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The ability to walk may be critically impacted as the result of neurological injury or disease. 
While recent advances in brain–machine interfaces (BMIs) have demonstrated the feasibility 
of upper-limb neuroprostheses, BMIs have not been evaluated as a means to restore walking. 
Here, we demonstrate that chronic recordings from ensembles of cortical neurons can be 
used to predict the kinematics of bipedal walking in rhesus macaques – both offl ine and in real 
time. Linear decoders extracted 3D coordinates of leg joints and leg muscle electromyograms 
from the activity of hundreds of cortical neurons. As more complex patterns of walking were 
produced by varying the gait speed and direction, larger neuronal populations were needed to 
accurately extract walking patterns. Extraction was further improved using a switching decoder 
which designated a submodel for each walking paradigm. We propose that BMIs may one day 
allow severely paralyzed patients to walk again.
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Hultborn and Nielsen, 2007; Kagan and Shik, 2004; Orlovsky et al., 
1999; Takakusaki, 2008). Many such biological principles are being 
applied to robotic locomotion (Azevedo et al., 2007; Kimura et al., 
2007; Morimoto et al., 2008; Nakanishi et al., 2004).

A neuroprosthetic for the restoration of locomotion could be 
designed in several different ways. For example, a very simplifi ed 
interface could be built, extracting only speed and directional 
information from neural activity, and offl oading all precise move-
ment control to onboard computerized systems. However, such a 
neuroprosthetic would not offer much more functionality to the 
user than a motorized wheelchair. Alternatively, a far more ambi-
tious neuroprosthetic could attempt to extract control signals for 
every articulated joint in the robotic prosthetic, trusting the user 
to learn to control every aspect of the limb’s usage. However, much 
of balance and postural adjustments involve involuntary mecha-
nisms (Deliagina and Orlovsky, 2002; Grillner et al., 2007; Maki 
and McIlroy, 2007), and the lack of perfect decoding and sensory 
feedback could result in falls and injuries. Our approach takes the 
middle ground, if we can decode key walking parameters: step time, 
step length, foot location, and leg orientation, while offl oading 
other automatic-level controls: foot orientation, load placement, 
balance, and safety concerns to onboard computerized systems, 
then we can achieve a BMI that follows the general commands 
of the user while enforcing stability, and overriding motions and 
confi gurations likely to result in falls.

We have therefore extended our laboratory’s BMI approach 
(Carmena et al., 2003; Lebedev and Nicolelis, 2006; Wessberg 
et al., 2000) to investigate whether cortical activity can be utilized 
to extract the kinematics of bipedally walking rhesus macaques. 

INTRODUCTION
Bipedal locomotion control is of great interest to the fi eld of brain–
machine interfaces (BMIs), i.e. devices that utilize neural  activity 
to control limb prostheses (Chapin, 2004; Fetz, 2007; Lebedev 
and Nicolelis, 2006; Nicolelis, 2001; Schwartz et al., 2006; Taylor 
et al., 2002). Since locomotion defi cits are commonly associated 
with spinal cord injury (Dietz, 2001; Dietz and Colombo, 2004; 
Rossignol et al., 2007; Scivoletto and Di Donna, 2008; Wood-
Dauphinee et al., 2002) and neurodegenerative diseases (Boonstra 
et al., 2008; Green and Hurvitz, 2007; Morris, 2006; Pearson et al., 
2004; Sparrow and Tirosh, 2005; Yogev-Seligmann et al., 2008), 
there is a need to seek new potential therapies to restore gait control 
in such patients. While the feasibility of a BMI for upper limbs has 
been demonstrated in studies in monkeys (Carmena et al., 2003, 
2005; Serruya et al., 2002; Taylor et al., 2002; Velliste et al., 2008; 
Wessberg et al., 2000) and humans (Hochberg et al., 2006; Patil 
et al., 2004), it remains unknown whether BMIs could aid patients 
suffering from lower limb paralysis, e.g. by driving a leg prosthesis 
or artifi cial exoskeleton (Fleischer et al., 2006; Hesse et al., 2003; 
Veneman et al., 2007).

Pioneered by Borelli (Borelli, 1680), investigations in biologi-
cal systems have generated a wealth of knowledge about the bio-
mechanics (Alexander, 2004; Andriacchi and Alexander, 2000; 
Dickinson et al., 2000; Koditschek et al., 2004; Ounpuu, 1994; 
Saibene and Minetti, 2003; Stevens, 2006; Vaughan, 2003; Zajac 
et al., 2002; Zatsiorky et al., 1994) and neurophysiological mecha-
nisms underlying locomotion (Beloozerova et al., 2003; Deliagina 
et al., 2008; Drew et al., 2004; Georgopoulos and Grillner, 1989; 
Grillner, 2006; Grillner and Wallen, 2002; Grillner et al., 2008; 
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Although macaques are quadrupeds (Chatani, 2003; Courtine et al., 
2005a), they can be trained to walk bipedally (Hirasaki et al., 2004; 
Matsuyama et al., 2004; Mori et al., 2001, 2004; Tachibana et al., 
2003). In the present study, rhesus macaques walked bipedally on 
a treadmill while neuronal ensemble activity was recorded from 
the representation of the lower limbs in the primary motor (M1) 
and somatosensory (S1) cortices. We confi rmed that a BMI using a 
series of independent linear decoders can accurately extract walking 
patterns from the activity of multiple cortical areas. As the loco-
motion task demands increased, signifi cantly more neurons were 
needed to achieve accurate extraction. Finally, we demonstrated 
that locomotor parameters can be extracted in real time to control 
artifi cial actuators that reproduce walking patterns.

MATERIALS AND METHODS
EXPERIMENTAL SETUP
All studies were conducted with approved protocols from the Duke 
University Institutional Animal Care and Use Committee and were 
in accordance with the NIH guidelines for the Care and Use of 
Laboratory Animals.

Two adult female rhesus macaques were trained to walk biped-
ally on a custom modifi ed treadmill. The treadmill was a human 
fi tness treadmill, modifi ed to be hydraulically driven so that the 
pump motor could be located remotely, in a different room than 
the experimental setup and thus reducing the electronic noise that 
could be picked up by the neuronal recording equipment. Treadmill 
speed and direction were separately controlled via independent 
throttle and fl ow routing controls.

Around the treadmill was a metal frame that supported both the 
recording equipment and the monkey restraints. The monkeys were 
loosely restrained by an adjustable 5-degree of freedom neckplate. 
By adjusting the three dimensional position of the neckplate as well 
as two dimensional tilt, the monkeys could be comfortable in their 
normal walking posture. Additionally, a bar was placed within reach 
of the monkeys’ arms to allow for a comfortable stability aid. Each 
of the monkey’s legs and arms were unrestrained during experi-
mental walking sessions. After 1 month of training, the monkeys 
learned to walk bipedally on the treadmill (Figure 1A). Monkey 1 
was trained to walk in both the forward and backward direction at 
varying speeds (Figure 1C), and Monkey 2 was trained to walk only 
in the forward direction. The treadmill speed varied in the range 
−0.5 to 0.5 m/s. The monkeys received food treats during walking 
sessions lasting 40–60 min, which encouraged them to face to the 
front of the treadmill.

LIMB MOVEMENT TRACKING
During experimental sessions, movements of the right legs of the 
monkeys were tracked using a wireless, video-based tracking sys-
tem. The three dimensional coordinates of fl uorescent markers 
applied to the hip, knee, and ankle were tracked using two cameras 
at a 30 Hz frame rate. Initially a commercial offl ine system (SIMI 
Motion 3D) was used for tracking purposes; in later sessions a 
custom real-time video-based tracking system developed in the lab 
was used (Peikon et al., 2007). Data were cross-validated between 
the two systems to ensure that both produced equally accurate 
results and to ensure no biases were present in our custom system. 
To ensure consistent placement of the markers which were tracked 

on video, each of the monkeys was tattooed over the hip, knee, and 
ankle joints of their right legs. The markers themselves were applied 
before each session, and were made of fl uorescent, non-toxic stage 
makeup. This approach offered several advantages. First, the mark-
ers were virtually weightless on the skin of the monkeys and thus 
did not impact the walking mechanics or cause distraction. Second, 
using fl uorescent markers allowed us to achieve very high contrast 
ratios between markers and background on the recorded video 
stream. By turning visible light down to a low level, lowering the 
camera aperture, and bathing the experimental setup with a safe, 
fi ltered UV (or black) spotlight, the only signifi cant source of visible 
light picked up by the cameras came from the markers which were 
being tracked. While the current tracking system is only capable of 
tracking the right leg, future versions will track both legs simulta-
neously, allowing us to investigate bipedal predictions. Figure 1B 
illustrates frames of captured video that show an example of the 
bipedal walk cycle for each monkey. These fi gures have increased 
levels of ambient lighting to aid in viewing the step cycle. Both mon-
keys walked in a stereotyped bipedal manner and slightly leaned 
forward for comfort with arms holding a bar for support.

