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Fast oscillations or “ripples” are found in the local fi eld potential (LFP) of the rodent hippocampus 
during awake and sleep states. Ripples have been found to correlate with memory related neural 
processing, however, the functional role of the ripple has yet to be fully established. We applied a 
Kalman smoother based estimator of instantaneous frequency (iFreq) and frequency modulation 
(FM) to ripple oscillations recorded in-vivo from region CA1 of the rat and mouse hippocampus 
during slow wave sleep. We found that (1) ripples exhibit stereotypical frequency dynamics that 
are consistent in the rat and mouse, (2) instantaneous frequency information may be used as an 
additional dimension in the classifi cation of ripple events, and (3) the instantaneous frequency 
structure of ripples may be used to improve the detection of ripple events by reducing Type I 
and Type II errors. Based on our results, we propose that high temporal and spectral resolution 
estimates of frequency dynamics may be used to help elucidate the mechanisms of ripple 
generation and memory related processing.
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Pharmacological manipulations which lower the level of GABA-A 
mediated inhibition in the hippocampal circuit led to decreases in 
ripple frequency and ripple event rate (Ponomarenko et al., 2004). 
In addition, manipulations that block spike train accommodation 
led to an increase in spike synchrony as well as an increase in ripple 
amplitude (Dzhala and Staley, 2004). Such observations support 
the possibility that ripple events represent a combination of exci-
tatory and inhibitory balance, degree of spike timing reliability in 
the network, and recent task learning. Furthermore, these causal 
infl uences would likely be manifested in the frequency and ampli-
tude properties of each ripple event in a time-varying manner. In 
addition, these mappings between ripple features and physiological 
states may be better established using analytical tools with high 
spectral and temporal resolution.

Common approaches of ripple characterization include cross-
correlations, triggered averaging, short-time Fourier transforms, 
and wavelet transforms (Csicsvari et al., 1999; Foffani et al., 2007; 
Ponomarenko et al., 2004; Sirota et al., 2003). In addition, the 
Wigner transform has been applied to the time-frequency analy-
sis of ripples (Gillis et al., 2005). With all consideration for the 
practical use of the approaches above, they do not provide the high-
est spectral-temporal resolution estimation of oscillatory activity. 
Alternatively, standard adaptive algorithms in engineering may be 
used to track the change in frequency on a sample-by-sample basis 
using time-varying parametric models of noisy sinusoids (Arnold 
et al., 1998; Tarvainen et al., 2004). These high resolution estimates 
of frequency dynamics provide additional dimensions for possibly 
inferring network properties.

We apply an autoregressive Kalman smoother to estimate the 
instantaneous frequency (iFreq) and frequency modulation (FM) 

INTRODUCTION
In the local fi eld potential (LFP) of the rat hippocampus, high 
frequency (100–250 Hz) and short duration (∼50 ms) events, 
termed “ripples”, can be found during slow wave sleep and awake 
immobility (Buzsaki et al., 1992; O’Keefe and Nadel, 1978; O’Neill 
et al., 2006; Ylinen et al., 1995). Ripples are highly correlated with 
an increase in activity of principal cells and several interneuron 
types (Buzsaki et al., 1992; Klausberger et al., 2003; Suzuki and 
Smith, 1988; Ylinen et al., 1995). Highly synchronous ensemble 
activity during ripples may minimize the difference in pre- and 
post-synaptic spike timing, and therefore promote plasticity under 
the rules of spike-timing dependent plasticity (Bi and Poo, 1998). 
The function of LTP during ripples may be to further reinforce 
pyramidal cell sequences within single theta cycles that occurred 
during awake behavior (Foster and Wilson, 2007; Skaggs et al., 
1996). Such a hypothesis is supported by the observation that, 
indeed, behaviorally relevant neuron activation sequences are re-
expressed during slow wave sleep and awake immobility during 
ripple events (Diba and Buzsaki, 2007; Foster and Wilson, 2006; 
Lee and Wilson, 2002). This patterned re-activation of neuronal 
ensembles may play a crucial role in the coordination of informa-
tion between the hippocampus and cortex (Buzsaki, 1996; Siapas 
and Wilson, 1998). Together, these observations suggest that the 
neural activity underlying the generation of ripple oscillations may 
be crucial for hippocampus mediated memory consolidation.

