context-sensitive vocalizations, this
type of dopamine regulation has been reported in another teleost
species, the catfish (Claria batrachus) (Singh et al., 2016), here this
oxytocin originates in the preotic nucleus (PON). Dopamine signaling
in the midshipman fish brain is increased in response to the perception
of social vocalizations. Dopamine cell group All neurons, are
selectively activated in the midshipman fish after exposure to a mating
hum call compared to ambient noise (Ghahramani et al., 2018), and
spike trains of some A1l neurons are tightly correlated with the onset
2006). In songbirds All is
physically within CG/ICo, but in teleost fish these dopaminergic cells
, 2013).
Further, dopamine injections into the fish A11 reduce the probablhty

of vocalizations (Kittelberger et al.,
may be functionally more similar to VTA (Petersen et al.

of vocalizations, an effect that is blocked by co-injection with a
non-selective D1/D2 receptor antagonist (Allen et al., 2023). This may
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reflect a feedback mechanism, where locally applied dopamine acts via
D2-like receptors to inhibit dopaminergic activity in A11, perhaps to
refine the timing or duration of vocalizations. In summary, these teleost
fish exhibit many of the characteristic phenotypes predicted by our
proposed model for context-sensitive vocalizations (Figure 5C), despite
being evolutionarily distant from songbirds.

Our model, derived primarily from existing literature in
songbirds, suggests that in response to social stimuli the social
behavior network oversees oxytocin-mediated activation of
dopaminergic cells such as those in A11/CG/ICo, as well as the VTA,
to facilitate context-sensitive motor behaviors. The species reviewed
here span millions of years of evolutionary diversity, yet in each
we find evidence for the conservation of the social behavior network
facilitating oxytocin-mediated activation of dopaminergic cells, which
in turn impact various the circuits for motor-control. This
conservation of functional, anatomical, and effective connectivity
across vertebrates highlights the potential of our model as a shared
neural mechanism underlying context-informed motor behaviors.

5.3 Potential for future studies

To advance our understanding of the brain mechanisms
underlying context-sensitive behavior, future studies could prioritize
investigating cross-network neurotransmitter interactions rather than
focusing solely on isolated molecules or pathways. Neural processes
rarely act in isolation. While reductionist approaches are invaluable
for generating interpretable data from complex systems, focusing
solely on isolated processes may overlook the broader interactions and
integrations that underlie context-sensitive behaviors. We emphasize
a previous call for more basic investigations of the social behavior
network (Kelly, 2022). While the social behavior network was
hypothesized nearly 20 years ago to be conserved across all vertebrate
species, comprehensive anatomical evidence for its interconnectivity
remains incomplete in many of the model organisms reviewed here.

In songbirds, strong functional evidence supports the role of the
social behavior network in context-sensitive singing, as demonstrated
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in species such as zebra finches and European starlings. However,
anatomical connectivity data for the social behavior network in any
songbird species is far from complete (Figure 6A). Of the 30 expected
anatomical connections between all six nodes of the social behavior
network, only 12 have been reported in songbird species (Figure 6B),
with even fewer connections confirmed in a single species, the zebra
finch (Figure 6C). Many of these connections have been inferred from
studies in non-songbird avian species, such as quail. Resources like the
recently published songbird connectome (Savoy et al., 2024), which
maps all reported anatomical connections in the songbird brain,
provides a valuable tool to identify understudied social behavior
network nodes and connections. Characterizing the social behavior
network within a single species would provide critical evidence for its
conserved structure and function. Future studies could use
immunohistochemical or in situ hybridization techniques to investigate
whether cells within social behavior network nodes are responsive to
dopamine and oxytocin signaling, either separately or in combination.
Multi-label histology studies could determine whether these cells
express dopamine and oxytocin-family receptors, highlighting their
potential for co-modulation. Such work could inform functional
studies testing the effects of disrupting specific nodes or signaling
pathways on context-sensitive behaviors, including vocalizations.

In addition to the social behavior network, recent studies emphasize
the importance of integrating other specialized networks, such as the
auditory system, into models of context-sensitive song behavior in birds.
For example, inhibition of the auditory system using GABA receptor
agonist diminishes sound-triggered activation of the lateral VMH of the
social behavior network (Spool et al., 2024). This finding suggests that
auditory signals prime the social behavior network to anticipate social
interactions, reinforcing the need for studies exploring the integration
of defined networks into models of context-sensitive behavior. Yet
another promising avenue is the role of the caudolateral nidopallium
(NCL), an integrative brain region analogous to the mammalian
prefrontal cortex that is involved in planning context-sensitive
vocalizations in a songbird crow species (Corvus corone corone) (Brecht
etal., 2023). The NCL may coordinate with the social behavior network
to modulate vocal control network activity and context-sensitive

frontiersin.org


https://doi.org/10.3389/fnint.2025.1650323
https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org

Anderson and Whitney

10.3389/fnint.2025.1650323

A Hypothesized Connections

Songbird Connections

c Zebra Finch Connections

()

FIGURE 6

Verified interconnectivity of the social behavior network. (A) Hypothesized fully interconnected social behavior network. (B) Anatomical connections
between nodes of the social behavior network that have been verified via tract tracing studies in songbird species. (C) Anatomical connections
between nodes of the social behavior network that have been verified via tract tracing studies in zebra finches.

behaviors. Investigating its contributions to decision-making, social
context processing, and vocal-control could provide insight into how
learned behaviors are flexibly adapted to changing contexts.

Finally, female zebra finches do not sing, but they exhibit context-
sensitive responses such as strong behavioral preferences for the song
of their pair-bonded mate (Woolley and Doupe, 2008). These
preferences are maintained by D2-like dopamine receptors (Day et al.,
2019) expressed in POM of the social behavior network. Female zebra
finches may establish song preferences through a mechanism similar
to the model we propose here for supporting context-sensitive of
learned vocalizations in males. Investigating the anatomical
connectivity between the social behavior network and the female
vocal control network, as well as the functional contributions of these
interactions, may reveal pathways that enable subtle vocal adjustments
indicating song preferences, such as reactions to male song.

In summary, further basic research into the anatomical
connectivity and cellular composition of the social behavior network
within a single species, combined with functional studies to identify
the relevant targets and effective connectivity studies targeting specific
nodes is essential to understanding its role in context-sensitive
behaviors. By integrating additional networks and neurotransmitters,
future research may build a more comprehensive model of the neural
mechanisms underlying context-sensitive vocal and social behavior.
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