KINEMATIC ANALYSIS
The monkeys’ limb tracking information was used to extract a 
number of experimentally relevant parameters in addition to the 
X, Y and Z coordinates of the joint markers. We extracted joint 
angles (hip and knee), foot contact with the treadmill, walking 
speed, step frequency and step length. All these parameters were 
calculated from the joint position data provided that the markers 
were not occluded. The episodes during which any of the markers 
was occluded (typically, when the monkeys turned their bodies) 
were excluded from the analyses. Our video analysis algorithm used 
a combination of mathematical techniques to calculate additional 
parameters. Treadmill speed was extracted from the video tracking 
data. The frequency of the step was extracted from the kinematic 
movement pattern of the ankle in the axis of treadmill motion. 
Furthermore, a combination of ankle displacement during the 
step phase and treadmill speed was used to extract stride length 
with respect to the moving surface of the treadmill. Foot contact 
was extracted fi rst from a fi ltered height (Y-axis) threshold, which 
determined when the ankle joint was fl at on the surface of the 
treadmill. However, a simple height threshold was not adequate to 
reject shuffl ing walking types, and a further check was instituted, 
which rejected periods without constant X-velocity of the ankle 
equal to treadmill speed.

SURGICAL AND ELECTROPHYSIOLOGICAL PROCEDURES
During the implantation surgeries, each of the two adult female 
rhesus macaques was anesthetized and placed in a stereotaxic appa-
ratus (for a full description see Nicolelis et al. 2003). All surgical 
procedures conformed to the National Research Council’s Guide for 
the Care and Use of Laboratory Animals (1996) and were approved 
by the Institutional Animal Care and Use Committee.

A series of small craniotomies were made, both to grant access 
to the brain for the microwire arrays and for anchoring the den-
tal acrylic to the skull. In each animal, multiple microwire arrays 
were chronically implanted in several cortical areas (Figure 2). The 
implanted areas were chosen based on previous cortical mapping 
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FIGURE 1 | Experimental setup and Kinematic Analysis. (A) Diagram of 
the bipedal walking setup, consisting of a custom modifi ed, hydraulically driven 
treadmill; wireless, 2-camera tracking of kinematics; and a MAP neural 
acquisition system (Plexon, Inc., TX, USA). (B) Video frames traced from 
typical step cycles from both monkeys. (C) Example tracking at multiple 
speeds. (D) The relationship between step frequency and walking speed. 
Blue points and curves represent the actual values, and red points and 
curves represent the extracted values. Each point in (D) and (E) represents 

an average over an epoch of constant treadmill speed during variable speed 
and direction sessions. (E) The relationship between step length and walking 
speed. As in (C), blue and red correspond to the actual and predicted values, 
respectively. (F) Actual step lengths versus extracted step lengths during all 
variable speed sessions. Blue dots represent backward walking while red/
orange dots represent forward (see key on the right). Dots are clustered 
around the y = x line, indicating a match between the actual and predicted 
values.

studies (Nicolelis et al., 2003; Tanji and Wise, 1981; Wise and Tanji, 
1981a,b).

Accordingly, multi-electrode arrays were inserted medially in the 
cortex approximately 2 mm in front of the central sulcus to target 
M1 and 2 mm behind it to target S1 (Figure 2). The arrays were 

matched in size to the cortical representations of the hind limb. 
Monkey 1 was implanted with 50 µm tungsten chronic microwire 
arrays in the leg representation of both the primary somatosensory 
(S1) and primary motor (M1) cortices. One 8 by 8 square array with 
electrodes spaced 1 mm apart (inserted 2.5 mm deep in the cortex) 
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was implanted rostral to the central sulcus. A 6 by 6 double-layered 
square array, using the same electrode spacing, was placed caudal 
to the central sulcus, 1.5 mm deep. In the double layer implant, 
the second layer of electrodes was 300–400 µm shallower than the 
fi rst layer. Monkey 2 was also implanted with chronic microwire 
arrays in the leg representation of both the primary somatosensory 
(S1) and primary motor (M1) cortices. In M1, two 3 by 6 double 
layer arrays were implanted, while in S1 a single double layer 3 by 
6 array was implanted. In all implants one layer was 300 µm deeper 
than the other layer. All electrodes in Monkey 2 were stainless steel 
microwires ranging in diameter from 40 to 60 µm. In both monkeys 
the placement of the electrodes was accomplished using stereotaxic 
coordinates and connectors for the arrays were embedded in a head 
cap made of dental acrylic.

Upon recovery from the surgical procedure, the receptive fi elds 
of individual S1 neurons and multi-unit activity were briefl y exam-
ined in the awake monkeys by lightly touching and palpating their 
hind limbs. This examination confi rmed that in both monkeys the 
implanted S1 sites represented the thigh, calf and the foot. No clear 
somatosensory responses were identifi ed for the M1 implants. In 
Monkey 2, we briefl y tested motor responses to cortical micros-
timulation under ketamine anesthesia. The microstimulation of 
M1 evoked hind limb movements due to proximal muscle con-
traction in agreement with Hatanaka et al. (2001) and Tanji and 
Wise (1981).

A total of 200–300 well sorted single units were recorded from 
implants in both monkeys per experimental session. After the mon-
keys were placed in the treadmill-mounted restraint, head stage 
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FIGURE 2 | Diagram of cortical implants. A generic outline of cortical sulci 
(view from the top) is shown to illustrate the locations of the implants. Positive X 
coordinates correspond to rostral brain areas, while negative X coordinates 
correspond to caudal brain areas. (A) Implanted locations in Monkey 1. Both 
hemispheres were implanted. Two 32-electrode arrays were implanted in the left 
M1, one 32-electrode array in the left S1 and one 64-electrode array in the right 

M1. (B) Implanted locations in Monkey 2. The left hemisphere was implanted 
with two 64-electrode arrays, one placed in M1 and one in S1. (C–F) 
Confi guration of the microelectrode arrays. The electrode shafts were arranged 
into 1-mm spaced grids. In multi-layered confi gurations, each shaft consisted of 
two (C,E) or four (D) microwires of different length. The difference in depth 
between the electrode layers was 0.3 mm.
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amplifi ers were attached to the head-cap connectors. A fl exible 
wire harness, in turn, connected the headstages to a 128 channel 
Multichannel Acquisition Processor, or MAP, (Plexon, Inc., TX, USA) 
recording system. Neuronal units were sorted in real time using the 
templates defi ned in MAP software. The ratio of the amplitude of 
each sorted unit to the amplitude of electrical noise was, on average 
3.34 ± 1.66 (mean ± standard error). The quality of online sorted 
single units was further examined by analyzing the refractory period, 
estimated from the interspike intervals. For each unit to be qualifi ed 
as single unit, in addition to having a distinct shape and amplitude 
(Nicolelis et al., 2003), it had to exhibit a refractory period greater 
than 1.6 ms (Hatsopoulos et al., 2004). Using these criteria, 66.0% 
of the recorded units were single units, and 34.0% were classifi ed as 
multi-unit neuronal activity. Overall, extraction of locomotion pat-
terns from single units versus multi-units yielded similar results.

Electrophysiological recordings spanned 399 days in Monkey 1 
and 56 days in Monkey 2. The implants were connected to a mul-
tichannel recording system (Plexon, Inc., TX, USA) using light fl ex-
ible cables. The total number of simultaneously recorded units 
ranged from 180 to 238 in Monkey 1, depending on the record-
ing day, and from 173 to 334 units in Monkey 2. In Monkey 1, 
we recorded from 111.2 ± 19.3 units (mean ± standard deviation; 
standard deviation refl ects day to day variability) in left M1, from 
38.1 ± 6.1 units in left S1 and from 55.6 ± 16.0 units in right M1. In 
Monkey 2, we recorded from 106.0 ± 19.9 units in left M1 and from 
166.0 ± 31.0 units in left S1. Statistical analysis (Wilcoxon signed 
rank test) confi rmed that average neuronal fi ring rates increased 
during walking in both M1 (P < 0.001) and S1 (P < 0.001) in each 
monkey. The average fi ring rate of M1 units was 7.5 ± 8.9 spikes/
s during standing versus 15.0 ± 13.4 spikes/s during walking in 
Monkey 1, and 7.7 ± 8.7 spikes/s versus 11.4 ± 11.9 spikes/s in 
Monkey 2. In S1, the average rates were 8.7 ± 7.7 spikes/s during 
standing versus 16.6 ± 10.3 spikes/s during walking in Monkey 1, 
and 14.7 ± 12.9 spikes/s versus 24.3 ± 20.3 spikes/s in Monkey 2.