Cellular and behavioral factors have been shown to affect the 
properties of ripple oscillations in the hippocampus. For example, 
after learning, subsequent slow wave sleep periods are accompanied 
by an increase in ripple amplitude (Eschenko et al., 2008) increase in 
ripple frequency (not ripple event rate) (Ponomarenko et al., 2008). 
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of ripple oscillations on a sample-by-sample basis; thus, we char-
acterize each ripple event with a dynamic frequency signature that 
spans the length of the ripple in time. The primary advantages 
afforded by Kalman smoother over non-parametric methods, such 
as the wavelet transform or Fourier transform, are (1) the power 
spectral density is defi ned on the continuous line rather than in 
frequency bins, (2) the frequency estimate is updated on a sam-
ple-to-sample basis, (3) and the temporal dynamics of the ripple 
frequency are determined directly from a model of non-stationary 
sinusoid (Arnold et al., 1998; Foffani et al., 2004; Nguyen et al., 
2008; Percival and Walden, 1993; Tarvainen et al., 2004).

In particular, we focus on two highly relevant and understated 
problems: high resolution spectral-temporal ripple characteriza-
tion and ripple detection. In practice, individual ripple events are 
described by quantities with limited temporal resolution: maxi-
mum amplitude and average intra-ripple frequency. The ability to 
resolve small timescale frequency dynamics within the 30–50 ms 
ripple oscillations may prove to be critical for understanding the 
function of ripple oscillations. In addition, the problem of ripple 
detection has scarcely been addressed. Here, we demonstrate how 
the frequency structure of ripples may be used to address Type I 
and Type II errors in ripple detection.

MATERIALS AND METHODS
SURGICAL PROCEDURE AND DATA COLLECTION
The LFP data presented here were recorded from three 4 month 
old, male, Long-Evans rats, and one male, C57BL/6 mouse. The 
animals were anesthetized, a craniotomy was made to the right of 
the midline (Rat: AP -3.5 mm, ML 2.5 mm; Mouse: AP −2.0 mm, 
ML 1.8 mm), and micro-drive array containing tetrodes (18 for rats 
and 6 for mouse) were chronically implanted using bone screws and 
dental cement (Kloosterman et al., 2009; Nguyen et al., 2009). All 
surgical procedures met NIH guidelines and were approved by the 
Committee on Animal Care at MIT, Cambridge, MA. After allow-
ing the animals to recover for 2 days, tetrodes were slowly lowered 
to stratum oriens/pyramidal of the dorsal CA1 over the course of 
1–2 weeks. The animals were placed individually inside a high-
walled resting chamber for approximately 50-min sleep epochs. 
While in the chamber the animals were either in a state of awake 
immobility, slow wave sleep, or REM sleep. The LFP signal was 
recorded to a computer using custom data acquisition software at 
12-bit resolution and at a sampling rate of 6 kHz. A total of four 
sleep data sets were used in this manuscript: from Rat 1 a 41 min 
epoch, from Rat 2 a 45 min epoch, from Rat 3 a 69 min epoch, and 
from Mouse a 65 min epoch. The Rat 1 dataset was primarily used 
to produce fi gures. The depth of the recording electrode relative 
to the pyramidal cell layer may affect characteristics of the sharp-
wave ripple events. In order to confi rm that the electrode depth was 
comparable between animals, we computed a theta-peak triggered 
histogram of multi-unit activity and found for each data set that 
the greatest propensity for spiking activity occurred around the 
positive peak of theta.

SIGNAL PROCESSING
The ripple-band or ripple signal was obtained by down-sampling 
the original LFP to 800 Hz, and then bandpass fi ltering using a 
forward-backward, zero-phase lag, 100 point FIR fi lter with cutoff 

frequencies of 100–250 Hz. The sharp wave (SPW) band activity 
was isolated in a similar manner to the ripple-band activity, except 
the bandpass fi lter was set to 1–25 Hz. The amplitude modula-
tion of the sharp wave (SPW-AM) was computed by taking the 
sample-by-sample time derivative of the SPW band activity with 
no smoothing.

Estimation of instantaneous frequency (iFreq) and frequency 
modulation (FM): Let the observation interval be time (0,NΔ] 
where Δ is the sampling interval and N is the number of observed 
samples. The observed ripple signal is modeled using a time-varying 
autoregressive process of order 2 or a TVAR(2) process, y(n) = a

1
(n) 

y(n − 1) + a
2
(n) y(n − 2) + v(n), where a(n) = [a

1
(n), a

2
(n)] are the 

TVAR coeffi cients; v(n) is a zero-mean, white noise term with vari-
ance σv

2 ; and y(n) is the amplitude demodulated ripple-band signal, 
which is computed by normalizing y(n) by the amplitude envelope, 
which is defi ned as the magnitude of Hilbert transformer output, 
|H

y
(n)| = |y(n) + i · Hilbert{y(n)}|. For every observation in the 

ripple signal, the TVAR(2) model parameters, a(n), are updated 
using a fi xed-interval Kalman smoother (KS) algorithm (Arnold 
et al., 1998; Foffani et al., 2004; Nguyen et al., 2008; Tarvainen et al., 
2004). From the estimates of the TVAR coeffi cients, ˆ( ),a n  we obtain 
the instantaneous frequency (iFreq) estimates by computing the 
phase of the autoregressive poles, z

1
 and z

2
, which are the solutions 

to the complex characteristic equation a
1
(n)z−1 + a

2
(n)z−2 − 1 = 0. 

With stable oscillatory data the values of z
1
 and z

2
 will be com-

plex conjugate. Hence, the iFreq estimate of the data at time index 
n is ˆ( ) / /f n f z f zs s= =1 22 2π π. We estimate the frequency 
modulation (FM) of the signal as fm n f n f n( ) ( ) ( )[ ]/ .≈ − −1 Δ  The 
adaptive fi lter parameters were initialized as follows. The input 
signal, y(n), is simply normalized by the maximum absolute value 
of the ripple signal in order to constrain the range of values for 
the variance parameters. The fi lter parameters were set to n

0
 = 3, 

Σ σw wI= ×
2

2 2 , Σ σv v= 2 , where σw
2 0 005= .  and σv

2 0 1= . . The initial 
state and state covariance matrix, x(n

0
|n

0
) and Σ

x
(n

0
|n

0
), are initial-

ized using the Yule-Walker equations and 10 s of data. All signal 
processing procedures were performed using Matlab by Mathworks 
(Natick, MA, USA).

RIPPLE DETECTION ANALYSIS
Two types of ripple detection methods were used, the fi rst was 
the commonly used amplitude based method (AMP detect), 
and the other was a combined amplitude and FM based method 
(AMP + FM detect). For the amplitude based method, the detec-
tion signal was the “ripple envelope”, which was computed as the 
absolute value of the Hilbert transformer on the ripple-band signal 
(100–250 Hz), and then smoothed with a 50 ms Gaussian window. 
For the AMP + FM condition, the detection signal was computed 
by rectifying the FM signal, smoothing the rectifi ed FM signal with 
a 50 ms Gaussian window, smoothing the ripple envelope signal 
with a 50 ms Gaussian window and normalizing by the maximum 
value, and then multiplying the two smoothed signals together. 
For both detection methods, the upper detection threshold was 
set to mean(detect signal) + 3 × std(detect signal), and the lower 
threshold was set to be mean(detect signal) + 1.5 × std(detect sig-
nal). When the ripple envelope exceeded the upper threshold, this 
fl agged a ripple event. The extent of the ripple event was determined 
by the fi rst crossing of the lower threshold. For both  detection 



Frontiers in Integrative Neuroscience www.frontiersin.org June 2009 | Volume 3 | Article 11 | 3