The MAP system was used for receptive fi eld testing and for obtain-
ing neuronal recordings during walking sessions. Electromyogram 
(EMG) signals were recorded from Monkey 1’s shaved skin surface, 
centered over the soleus, rectus femoris, and tibialis anterior muscles 
of both legs. Gold disc electrodes (Grass Instrument Co., RI, USA) 
were placed over conductive gel to obtain the EMG recordings. These 
EMGs were amplifi ed up 10,000 times, band-pass fi ltered between 
100 Hz and 1 kHz, rectifi ed, and recorded using the MAP recording 
system to ensure consistent timing.

MODELS UTILIZED FOR PREDICTING LEG KINEMATICS
All the leg kinematic parameters extracted were reconstructed 
from neuronal ensemble activity using the linear decoding algo-
rithm called the Wiener fi lter (Carmena et al., 2003; Haykin, 2002; 
Lebedev et al., 2005; Wessberg et al., 2000). The Wiener fi lter rep-
resented each decoded parameter as a weighted sum of neuronal 
rates measured before the time of decoding.

X t b w n t j tij i
ji

N

( ) [ ( ) ] ( )= + − − +
==

∑∑ 1
1

10

1

τ ε  (1)

where X(t) is the value of the decoded parameter (for exam-
ple, X-coordinate of the ankle marker) at time t, n

i
 is the fi ring 

rate of neuron i, N is the total number of neurons, (j − 1)τ is tap 
delay for tap j, w

ij
 is the weight for neuron i and tap j, b is the 

y-intercept, and ε(t) is the residual error. For extracting marker 
coordinates, joint angles, and foot contact with the treadmill the 
tap length parameter τ was set to 50 ms, and the number of taps 
(time bins of neuronal data) was set to 10, that is neuronal rates 
were sampled in a 500 ms window preceding the time of decoding. 
For extracting slower modulated characteristics such as walking 
speed and step length, a 5 s sample window was used composed 
of ten 500 ms taps.

Prediction of leg kinematics was performed using multiple 
Wiener fi lters applied to the activity of the entire population of 
the recorded neurons or subpopulations recorded in separate cor-
tical areas. Thus, the activity of simultaneously recorded cortical 
neural ensembles allowed us to simultaneously extract a variety of 
motor parameters: position of hip, knee, and ankle; hip and knee 
angles; as well as foot contact, direction of walking, and periods 
of standing still. We used multiple linear models (Wiener fi lters; 
Carmena et al., 2003; Haykin, 2002; Lebedev et al., 2005; Wessberg 
et al., 2000) to describe the relationship between these parameters 
and neuronal ensemble activity. To calculate model weights, fi rst 
Eq. 1 was converted to matrix form as:

X = NW + ε (2)

where X is the matrix of actual parameters, N is the matrix of neu-
ronal rates, W is the weights of the model, ε is the error. Each row 
of N corresponds to a specifi c time and each column is a vector of 
data for a particular neuron and time lag. Since our models took 
into account ten lags, matrix N had ten columns for every neuron. 
The y-intercept was calculated from a column of ones prepended 
to matrix N. We then solved for matrix W by the following:

W N N N X= ( )inv T T  (3)

Each Wiener fi lter was fi rst trained (i.e. the values of weights 
W were calculated) and then used as the decoder for new data. 
Accordingly, each experimental record (10–15 min) was split in 
two halves: the training data and the predicting data. The model 
was trained on the fi rst half of the experimental data and pre-
dictions were obtained using the second half. Decoding was also 
conducted for the reverse arrangement: training the models on 
the second half and using it to predict the fi rst half. In addition to 
these offl ine analyses conducted for 80 experimental records (66 
with Monkey 1, 14 with Monkey 2), real-time extraction was per-
formed in 22 experimental sessions with Monkey 1. For real-time 
extraction, the neuronal and kinematic data were fi rst recorded for 
5 min while multiple Wiener fi lters were trained, and then online 
extraction of walking parameters was performed for 5–10 min.

GENERAL AND SWITCHING MODEL
To test whether models trained to accurately predict motor param-
eters for a specifi c behavioral paradigm would retain general kin-
ematic prediction accuracy during alternative behaviors (i.e. be 
able to generalize to new paradigms), we trained models for one 
direction of movement (e.g. forward walking) and tested them 
in the other (e.g. backward walking; for an example of this, see 
Figure 7). This allowed us to ask whether a model that is trained 
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to predict leg kinematics while the monkey walks forward would 
retain prediction accuracy when applied to sessions of backward 
walking and vice versa. Next, we investigated whether our models 
would benefi t from training on a variety of behavioral data, in this 
case both forward and backward walking. To address these ques-
tions, a series of linear models were trained on selected behavioral 
epochs. The models were trained on: (1) only forward walking, 
(2) only backward walking, and (3) an equal mixture of the two 
walking paradigms. Each model was trained on an equal length 
of time to avoid any performance biases and then tested on its 
ability to accurately predict walking forward or walking backward 
separately.

The switching mode was used to handle the conditions in which 
the monkey’s locomotion consisted of two different paradigms: 
alternating periods of walking forward or walking backwards. 
Separate submodels were trained to decode each of these walking 
paradigms, and the paradigm predictor model served to detect 
the walking paradigm and select the appropriate submodel. The 
brief periods during treadmill mode switching when the monkey 
was standing still were classifi ed as forward walking rather than 
introducing a third behavioral category. In our implementation, 
the switching model was a combination of three linear decoding 
models: a model for predicting forward walking, a model for pre-
dicting backwards walking and the paradigm predictor model (the 
switch). These models were arranged in a two layer structure (see 
Figure 7F) with the paradigm predictor model controlling a toggle 
between the two kinematic submodels which were then shunted to 
the fi nal output of the switching model. Thus, when it was deter-
mined that the monkey was walking forward, one submodel was 
used to produce the output, and when backwards walking was 
detected, the other submodel was used.

To avoid any bias in our comparisons between the generalized 
and switching model, they were both trained on the same amount 
of data. This means that while the single generalized model was 
trained over the full training window, each of the submodels of the 
switching model were only trained on the portions of the data when 
the monkey’s behavior fell in the relevant behavioral paradigm. 
Only the classifi er portion of the switching model was trained on 
the full training window. This way, a true comparison of perform-
ance was achieved, and we could test whether the disadvantages of 
training the kinematic model on less total data were overcome by 
the advantages in prediction accuracy that come from behavioral 
segregation.

MODEL PERFORMANCE METRICS
The signal to noise ratio (SNR) used in signal processing is a ratio 
between the power of the signal and the power of the noise, that 
is, the ratio of the squared amplitude of the signal and the squared 
amplitude of the noise. For our purposes, the signal was defi ned as 
the actual variable that we predicted. We calculated the variance, or 
power, of the signal by subtracting out the mean of the signal, then 
squaring and averaging the amplitude above or below that mean. 
The noise was the difference, or error, between the extracted and 
the actual signal. The error was calculated by subtracting the actual 
parameter from the extracted parameter, squaring the differences, 
then averaging to get the mean squared error, or the power of the 
noise. The ratio between these two was the SNR [or the signal 

to error ratio (SER)]. We then converted the ratio into a decibel 
(dB) scale:

SNR
Var

MSE
X X

X

X
, log

( )

( )
( ) =

⎛

⎝⎜
⎞

⎠⎟
10 10  (4)

Where X is the actual parameter, X̂ is the prediction of that 
parameter, Var is variance, and MSE is mean squared error. 
Theoretically, SNR can change from minus infi nity (extremely poor 
predictions) to infi nity (extremely good predictions). A SNR of 0 
meant the signal and noise were in equal proportion in our pre-
dicted output. A SNR >0 meant we were extracting more signal than 
noise, and an SNR <0 meant there was more noise than signal, but 
the signal was still present for negative SNRs close to 0. SNRs equal 
to 10, 20, and 30 correspond to the ratio between the variances of 
10, 100 and 1000, respectively

Additionally, Pearson’s correlation coeffi cient, R, between the 
known signal and the predicted output was calculated:

R X X
X X

X X

,
cov ,( ) =

( )
σ σ

 (5)

Where X is the actual parameter, X̂ is the prediction of that 
parameter, cov is covariance, and σ

X
 and σ

X
 are the standard devi-

ation of X and X̂ respectively. R can change in the range −1 to 
1, with 1 corresponding to the highest possible correspondence 
between the actual and extracted values, and 0 corresponding to 
the absence of correspondence. Negative values of R, correspond-
ing to an inverse relationship between the actual and extracted 
characteristics, occasionally occur when the extraction is poor, and 
R fl uctuates around 0.