Nguyen et al. Ripple characterization and detection

methods, events of less than 30 ms were discarded, and events 
that overlapped in time with non SWS periods (determined by 
high theta/delta power ratio) were also discarded. Non-SWS peri-
ods were detected by fi rst obtaining delta [0.5–4 Hz] and theta 
[6–12 Hz] signals, smoothing each signal with a 1 s long box car 
window, dividing the smoothed theta signal by the smoothed delta 
signal, and setting a threshold equal to std(theta/delta) + median 
(theta/delta). The ripples events found by the AMP method are said 
to belong to set “A”, while those found by the AMP + FM methods 
belong to set “AF.” Detected ripples of both methods, AMP and 
AMP + FM, were qualifi ed by computing a gamma-ripple score: 
(gamma power − ripple power) divided by (gamma power + ripple 
power). The bandwidth for gamma power is 70–100 Hz and ripple 
power is 100–250 Hz. The power was measured as the root-mean-
square (RMS) power of the band-limited signals.

RIPPLE FEATURE EXTRACTION
Ripple events were detected using the AMP and AMP + FM meth-
ods described above. The time of the ripple center was taken to 
be the time of the largest positive peak of a ripple oscillation (no 
signal rectifi cation and no Hilbert transform was used). Ripple 
frequency and FM was computed as the average instantaneous 
frequency (iFreq) and average FM of the ripple event in a ±10 ms 
window about the ripple center. The maximum and minimum 
values of iFreq and FM were those detected in a ±25 ms window 
about the ripple center. The multi-unit activity (MUA) of a rip-
ple was taken to be the maximum multi-unit rate (spikes/s) in a 
±25 ms window about the ripple center. The multi-unit rate was 
computed by binning the multi-unit spike train with 1 ms bins and 
then smoothing with a 30 ms Gaussian window. The SPW-AM of 
a ripple event was taken as the average of the SPW-AM signal in 
a ±10 ms window about the ripple center. The ±10 ms window is 
suffi cient a size to summarize the overall trend within the ripple, 
but not too large to cancel out dynamics. A larger window, ±25 ms, 
was used to help ensure the actually peak or trough of the signal 
would be found for each ripple event.

Two non-parametric bootstrap tests (rank-order and sample-
mean) were used to compare the similarity between ripple feature 

distributions. For each comparison, the rank-order and sample-
mean tests were performed individually, and, conservatively, the 
largest p-value of the two tests was recorded. The sample-mean 
test is standard practice but may be heavily infl uenced by outliers; 
conversely, the rank-order test is less sensitive to outliers. Each test 
collected statistics from 5,000 bootstrap samples.

We determine the large frequency modulations of individual 
ripple events by comparing the maximum and minimum FM 
within ripples events to a statistical threshold computed from 
the distribution of FM peaks and distribution of FM troughs, 
respectively, in the entire data set. Ripples with max. FM greater 
than the threshold, Expectation(peak value | all data) plus Std(peak 
value | all data), were considered to have large positive FM. Ripples 
with min. FM less than the threshold, Expectation(trough value | all 
data) minus Std(trough value | all data) were considered to have 
large negative FM. We then identifi ed the population of ripples 
where both the max. and min. FM were large and categorized each 
ripple into one of four categories based on the relation between 
time of max. and min. iFreq vs. time of ripple center: (1) both 
max. and min. iFreq occurs before the ripple center, (2) only max. 
iFreq occurs before the ripple center, (3) only min. iFreq occurs 
before the ripple center, and (4) both max. and min. iFreq occur 
after the ripple center.

RESULTS
Sharp wave-ripple complexes were observed in local fi eld potentials 
(LFPs) recorded from the CA1 subfi eld of the dorsal hippocampus 
while the rodent (rat or mouse) was in a sleep box. In Figure 1, 
example LFP traces from the rat hippocampus are displayed with 
the intermediate processing stages of the ripple-band signal, a 
1–25 Hz signal representing sharp wave (SPW) activity in stra-
tum oriens, and the iFreq and FM estimates. Dynamic frequency 
estimates may be computed for any stretch of data, however, for 
our purposes we restrict the interpretation of iFreq and FM to 
times when a ripple event has been detected (rectangular boxes 
in Figure 1).

Ripples were detected in the four subjects using an amplitude 
threshold based method (see Section “Materials and Methods”). 

FIGURE 1 | Illustration of signal processing. (A) LFP recording from 
stratum oriens of the dorsal CA1 region, sampled at 800 Hz. (B) Bandpass 
fi ltered LFP signal between (100–250 Hz) results in typical “ripple” signal. 
(C) Snapshot of raw LFP data taken from (A) (grey vertical bar), with 

isolated sharp wave activity in the background (1–25 Hz), (D) ripple 
signal amplitude envelope, (E) ripple band signal (100–250 Hz), (F) the 
instantaneous frequency (iFreq) estimate, and (G) the frequency 
modulation (FM) estimate.
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The observation intervals for Rat 1, Rat 2, Rat 3, and Mouse were 41, 
45, 69, and 65 min, respectively. The respective number of detected 
ripple events was 931, 1210, 1189, and 1850. The range of ripple 
event rates was approximately 0.3–0.5 Hz.

DYNAMIC FREQUENCY STRUCTURE OF RIPPLE EVENTS
We began our investigation of ripple frequency structure by exam-
ining the statistics of peak-aligned ripple events (Figure 2). We fi rst 
noted that the median waveform of the amplitude envelope, MUA, 
iFreq, and FM traces were qualitatively and quantitatively consistent 
across the three rat subjects and one mouse subject. This was sup-
ported by the observation that the 50% confi dence interval of any 
subject contained the median waveform of all three other subjects 
for any of the four signals. In Figure 2, this observation is visualized 
using the empirical 50% confi dence intervals of Rat 1.

The median amplitude envelope is a smooth unimodal curve 
with a baseline of ∼0.025 mV and peak amplitudes in the range of 
∼0.1 to ∼0.18 mV (Figure 2A). In Figures 2B,C, we observe that 
the MUA and iFreq signals peak coherently and prior to the 
amplitude peak of the ripple. In a window of ∼3–5 ms before the 
amplitude peak of the ripple, the frequency of the ripple begins to 
decrease abruptly and continues to decrease passed the apex of the 
ripple envelope. This negative frequency modulation can easily be 
seen in Figure 2D as the median FM waveform dips below 0 Hz/s 
at the point of the ripple amplitude peak. A visual comparison 
of iFreq and FM (Figure 2C vs. Figure 2D) reveals a signifi cant 
reduction in median waveform variation between subjects for the 
FM signal. This is largely attributed to the effect that differentiation 
has on removing constant offsets.

The median structure of the ripple waveforms were consistent 
across subjects, however, we also noted some degree of variability 
(Figure 2). In order to investigate this variability, we extracted fea-
tures from each ripple and explored their distribution (Figure 3). 
The max., mean, and min. values of iFreq and FM were found to 
be signifi cantly different (p < 0.001 for all subjects), highlighting 
the dynamic nature of intra-ripple frequency and frequency modu-
lation (Figures 3D,E). The relationship between SPW phase and 
ripple activation may be of physiological interest as the underlying 
excitatory drive corresponding to different phases of the sharp-wave 
may infl uence the frequency dynamics of ripples. Sharp wave activ-
ity was extracted from the raw LFP and differentiated to obtain an 
amplitude modulation signal (SPW-AM). Since the LFP of these 
four subjects were recorded in stratum oriens/pyramidal, the onset 
of the SPW is indicated by positive values of SPW-AM, while the 
SPW offset is indicated by negative values. The SPW-AM distri-
bution was not signifi cantly biased towards positive or negative 
values (Figure 3C). The mean of the SPW-AM distribution was 
approximately 1.3, −1.0, −2.8, and 1.6 mV/s for subjects Rat 1, Rat 2, 
Rat 3, and Mouse. In the same order, the median of the SPW-AM 
distribution was approximately 0.9, 0.2, −2.9, and 1.6 mV/s.