Signal to noise ratio proved to be a more sensitive measure com-
pared to R in these analyses. This was because R describes the corre-
spondence of signal waveforms, but is insensitive to amplitude scaling 
and offsets. SNR is sensitive to errors introduced by these factors, 
which is important for the purposes of effi cient BMIs that require 
that the output of the model matches the true signal in all aspects. 
Additionally, R often saturates quickly for large ensemble sizes, 
whereas SNR better tracks the dependency of model  performance 
on the ensemble size. A metric similar to SNR, called SER was used 
in previous studies in which behavioral parameters were extracted 
from neuronal data (Kim et al., 2006; Sanchez et al., 2002).

NEURON DROPPING ANALYSIS
Neuron dropping analysis (NDA) is a conventional way to charac-
terize the prediction performance of neuronal ensembles of differ-
ent size (Carmena et al., 2003; Lebedev et al., 2005, 2008; Wessberg 
et al., 2000). In this analysis, a number of decoding models were 
trained on random subsets of sorted neurons, ranging in size from 
a single neuron to the entire bank of sorted neurons. To charac-
terize the performance of these decoding models, we calculated 
neuron dropping curves which described decoding accuracy as 
a function of neuronal sample size (Wessberg et al., 2000). The 
dropping curves were calculated by pooling randomly selected 
subsets of neurons and running the decoding model only for them. 
At each population subset size, fi ve random subsets of neurons 
were generated and used to train separate predictive models. The 
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 predictive strength (SNR) of these models was calculated and plot-
ted as scatter plots (for examples of this, see Figures 6A–F and 
7D,F). These scatter plots were then fi tted using a power curve 
with simple linear decay:

y y y x x m x
p= + −( ) +offset amplitude offset decay  (6)

where x is neuronal subset size and y is SNR. Five parameters 
were fi tted to generate the curves: y

offset
 translated the entire curve 

up or down, x
offset

 translated left or right, y
amplitude

 defi ned the height 
of the fi tted curve, p was the power of the curve and described the 
rate of the climb in SNR with increases in neuronal subset size, and 
m

decay
 described the slope of the linear decay.

For our analysis examining predictions of several kinematic 
variables simultaneously from the same neuronal population, we 
used a modifi ed version of the NDA. Random subpopulations of 
the neuronal ensemble were selected and used to train models 
for a random combination of kinematic parameters simultane-
ously. Simultaneous prediction accuracies were calculated to be 
the minimum SNR level reached by all the predicted variables at 
each neuronal ensemble size. The overall simultaneous prediction 
dropping curves were then fi tted by power curves (Eq. 6). The 
curves were normalized and averaged across all combinations of 
kinematic variables. The fi nal curves were thresholded at several 
levels of prediction accuracy (0.75, 0.85 and 0.95) to determine the 
minimum number of neurons needed to predict each number of 
kinematic variables simultaneously with the given level of accuracy 
(for an example of this, see Figures 8A,B). Essentially, we calculated 
the expected number of neurons that would be required to predict, 
to a high accuracy threshold, any number of kinematic variables 
simultaneously in our experimental setup.

REAL-TIME SYSTEM
We also developed a real-time BMI software suite capable of run-
ning all aspects of our experimental setups, including visual display, 
behavioral and multi-electrode neural recordings, model calcula-
tion and real-time predictions of kinematic and dynamic param-
eters. Written in Microsoft Visual C++, this BMI software suite 
can input behavioral data, multichannel extracellular single and 
multi-unit recordings, EMGs, and local fi eld potentials.

Using a graphical user interface, models were trained to gen-
erate real-time predicted kinematics or EMGs from neural data. 
While our software suite currently implements the Wiener Filter, 
the Kalman Filter with optional principle components analysis 
dimensionality reduction, the n-th order Kalman Filter, and the 
n-th order Unscented Kalman Filter, in the real-time experiments 
described in this study we have used only the Wiener Filter option 
for extracting kinematic, dynamic, and EMG data.

The outputs of multiple real-time predictive models were dis-
played on a computer screen and simultaneously streamed over 
the network using a User Datagram Protocol.

RESULTS
KINEMATICS OF BIPEDAL WALKING
During walking, both monkeys adopted a posture in which they 
leaned slightly forward while holding a bar and episodically 
 assumed a more upright posture (Figures 1A,B). The right leg 

was video-tracked in real time using fl uorescent markers applied 
to the hip, knee and ankle joints. The monkeys’ walking kinematics 
exhibited many basic features previously reported in both humans 
(Capaday, 2002; Grieve and Gear, 1966; Hirokawa, 1989; Murray 
et al., 1964, 1970; Nielsen, 2003; Perry, 1992; Vaughan et al., 1992) 
and monkeys (Hirasaki et al., 2004; Matsuyama et al., 2004; Mori 
et al., 2001; Tachibana et al., 2003). Step frequency rapidly increased 
as the treadmill speed increased from 0.05 to 0.2 m/s and began to 
plateau above 0.2 m/s (blue traces in Figure 1D). Step frequency 
during backward walking plateaued at a slightly higher value (1.1 
steps/s) versus forward walking (1.0 steps/s). Step length also 
increased as the treadmill speed increased with a slight tapering 
off at higher speed (blue traces in Figure 1E). The stance phase 
constituted approximately 65% of leg stepping cycle (Monkey 1: 
69.6 ± 13.1% during forward walking, 66.7 ± 16.2% during back-
ward; Monkey 2: 57.6 ± 9.7% during forward).

During forward walking, the ankle and knee moved backward 
at a nearly constant speed after the foot touched the treadmill 
(Figure 3A). At approximately mid-stance, the ankle started 
to lift, followed by the knee (Figure 3B). These movements 
were accompanied by a lateral displacement (Z-dimension) of 
the ankle because of foot rotation (Figure 3C). The knee angle 
monotonically increased during the stance phase as the knee joint 
extended during backward movement of the leg, and knee fl exion 
started shortly before foot liftoff and continued during the swing 
(Figure 3D). The soleus and rectus femoris were active during 
the stance phase and relaxed during the swing (Figure 3E). The 
tibialis anterior was activated in a reciprocal manner: active dur-
ing swing, relaxed during stance. This pattern of muscle activity 
is similar to EMG patterns during human walking (Capaday and 
Stein, 1986; Ivanenko et al., 2008; Kadaba et al., 1985; Shiavi et al., 
1987; Winter and Yack, 1987). Examples of video frame during 
stance and swing are shown in Figure 3F

The discharge rate for each of the cortical neurons peaked at a 
preferred phase of the step cycle (Figure 4). The pattern of corti-
cal activity during forward walking (Figure 4A) was different for 
each recorded cortical area. In contralateral (left) M1, the number 
of neurons whose rates peaked during the stance was approxi-
mately equal to the number of neurons with the peak rate during 
the swing (61 ± 11 versus 63 ± 11, respectively, P > 0.05 Student’s 
t-test). However, since the swing was shorter than the stance, the 
density of peak rates per unit of the step cycle (the slope of the 
red line in Figure 4A, 1st row) was lower for the stance phase 
(87.2 ± 18.6 peaks/s during stance versus 261.0 ± 29.0 peaks/s 
during swing, P < 0.001 Student’s t-test), especially for its initial 
phase preceding the stance to swing transition. Ipsilateral (right) 
M1, showed a different pattern of neural activity in this analysis 
which used the movements of the right leg to designate the step 
cycle, with more neurons peaking during the stance phase than the 
swing phase (38 ± 6 versus 20 ± 6, respectively, P < 0.001 Student’s 
t-test; Figure 4A, second row), evidently because neural modula-
tions there represented the out of phase movements of the left leg. 
Activity in S1 neurons was heavily concentrated at the swing phase, 
especially during the stance to swing transition (55.0% of S1 neu-
rons had their peak activity in the 20% of the step cycle centered 
at the stance to swing transition; Figure 4A, third row), when the 
foot was lifted from the treadmill surface.
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A B C

D E F

FIGURE 3 | Average changes in walking parameters during the step cycle. 

The data from all experimental sessions during which the monkey walked in 
forward direction with EMGs recorded were averaged. The average portions of 
the stance and swing phases of the step cycle are shown below each plot. The 
hip movements are not illustrated because they were small. Solid lines show the 

actual values, and dashed lines show the values extracted from neuronal activity 
using the Wiener fi lter. Note the correspondence between the actual and 
extracted values. (A–C) X, Y, and Z position. (D) Knee angle. (E) EMG activity in 
the muscles of the right leg. (F) Examples of leg orientations classifi ed as swing 
and stance.