COVARIATION OF RIPPLE FEATURES
Next, we attempted to determine how ripple features were related to 
one another (Figure 3). A correlation coeffi cient (R) was computed 
for each combination of features (Figure 4; Table 1). The majority 
of correlations were found to be signifi cant, but not necessarily 
large. The strongest signifi cant correlations were between Amp vs. 
MUA (R ∼ 0.57, p < 0.001; Figure 4A) and Freq vs. MUA (R ∼ 0.46, 
p < 0.001; Figure 4H). Interestingly, the correlation between Freq 
and FM was consistently negative across animals (R ∼ −0.18, 
p < 0.001; Figure 4I). The Amp vs. SPW-AM, (R ∼ 0.08, p < 0.01; 
Figure 4D), and MUA vs. SPW-AM, (R ∼ 0.07, p < 0.01; Figure 4G), 
correlation were found to be positive in three out four data sets; the 
negative correlation for Rat 3 could not be verifi ed as an outlier and, 
therefore, was used to compute the average correlation.

QUANTIFYING RIPPLE VARIABILITY WITH FREQUENCY DYNAMICS
The feature distributions in Figure 3 suggest that ripples vary greatly 
in terms of their amplitude, frequency, and multi-unit properties. 
We aim to determine if these variations are a systematic property 
of hippocampal processing or the result of some random noise 
process. We begin by grouping ripple events based on frequency 

FIGURE 2 | Ripple triggered statistics of (A) amplitude envelope, 

(B) normalized multi-unit activity, (C) iFreq measure, and (D) FM 

measure. The red, green, and blue lines are median waveforms of data from 
three different rat subjects, while the solid black line represents one mouse 
subject. The solid patch in the background represents the empirical 50% 
confi dence bound computed with the Rat 1 data set.
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information (Figure 5). These two feature dimensions were chosen 
for their weak but signifi cant correlation and are not directly a 
function of ripple amplitude (Table 1). Orthogonal dividing lines 
for Freq and FM dimensions were used to partition the data. The 
frequency boundary was chosen to be the median of the frequency 
distribution (Figure 3D), which was 150.13 Hz for Rat 1 (146.8, 
149.25, and 139.5 Hz for Rat 2, Rat 3, and Mouse). The FM bound-
ary was always chosen to be 0 Hz/s, which allowed for straightfor-
ward interpretations of the resulting partitions.

For Rat 1, out of the 931 ripple events that were originally iden-
tifi ed, ∼12% of the events fell into the high frequency, positive FM 

 category (QH+), ∼38% into the high frequency, negative FM category 
(QH−); ∼35% in the low frequency, negative FM category (QL−); 
∼15% into the low frequency, positive FM category (QL+). The rela-
tive number of events between the four partitions was markedly 
consistent across the four subjects (Figure 5B), demonstrating a con-
sistent bias towards negative FM in the population of ripple events. 
The average FM was largest in magnitude for the QH−  partition 
across subjects (Figure 5F), consistent with the negative correlation 
between iFreq and FM (Table 1). Feature distributions were com-
pared within subject and between all combinations of partitions 
(Figures 5C–F). We found no signifi cant differences in  distributions 

FIGURE 3 | Probability distribution of ripple features for Rat 1. 

(A) Maximum of the ripple amplitude envelope. (B) Maximum value of multi-
unit rate within ripple. (C) Amplitude modulation of sharp wave signal (1–25 Hz) 
measured around the time of the ripple peak. (D) Max., mean, and min. 

frequency within ripple. (E) Max., mean, and min. frequency modulation within 
ripple. (F) Length of ripple. For (D) and (E), the max., mean, and min. curves 
correspond to the max., mean, and min. values in a 20 ms window about the 
ripple peak.

FIGURE 4 | Covariation of ripple features for Rat 1. (A–J) Two dimensional histograms represent the relationship between all combinations of ripple features 
shown in Figure 3. These data are taken from Rat 1.  The correlation coeffi cients for each feature combination are shown in white text (the asterisk denotes a 
correlation with p < 0.001).  See Table 1 for a summary of feature correlations for all data sets.
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for ripple amplitude between all pairs of partitions (p > 0.05). MUA 
distributions were signifi cantly different between high and low fre-
quency partitions, but not between positive and negative FM parti-
tions (p > 0.05), consistent with the feature correlations shown in 
Table 1. These similarities and differences in partitions properties are 
consistent across subjects. Representative data examples of ripples 
from the four partitions are shown in Figure 6.