A different pattern of ensemble modulations was revealed  during 
backward walking (Figures 4B,C). Notably, fi ring of the neurons 
tended to be more evenly spaced over the step cycle, especially in 
M1 (176.4 ± 29.4 peaks/s during stance versus 196.0 ± 19.6 peaks/s 
during swing, P > 0.05 Student’s t-test). When the cortical activity 
during backwards walking was sorted according to where the cells 
were most active in forward walking (compare Figures 4A,C), it 
was apparent that there was little correspondence between indi-
vidual cells’ activity peaks between forward and backward walking. 
However, there was still a slight tendency for the neurons that were 
active in the swing phase during forward walking to remain active 
during the swing during backward walking (44.4% of the neurons 
with peak rate during the swing) and the same tendency for the 
stance-phase neurons (80.1%). This tendency was statistically sig-
nifi cantly greater (P < 0.005 Student’s t-test) than the percentage 
of neurons expected to stay in the same phase (29.9% and 70.1%) 
if there was no correlation between the neurons’ peak fi ring phases 
in forward versus backward walking. Thus, although leg kinematics 
were similar during forward and backward walking, the underlying 
neuronal patterns were substantially different.

EXTRACTING CHARACTERISTICS OF WALKING FROM CORTICAL 
ENSEMBLE ACTIVITY
Multiple locomotion parameters were extracted using linear decod-
ers which expressed the parameters as weighted sums of the neuro-
nal fi ring rates (Carmena et al., 2003; Haykin, 2002; Lebedev et al., 
2005; Wessberg et al., 2000). We decoded X (horizontal), Y (verti-
cal), and Z (lateral) Cartesian coordinates of the leg joints, state of 

foot contact with the treadmill, step length and frequency, walking 
speed, and the EMGs of multiple leg muscles. Figures 4 and 5E 
represent modulations of M1 and S1 discharges as “waves” of neu-
ronal activity that occurred during each step. While the individual 
neuronal fi ring rates were highly variable from step to step at the 
millisecond scale (Figure 5E), combining the activity of many neu-
rons in 100 ms bins using the linear decoder produced accurate pre-
dictions of leg movements, as evident from average traces for joint 
coordinates (Figures 3A–C), joint angle (Figure 3D) and EMGs 
of leg muscles (Figure 3E), as well as step frequency (Figure 1D) 
and step length (Figures 1E,F) derived from predictions of joint 
positions. Figures 5A–E illustrates a 5 s epoch of forward walking 
during which 18 motor parameters were simultaneously extracted: 
joint coordinates (Figure 5A), joint angles (Figure 5B), state of 
foot contact (Figure 5C) and EMGs (Figure 5D). Figure 5F depicts 
direct extraction of step length and walking speed (characteristics 
modulated at a slower pace) from a different 50 s epoch.

The average extraction performance is summarized in Table 1. 
Overall, accuracy in predicting motor parameters was in line with 
that previously obtained for extracting arm movements from M1 
activity (Carmena et al., 2003; Lebedev et al., 2005; Wessberg et al., 
2000). We observed SNR in the range −2 to 7 dB and correlation 
coeffi cients, R, in the range 0.2–0.9. In both monkeys, the best 
extracted parameters were those related to the X and Y coordinates 
of the ankle, and knee angle (SNR in the range 3.8–6.0 dB and R in 
the range 0.79–0.87). The Z coordinate (lateral movements) was 
not predicted as well, because of minimal lateral movements of the 
joints during walking sessions. Likewise, the small amount of hip 
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movement produced during walking may have contributed to low 
prediction accuracy for the hip’s Cartesian coordinates compared 
to those of the knee and ankle. The X and Y coordinates of the knee 
and the hip were extracted with an average SNR in the range −0.7 
to 4.3 dB and average R around 0.42–0.79. The average SNR and 
R for hip angle ranged from 0.9–3.0 and 0.58–0.73, respectively. 
Meanwhile, extraction accuracy for foot contact state (swing or 
stance) ranged from 1.2–3.1 in SNR and 0.58–0.61 in R, whereas the 
average SNR and R for the slowly modulated parameters were in the 
range −2.0 to 1.4 and 0.24–0.42 for walking speed, −1.8 to 0.9 and 
0.48–0.57 for step frequency and −1.5 to 1.9 and 0.30–0.40 for step 
length. The low average accuracy of predicting the walking speed, 
especially in Monkey 2, refl ected the fact that in many experiments 
the treadmill speed was constant for long periods of time and thus 
had very low variance. Predictions of EMGs (Figures 3E and 5D) 
were better (P < 0.001, Student’s t-test) for the musculature of the 
right leg (SNR of 1.55 ± 0.39) than for the left leg (0.76 ± 0.17), 
likely because more neurons were recorded in the left hemisphere. 

Indeed, when prediction performance of equal size samples of neu-
rons drawn from left versus right M1 was compared, contralateral 
M1 outperformed (P < 0.001, Student’s t-test) ipsilateral M1 in 
predicting either leg EMG.

NEURON DROPPING ANALYSIS
Figures 6A–F depicts NDA for the extraction of walking param-
eters. Each dot in the scatter plots represents prediction accuracy 
(quantifi ed as SNR) calculated for a randomly selected neuronal 
subset. The plots are fi tted with exponential curves. NDA revealed 
that the prediction accuracy of joint coordinates monotonically 
increased with neuronal sample size (Figures 6A–C). In the par-
ticular case of predicting foot contact, NDA revealed a pattern 
consistent with the known phenomenon of overfi tting (Babyak, 
2004; Santucci et al., 2005), i.e. the SNR increased as the sample 
grew to 50 neurons, and it decreased thereafter (Figure 6D). In 
agreement with Table 1, the Y-coordinates (vertical movements) 
for the ankle (Figure 6A) and knee joints (Figure 6B) were the most 

A B C

FIGURE 4 | Neural activity in each cortical area during the step cycle. The 
neural data from experimental sessions during which the monkey walked in the 
forward and backward direction were separately averaged for many step cycles. 
Each horizontal line corresponds to the fi ring rate of a single neuron normalized 
by standard deviation (i.e. z-score). Each cortical area was analyzed separately 
(left M1 – top row, right M1 – middle row, left S1 – bottom row). The neurons 
were sorted by the phase of the step cycle during which they exhibited peak 

activity. The average durations of the stance and swing phases of the step cycle 
are shown below each plot. Swing was slightly longer during backwards 
walking. (A) Average neural activity during forward walking, ordered via peak 
activity during forward walking. (B) Average neural activity during backward 
walking, ordered via peak activity during backward walking. (C) Average neural 
activity during backward walking, ordered via peak activity during forward 
walking [i.e. neurons are ordered the same way in (A) and (C)].
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accurately predicted of all Cartesian coordinates. X was the second 
best extracted coordinate. Prediction accuracy for the knee and hip 
angles was comparable to the prediction of X and Y coordinates 
for these joints (Figures 6B,C).

Neuron dropping analysis for predictions of the ankle X coor-
dinate was also performed separately for different cortical areas 
(Figures 6E,F). In both monkeys, walking parameters could be 
predicted using neuronal activity recorded in either M1 or S1 con-
tralateral to the right leg, as well as ipsilateral M1 in Monkey 1, but 
none of these areas taken alone reached the prediction performance 
level of the entire population. Predictions using random popula-
tions drawn from each individual cortical area were statistically 
signifi cantly worse than predictions from equivalently sized ran-
dom populations drawn from all cortical areas (Student’s t-test, 
P < 0.001). For each area, the prediction performance improved 
with increases in population size. Slight overfi tting was observed 
for S1 in Monkey 2 for ensemble sizes greater than 80 neurons 
(Figure 6F, blue dots and curve). In Monkey 1, predictions from 
contralateral M1 neurons (Figure 6E, red) were better than the 
predictions from ipsilateral M1 neurons (Figure 6E, green) or con-

tralateral S1 neurons (Figure 6E, blue). In Monkey 2,  predictions 
from S1 neurons were better than the predictions from M1 neurons 
(Figure 6F).

The performance of the extraction algorithm, using M1 ver-
sus S1 neurons, was further examined using a timing analysis in 
which a single 50 ms time window was used to measure extraction 
accuracy at various lags with respect to the present time (time 
0; Figures 6G,H). Peaks in prediction accuracy for the lags pre-
ceding the present time (negative lags) indicated that neuronal 
modulations were predictive of future movements, suggesting a 
causal link between neuronal modulations and movements. Such 
a relationship was expected for M1 neurons and confi rmed for 
both Monkey 1 (Figure 6G) and Monkey 2 (Figure 6H). Peaks 
for lags succeeding the present (positive lags) indicated a reverse 
relationship: present movements were the cause of future neuronal 
modulations. This was expected for S1 neurons, and confi rmed 
in Monkey 2; the peak S1 extraction occurred at a positive lag 
(Figure 6H). S1 activity was generally not strongly predictive 
at any lag in Monkey 1. There were minor peaks in S1 predic-
tive power for both positive and negative lags (Figure 6G). Still, 

A B E

F

C

D

FIGURE 5 | Extraction of multiple characteristics of walking. In all traces, 
blue shows actual and red shows extracted value. All variables are shown over 
the same 5 s window, except in (F), where slow changing variables are shown 
over a longer 50 s window. (A) Three dimensional position variables. The X axis is 
in the direction of motion of the treadmill; the Y axis is off the surface of the 
treadmill (axis of gravity); and the Z axis is lateral to the surface of the treadmill, 

but orthogonal to the direction of motion. (B) Joint angle variables. Hip angle is 
calculated assuming a fi xed torso. (C) Foot contact, a binary variable defi ning the 
swing versus stance phase. (D) EMG variables. (E) Neuronal activity of 220 
single units sorted via cortical area and by phase within the step cycle. Firing 
rate is normalized for every unit. (F) Slow changing state variables (walking 
speed, step frequency and step length) plotted over a 50 s time window.
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the distinction between M1 and S1 was not clear cut because S1 
 modulations were capable of predicting motor parameters in the 
future (Figures 6E–H).

GENERALIZATION PROPERTIES AND A SWITCHING MODEL
A linear decoder trained on a single walking paradigm (e.g. 
 forward walking only or backward walking only) was able to 
accurately extract walking parameters during the same paradigm 
(SNR = 5.29 dB for the forward model applied to forward walk-
ing and SNR = 3.53 dB for the backward model applied to back-
ward walking; Figures 7A, left and 7B, right). However, predictive 
power was not retained when applied to predict a different para-
digm (SNR = −2.91 dB for the forward model applied to backward 
walking and SNR = −2.77 dB for the backward model applied to 
forward walking; Figures 7A,left panel and 7B,right panel). These 
results were confi rmed by NDA (Figure 7D).

At the same time, general models trained on a mixture of both 
forward and backward walking (walking forward 45.1 ± 1.4% 
and backward 54.9 ± 1.4% of the time) accurately predicted both 
forward (Figure 7C, left panel; SNR = 4.74 dB) and backward 
(Figure 7C, right panel; SNR = 2.24 dB) walking separately, albeit 
slightly worse compared to the single paradigm models. This was 
also evident from NDA (Figure 7D).

To recapture the lost prediction accuracy when using general 
models versus single paradigm models, we generated a multi-layer 
switching model (Figures 7F–I). The switching model classifi ed the 
subject’s walking as a number of sub-behaviors. That is, while the 
monkey was performing variable direction walking, walking was 
sub-classifi ed into forward walking and backward walking periods. 
The switching model had two layers. The primary layer contained 

several independent submodels for kinematic variables, each one 
trained on data from a single sub-behavior. The secondary layer 
was a director layer that predicted the current behavioral mode 
(here, walking direction) for the subject and selected the appropri-
ate kinematic submodel. The switching model outperformed the 
standard linear model trained during sessions with both forward 
and backward walking. The switching model improved the predic-
tions of all kinematic variables on average by 13.8.

PREDICTING MULTIPLE PARAMETERS SIMULTANEOUSLY
Simultaneous extraction of many parameters essentially depended 
on the size of the neuronal population (Figures 8A–C). Random 
subpopulations were pooled from the entire neuronal ensemble and 
used to predict several parameters simultaneously. For each param-
eter, prediction accuracy was normalized by its maximum value. 
The accuracy of simultaneous predictions was characterized by the 
normalized accuracy for the least well predicted parameter. Neuron 
dropping curves for this metric had less steep slopes when larger 
parameter sets were predicted (Figure 8A). In other words, smaller 
neuronal populations could predict a few parameters simultane-
ously, and larger populations were required for predicting many 
parameters. This is illustrated in Figure 8B, which shows that the 
number of neurons required to achieve a given minimum accuracy 
(75%, 85% or 95% of maximum prediction accuracy) increased 
with the number of simultaneously predicted parameters.

Similar to the result for the simultaneous extraction of mul-
tiple parameters, larger neuronal populations were required to 
predict complex patterns of walking compared to more simple 
walking patterns. For example, the number of neurons required 
to achieve 95% of maximum prediction accuracy for the X 

Table 1 | Average prediction accuracy. Correlation coeffi cient and signal to noise ratio (dB) for the predictions of different walking parameters. The numbers 

represent mean ± standard deviation

 Monkey 1 Monkey 2

 R SNR (dB) R SNR (dB)

Ankle

 x 0.79 ± 0.09 4.08 ± 1.80 0.80 ± 0.06 3.77 ± 1.65

 y 0.86 ± 0.11 6.25 ± 2.66 0.82 ± 0.18 5.31 ± 3.42

 z 0.44 ± 0.15 −0.20 ± 1.48 0.30 ± 0.11 −1.71 ± 1.27

Knee

 x 0.66 ± 0.14 1.96 ± 1.84 0.61 ± 0.10 0.79 ± 1.62

 y 0.79 ± 0.13 4.28 ± 2.02 0.70 ±  0.14 2.50 ± 2.49

 z 0.39 ± 0.13 −0.52 ± 1.36 0.28 ± 0.09 −1.80 ± 1.09

 Angle 0.84 ± 0.07 5.29 ± 2.06 0.87 ± 0.05 6.01 ± 1.37

Hip

 x 0.60 ± 0.14 1.15 ± 1.71 0.53 ± 0.11 0.04 ± 1.71

 y 0.66 ± 0.14 1.97 ± 1.92 0.42 ± 0.12 −0.72 ± 1.52

 z 0.56 ± 0.13 0.66 ± 1.75 0.63 ± 0.09 1.20 ± 1.67

 Angle 0.73 ± 0.11 2.95 ± 1.95 0.58 ± 0.11 0.90 ± 1.41

Swing/stance 0.61 ± 0.21 3.08 ± 2.76 0.58 ± 0.14 1.18 ± 1.79

Speed 0.42 ± 0.26 −1.44 ± 3.36 0.24 ± 0.09 −2.03 ± 0.85

Step frequency 0.48 ± 0.14 −1.84 ± 2.77 0.57 ± 0.22 0.93 ± 1.84

Stride length 0.40 ± 0.28 −1.45 ± 3.53 0.30 ± 0.17 −1.89 ± 1.64
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FIGURE 6 | Neuronal dropping curves for simultaneously extracted 

variables. Dots represent SNR for the extraction of walking parameters using 
models trained on randomly selected neuronal populations of different sizes. In 
(A–C) red dots correspond to X coordinate, green dots to Y, and blue dots to Z. In 
(B,C) cyan dots correspond to joint angles for the respective joint. This analysis 
showed that prediction accuracy increased with the neuronal sample size [but 
see (D)]. Extraction analysis by cortical area was also performed for Monkey 1 
(E,G) and Monkey 2 (F,H). In Monkey 1, more cells were recorded in M1 than in 
S1, whereas in Monkey 2 more cells were recorded in S1. (A) 3D coordinates of 
the ankle. (B) Joint angle and 3D coordinates of the knee. (C) Joint angle and 3D 
coordinates of the hip. (D) Foot contact, that is whether or not the monkey’s foot 

was on the ground. Foot contact was well predicted for smaller numbers of 
neurons but experienced overfi tting for large numbers of neurons. (E,F) 
Neuronal dropping curves for the entire neuronal population and separate areas 
with extrapolated fi ts. (G,H) Prediction accuracy for M1 (red curves) and S1 
(blue curves) as a function of time lag between the time of prediction and the 
time at which neuronal activity was sampled. In Monkeys 1 and 2, precentral 
neurons best predicted current kinematics using neuronal data in the past, 
indicating that neuronal modulations preceded motion. Monkey 2’s postcentral 
neurons had a peak in predictive power using future data, indicating that activity 
was a replica of the kinematics. In Monkey 1, the postcentral subpopulation did 
not have particularly strong predictive power in this analysis.