In order to better understand how these partitions differ in 
spectral-temporal dynamics, we computed ripple-triggered aver-
ages (aligned by maximum ripple peak) for the ripple amplitude 
envelope, MUA signal, iFreq signal, and FM over a 200 ms window 
(Figure 7). The most striking result is the clear difference in average 
iFreq and FM structure between partitions. In comparison to the 
waveform statistics in Figure 2, these waveform averages demon-
strate that average ripple frequency dynamics within quadrants 
have a larger than expected dynamic range. Moreover, we fi nd in 

contrast to the no-partitioning statistics in Figure 2, that ripples 
can peak in FM before or after the ripple amplitude peak, and that 
the direction of maximum FM may be either positive or negative 
(Figures 7C,D). In addition, the high frequency partitions (QH+ 
and QH−) are clearly associated with higher MUA, while the low 
frequency partitions (QL+ and QL−) are associated with lower 
MUA, which is compatible with the high correlation coeffi cient 
between MUA vs. Freq (Table 1).

In all partitions, the average FM waveforms indicate that rip-
ple events tend to contain both positive and negative frequency 
modulation corresponding to increases and decreases of the iFreq 
(Figure 7D). In order to quantify this statement, we computed two 
sets of statistics for all partitions: (1) the percentage of ripple events 
with either large positive FM or large negative FM peak or both, and 
(2) the percentage of ripple events containing both large positive and 
negative FM peaks. For the fi rst statistic, we found the percentage of 

Table 1 | Correlation coeffi cients (R) and p-values which measure the relationship between ripple features combinations. We defi ne signifi cant 

correlations to be correlations that have a statistical power of p < 0.001 for at least three out of four subjects.

 Rat 1 Rat 2 Rat 3 Mouse 1

Amp vs. MUA 0.43, p < 1e − 11 0.53, p < 1e − 11 0.68, p < 1e − 11 0.64, p < 1e − 11

Amp vs. Freq 0.070, p = 0.033 0.11, p < 0.001 0.031, p = 0.30 0.36, p < 1e − 11

Amp vs. FM −0.096, p = 0.0034 0.011, p = 0.71 −0.12, p < 0.0001 0.062, p = 0.0072

Amp vs. SPW − AM 0.22, p < 1e − 11 0.10, p < 0.001 −0.092, p = 0.0017 0.10, p < 0.0001

MUA vs. Freq 0.54, p < 1e − 11 0.44, p < 1e − 11 0.24, p < 1e − 11 0.64, p < 1e − 11

MUA vs. FM −0.059, p = 0.074 0.10, p < 0.001 −0.055, p = 0.061 0.13, p < 1e − 07

MUA vs. SPW − AM 0.19, p < 1e − 08 0.15, p < 1e − 06 −0.12, p < 0.0001 0.074, p = 0.0014

Freq vs. FM −0.21, p < 1e − 09 −0.23, p < 1e − 11 −0.10, p < 0.001 −0.20, p < 1e − 11

Freq vs. SPW − AM 0.21, p < 1e − 09 0.12, p < 0.0001 −0.053, p = 0.074 0.058, p = 0.012

FM vs. SPW − AM 0.062, p = 0.0585 0.13, p < 1e − 05 0.14, p < 1e − 05 0.019, p = 0.40

FIGURE 5 | Partitioning of ripple events based on frequency information 

alone. (A) The boundaries for partitioning are drawn at 150 Hz and 0 kHz/s. QH+ 
represents high frequency and positive FM, QH− represents high frequency and 
negative FM, QL− represents low frequency and negative FM, QL+ represents 

low frequency and positive FM. (B) Relative number of events per partition 
quadrant for three rat subjects and one mouse subject. (C–F) Standard box-and-
whisker plots (95% CI) for features of each partition and each data set. Plots are 
grouped by subject rather than quadrant.
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events that met this criterion to be ∼92.2, ∼95.0, ∼85.2, and ∼79.0% 
for partitions QH+, QH−, QL−, and QL+, respectively, after averag-
ing the percentages across subjects (Table 2). In the same manner 
of computation as the fi rst statistic, the second statistic was found 
to be 55.0, 60.8, 35.9, and 35.0%, respectively (Table 2). Therefore, 

although the average FM waveforms in Figure 7D indicate some 
degree of bi-phasic FM modulation, it is more accurate to conclude 
that individual ripple events in QH+ and QH− robustly exhibit at 
least one phase of either large FM, while events in QL− and QL+ have 
a strong tendency to exhibit at least one phase of large FM.