 position of the ankle clearly increased when walking conditions 
of increasing complexity were employed (Figure 8C). On average, 
60 neurons were suffi cient for predicting constant-speed walking 

in the  forward direction. However, 90 neurons were needed to 
achieve this level of accuracy for variable-speed, forward walking. 
As complexity increased, more neurons were needed to maintain 
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FIGURE 7 | Generalized Training and the switching model. Panels A–C each 
represent a separate predictive model. In each, the left panel shows each 
model’s ability to predict the kinematics of walking during sessions where the 
monkeys walk forward while the right panel shows each model’s predictions of 
limb kinematics during periods of backward walking. The models accurately 
predicted conditions the same as the data they were trained upon but did not 
generalize well to conditions not contained within the training data set. The 
generalized model predicted either walking paradigm, but less accurately 
compared to paradigm-specifi c models. In response to these effects, a 
switching model (F–I) was designed that increased prediction accuracy for many 
kinematic parameters. (A) Actual and extracted traces of the X coordinate of the 
ankle for the forward walking model. Blue curves represent the actual position, 
and red curves represent the extracted position. (B) Traces for backward walking 
model. (C) Traces for generalized model. (D) Neuron dropping curves calculated 
by predicting forward walking using randomly selected neuronal populations 
with each model. (E) Neuron dropping curves calculated by predicting backward 
walking using randomly selected neuronal populations with each model. 
(F) Block diagram comparing the “switching” model with a generalized training 
model. Instead of using the same neuronal weights for all walking paradigms, 

the switching model uses two separate kinematic submodels running in parallel. 
Each model is optimized for a separate walking paradigm: forward and backward 
walking. A state predictive model determines walking mode and selects which 
of the two kinematic submodels becomes the fi nal output. (G) Comparison of 
prediction strength of individual neurons during forward (abscissa) versus 
backwards (ordinate) walking. The prediction strength (R) was determined for 
single-neuron predictions of the X position of the ankle. While there is a general 
correlation between the Rs for these walking paradigms, there is a clear 
subpopulation of neurons with high Rs for forward, but not for backward 
walking. (H) Representative records of the X position of the ankle illustrating the 
predictive power of the switching model (the panel highlighted in yellow) versus 
generalized model (red curve) during forward walking. Note that the specialized 
model selected by the state predictive model (green curve) matches the original 
record (black curve) better than the generalized model (red curve) and the 
submodel for backward walking (blue curve). (I) Representative records for 
backward walking. The backward paradigm submodel selected by the state 
predictor (blue curve in the panel highlighted in yellow) matches the actual 
position (black curves) better than the generalized model (red curve) and the 
submodel for forward walking (green curve).
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FIGURE 8 | Simultaneous extraction of multiple parameters and real-time 

parameter extraction. (A) Neuronal dropping curves for extracting multiple 
parameters of walking. Each point on the curve represents the number of 
neurons needed to achieve a certain minimum level of prediction accuracy for 
each parameter (expressed as R normalized by the maximum value). The curves 
were fi tted to the data for random groups of neurons used to predict random 
combinations of variables. This analysis revealed a slower rise for the multiple 
parameter dropping curves, indicating that larger neuronal populations were 
needed to predict multiple parameters simultaneously. (B) Number of neurons 
needed to attain a certain level of prediction accuracy (75%, 85% and 95% of 
maximum R) as the function of the number of simultaneously predicted 
variables. The curves were calculated from the neuron dropping curves shown in 
(A) These graphs show that the number of neurons needed for accurate 
prediction increased with the number of simultaneously extracted parameters 
of walking. (C) A comparison of the necessary number of neurons needed to 
accurately predict parameters in a variety of walking modes of different 

complexity. 95% of maximum R was set as the accuracy requirement. Bars 
show standard error. (D) Diagram outlining the operation of the real-time BMI. 
Real-time recordings of kinematic parameters and neural activity are fi ltered, 
binned and combined to train a series of Wiener models. Once the training is 
complete, the binned neural activity is sent into the models and kinematic 
output is generated. This kinematic output is used to drive robotic actuators. 
Feedback is sent back to the monkey using a visual display, or potentially, 
microstimulation pulses. (E) Training and prediction stages of the BMI. The 
panels show the average angles of hip and knee. In the top panel, training was 
occurring and there was not yet any predicted output. In the bottom panel 
extracted data was calculated (red), which matched actual kinematics (blue). 
(F) Training (left) and extraction (right) periods shown as the snapshots of leg 
confi guration in treadmill surface centered coordinates. The confi gurations are 
projected onto the X–Y plane at 33 ms time steps to show a single step. Actual 
confi gurations of the leg are shown in blue, and predictions are shown in red. 
(G) Schematics of a future walking assist, exoskeletal BMI.
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the same prediction accuracy. Thus, 95 neurons were required for 
predicting backward walking at constant speed, while 115 neu-
rons were required for predicting backward walking at variable 
speed. Predicting variable-speed bidirectional walking required 
110 neurons.

REAL-TIME PREDICTIONS OF LEG KINEMATICS USING CORTICAL 
NEURONAL ENSEMBLES
Real-time prediction of kinematic variables (Figure 8D) was per-
formed in 22 daily recording sessions in Monkey 1. In each session, 
the fi rst 5 min of walking were used for model training data. These 
data were sent to a buffer which was used to calculate a set of linear 
models for the leg kinematic parameters. These models were then 
used to generate real-time predictions from neural spike data alone. 
The actual and extracted joint angles are shown in Figure 8E, and 
the actual and extracted leg confi gurations are shown in Figure 8F. 
Real-time predictions were not statistically different from offl ine 
predictions (real-time SNR = 2.38 ± 1.14, offl ine SNR 2.46 ± 1.57, 
P > 0.05, Student’s t-test). The real-time system included a web link 
that could send the extracted kinematics to robotic appendages 
and return visual feedback (Figure 8D). The operation of robotic 
devices under these conditions has been reported in abstract form 
(Cheng et al., 2007; Lebedev et al., 2007) and will be covered in 
detail in a future article.

DISCUSSION
In this study, we extracted bipedal walking patterns from the 
modulations of discharge rates of monkey S1 and M1 neuronal 
ensembles. While such modulations were expected from pre-
vious studies in quadrupeds (Armstrong and Marple-Horvat, 
1996; Beloozerova and Sirota, 1998; Drew, 1993; Prilutsky et al., 
2005; Widajewicz et al., 1994), it was not clear until the present 
study whether cortical activity would be suffi cient for accurate 
predictions of leg kinematics and EMGs during bipedal walk-
ing in primates. These fi ndings have several implications. First, 
we have demonstrated the utility of using nonhuman primates 
for elucidating the neurophysiological mechanisms of bipedal 
locomotion. As such, we propose that chronic, multi-site cortical 
recordings could be used in the future to elucidate the neuronal 
mechanisms involved in upright posture control and bipedal 
walking. Second, as an implication for the BMI fi eld, our fi nd-
ings provide the fi rst proof of concept demonstration that, in the 
future, a neuroprosthetic for restoring bipedal walking in severely 
paralyzed patients can be implemented.

CORTICAL NEURONAL MODULATIONS DURING BIPEDAL LOCOMOTION
Using cortical activity rather than subcortical locomotion centers for 
extracting walking patterns is not without controversy (Prochazka 
et al., 2000). Although locomotion is conventionally recognized 
as a highly automated motor activity, subserved by spinal central 
pattern generators (Dietz, 2001; Grillner, 2006; Grillner et al., 2008; 
Hamm et al., 1999; Kiehn et al., 2008; McCrea and Rybak, 2008; 
Yamaguchi, 2004), the involvement of the cerebral cortex in gait 
control has been reported in studies conducted in rodents (Hermer-
Vazquez et al., 2004), cats (Armstrong and Marple-Horvat, 1996; 
Beloozerova and Sirota, 1993), and monkeys (Courtine et al., 
2005b). Moreover, cortical involvement in locomotion seems to 

increase during more demanding tasks, especially those that require 
visual feedback (Armstrong and Marple-Horvat, 1996; Beloozerova 
and Sirota, 1993; Drew et al., 2008).

Sampling from large populations of M1 and S1 neurons allowed 
us to analyze activity modulations in hundreds of simultaneously 
recorded neurons. Both M1 and S1 neurons modulated their fi ring 
rate in relationship to the stepping cycle. Firing for each neuron 
peaked at a particular phase of the stepping cycle. Given the large 
number of neurons that we recorded, it was unrealistic to examine 
in detail the properties of each neuron in order to determine which 
motor or sensory responses determined its step cycle modulations. 
Therefore, we used a population based approach in which cycle 
modulations of individual neurons each contributed to the extrac-
tion of the step cycle at every time step, and more precise extractions 
were obtained by combining the information from many neurons. 
We also showed the benefi ts of utilizing multi-site recordings to 
predict locomotion kinematic parameters. This approach was 
benefi cial because neuronal modulations from different cortical 
areas provided the diversity and richness of cortical signals needed 
for the accurate extraction of motor parameters under different 
behavioral conditions. In this context, we consistently observed 
superior performance of neuronal populations drawn from several 
cortical areas compared to the performance of populations drawn 
from a single area.

EXTRACTING OF MULTIPLE PARAMETERS OF BIPEDAL WALKING
Walking patterns were extracted using multiple linear models. As 
in previous studies in which predictions of arm movements were 
obtained, NDA showed that large neuronal ensembles were needed 
for accurate predictions of leg kinematic parameters. Thus, larger 
neuronal samples were required for simultaneous extraction of 
multiple walking parameters. Small populations of relatively spe-
cialized neurons could accurately extract only a subset of locomo-
tion parameters, and additional neurons were required to improve 
the extraction of the other parameters. As a corollary to this fi nd-
ing, larger neuronal populations were required as task complexity 
increased. These results support our previous suggestion that, to 
effi ciently control a multiple degree of freedom neuroprosthetic, 
recording the activity of large ensembles of cortical neurons will 
be necessary (Carmena et al., 2003; Lebedev et al., 2007; Wessberg 
et al., 2000).

M1 VERSUS S1 CONTRIBUTIONS TO THE PREDICTION OF LEG 
KINEMATICS
Both M1 and S1 neurons contributed signifi cantly to the predic-
tions of leg kinematics. As expected, M1 modulations were more 
informative for predicting future values in the parameters of walk-
ing, whereas S1 modulations better predicted the past values of 
the parameters. However, this distinction was not absolute, par-
ticularly in Monkey 2 in which accurate predictions of future val-
ues of locomotion parameters could be obtained from S1 activity. 
While repetitive nature of the movement may be one contributor 
to S1 predictive power, predictions obtained from S1 activity could 
also refl ect centrally generated signals related to communication 
between motor and sensory areas and efferent copies (Chapin and 
Woodward, 1982; Fanselow and Nicolelis, 1999; Lebedev et al., 
1994).
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GENERALIZED TRAINING
The computational models of a BMI take advantage of correlations 
between neuronal fi ring modulations and behavioral parameters 
to generate their predictions. These correlations do not necessar-
ily refl ect a direct relationship or causation between neuronal dis-
charges and the predicted parameters (Lebedev and Nicolelis, 2006). 
Consequently, a model trained under one set of conditions may not 
perform well when the conditions are changed and the correlation 
between the neuronal discharges and behavioral parameters are 
altered. We observed this effect when we attempted to predict dif-
ferent locomotion patterns (Figure 7). Models trained on forward 
walking did not accurately predict backward walking and vice versa. 
This drop in prediction performance occurred because of the dif-
ferences in neuronal modulations during the step cycles of forward 
walking versus backwards walking (Figure 4). Such an effect was 
expected because leg dynamics change dramatically during back-
wards walking despite relatively small changes in leg kinematics 
(Thorstensson, 1986). It was only when the models were trained on 
a wider variety of patterns that they improved their ability to predict 
more diverse behaviors. Given that motor cortical neurons may 
represent muscle activity, limb kinematics and their combinations 
(Kakei et al., 1999), which all change in complex ways when behav-
ioral paradigms are altered, this result is not entirely surprising. For 
instance, the pattern of muscle activation may become different for 
a given leg orientation in a new walking condition, and muscle-rep-
resenting neurons would introduce errors in predicted kinematics. 
It is only when the linear models are trained on several behaviors 
that the kinematics can be accurately extracted. These results sug-
gest that in order to build a neuroprosthetic that is both accurate 
and versatile in restoring locomotion patterns, it will be necessary 
to generate a training protocol which is varied enough so that the 
employed models learn to predict a large set of behaviors.

SWITCHING MODEL
While generalized training had the advantage of producing models 
that provided accurate predictions of the various behavioral para-
digms included in the training data set, generalized models predicted 
with less accuracy than specifi c models designed for a single walking 
paradigm. To recapture some of this lost accuracy, we developed a 
switching model that selected the appropriate specifi c model once a 
switch in the walking paradigm was detected. Algorithms based on 
the idea of switching state spaces have been previously proposed for 
extracting arm movements from neuronal modulations (Kim et al., 
2003; Wu et al., 2004). While the switching model has many advan-
tages and it increased the accuracy of predictions throughout this 
experiment, it does carry some potential drawbacks. For variables that 
do not behave differently between behavioral paradigms, there is little 
lost accuracy to recapture, and segregating the data in the training set 
into smaller sections for each submodel can have a detrimental effect, 
that is, the lower quantity of training data can produce a less accurate 
model. Additionally, the performance of the switching model is heav-
ily dependent on the performance of the state predicting model that 
chooses which kinematic submodel is selected

REAL-TIME BMI FOR REPRODUCTION OF LOCOMOTION PATTERNS
Since one of the long-term goals of this research is to build a neu-
roprosthetic device for the restoration of locomotion in paralyzed 

subjects, we tested the performance of our decoding algorithm 
using a real-time BMI suite that incorporated MAP recording 
hardware (Plexon Inc., TX, USA), a custom wireless video track-
ing system and a set of real-time prediction algorithms. The BMI 
suite sampled the activity of up to 512 neuronal units and con-
verted this neuronal activity into the predictions of multiple degree 
of freedom kinematic and behavioral parameters. The BMI suite 
streamed the predictions using an internet protocol. The successful 
implementation of this apparatus allowed us to obtain a proof of 
concept that a real-time BMI for the reproduction of locomotion 
can be implemented in the future as the core of a neuroprosthetic 
device aimed at restoring bipedal locomotion in severely paralyzed 
patients.

RESTORATION OF LOCOMOTION BEHAVIORS USING A BMI
Based on these results, we propose an approach to restore locomo-
tion in patients with lower limb paralysis that relies on using cortical 
activity to generate locomotor patterns in an artifi cial actuator, 
such as a wearable exoskeleton (Figure 8G; Fleischer et al., 2006; 
Hesse et al., 2003; Veneman et al., 2007). This approach may be 
applicable to clinical cases in which the locomotion centers of the 
brain are intact, but cannot communicate with the spinal cord 
circuitry due to spinal cord injury. The feasibility of employing 
a cortically driven BMI for the restoration of gait is supported 
by fMRI studies in which cortical activation was detected when 
subjects imagined themselves walking (Bakker et al., 2007, 2008; 
Iseki et al., 2008; Jahn et al., 2004) and when paraplegic patients 
imagined foot and leg movements (Alkadhi et al., 2005; Cramer 
et al., 2005; Hotz-Boendermaker et al., 2008). Event-related poten-
tials also demonstrated cortical activations in similar circumstances 
(Halder et al., 2006; Lacourse et al., 1999; Muller-Putz et al., 2007). 
Further support for this idea comes from recent studies of EEG-
based brain-computer interfaces for navigation in a virtual environ-
ment in healthy subjects (Pfurtscheller et al., 2006) and paraplegics 
(Enzinger et al., 2008).

While a cortical BMI based neuroprosthesis that derived all its 
control signals from the user would have to cope with the lack 
of signals normally derived from subcortical centers, such as the 
cerebellum, basal ganglia and brainstem (Grillner, 2006; Grillner 
et al., 2008; Hultborn and Nielsen, 2007; Kagan and Shik, 2004; 
Matsuyama et al., 2004; Mori et al., 2000; Takakusaki, 2008), these 
problems may be avoided by an approach which only derives higher 
level leg movement signals from brain activity, while allowing 
robotic systems to produce a safer, optimum output. The challenge 
of effi cient low-level control could be overcome by implementing 
“shared brain–machine” control (Kim et al., 2006), i.e. a control 
strategy that allows robotic controllers to effi ciently supervise low-
level details of motor execution, while brain derived signals are 
utilized to derive higher-order voluntary motor commands (step 
initiation, step length, leg orientation).

A cortically driven BMI for the restoration of walking may 
become an integral part of other rehabilitation strategies 
employed to improve the quality of life of patients. In particular, 
it may supplement the strategy based on harnessing the remaining 
functionality and plasticity of spinal cord circuits isolated from 
the brain (Behrman et al., 2006; Dobkin et al., 1995; Grasso et al., 
2004; Harkema, 2001; Lunenburger et al., 2006). Indeed, cortically 
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driven exoskeletons may facilitate spinal cord plasticity, helping to 
recover locomotion automatisms. Additionally, cortically driven 
neuroprostheses may work in cohort with rehabilitation meth-
ods based on functional electrical stimulation (FES; Hamid and 
Hayek, 2008; Nightingale et al., 2007; Wieler et al., 1999; Zhang 
and Zhu, 2007). In such an implementation, the BMI output 
could be connected to a FES system that stimulates the subject’s 
leg muscles. Finally, there is the intriguing possibility of connect-
ing the BMI to an electrical stimulator implanted in the spinal 
cord, a strategy that may help induce plastic reorganization within 
these circuits.

Altogether, our results indicate that direct linkages between the 
human brain and artifi cial devices may be utilized to defi ne a series 

of neuroprosthetic devices for restoring the ability to walk in people 
suffering from paralysis.
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