FIGURE 6 | Real data examples from each partition. Each segment is 100 ms 
long and is centered about the peak of the ripple. (A) The raw data, (B) the ripple 
signal, (C) the MUA, (D) the iFreq signal, and (E) the FM signal are displayed for 

each ripple event. The number shown next to the iFreq estimate is the value of 
iFreq at the beginning of the trace. The horizontal line through the FM signal is 
the zero line.

FIGURE 7 | Ripple triggered averages by partition. All feature waveforms are aligned by the time of the ripple center. The panels show average (A) ripple envelope, 
(B) multi-unit rate, (C) instantaneous frequency, and (D) frequency modulation.
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The iFreq dynamics for all partitions appear qualitatively dif-
ferent in Figure 7C. In order to better quantify the relationship 
between ripple amplitude dynamics and ripple frequency dynamics 
within partitions, we fi rst isolated ripple events with large positive 
and negative FM using the previous analysis. We then assigned each 
of these ripple events to one of the following categories: (1) both 
maximum and minimum iFreq occur before, (2) only the min. 
iFreq occurs before, (3) only the max. iFreq occurs before, or (4) 
both min. and max. iFreq occur after the amplitude peak of the 
ripple. We found that the expected frequency dynamics for all parti-
tions in Figure 7C were consistent with the distribution of events 
over the four categories (Table 2, Panels A,B). Our analyses show 
that for QH−, ∼81% of the considered events belong to category 
3 and ∼11% belong to category 1; this can be restated as ∼95% of 

events have max. iFreq extrema before the ripple peak. For the QL+ 
 partition, ∼62% of events belong to category 2 and ∼23% of events 
belong to category 1, which together state that ∼85% of events have 
their min. iFreq extrema before the ripple peak. In consideration of 
QH+, ∼60% of events belonged to category 2 and ∼16% belonged 
to category 4; it follows that ∼76% of the events for QH+ have 
max. iFreq extrema after the ripple peak. For the QL− partition, 
∼76% of events belong to category 3 and ∼9% belong to category 
4; therefore, ∼85% of events have their min. iFreq extrema after the 
ripple peak. Although each category contains a non-zero number 
of events, the consistent ranking of categories within partitions 
and across subjects suggests that the average frequency dynam-
ics of each partition can be primarily explained by one dominant 
amplitude-frequency coupling.

RIPPLE DETECTION USING FREQUENCY INFORMATION
A prerequisite problem in the analysis of ripple activity is deciding 
when a ripple event begins and ends. The most common approach 
is to compute a signal that is analogous to the instantaneous power 
in the ripple-band, and set upper and lower amplitude thresh-
olds (AMP detection). The upper threshold is used to locate the 
approximate location of the ripple while the lower threshold is used 
to determine the extent of the ripple in time. The threshold based 
method may be chosen for its simplicity with the understanding 
that it lacks a robust mechanism for choosing optimal thresholds, 
and more specifi cally minimizing Type I (unidentifi ed ripples) and 
Type II (including noise) errors.

One possible way to improve threshold based ripple detection is 
to harness the stereotypic frequency profi les of ripples (Figures 2 
and 7). We developed a novel ripple detection algorithm by com-
bining amplitude and frequency information (AMP + FM detec-
tion). Figure 8 illustrates how the AMP detection method differs 
from the AMP + FM detection method. The new detection signal 
may be viewed as a signal that is highest when there is an increase 
in ripple band power and an increase in FM within a short tempo-
ral window (<10 ms). The rationale for this method is clear from 
Figure 7, where large magnitudes of FM and ripple amplitude 
coincide within a window of 10 ms, on average. The result of rip-
ple detection using only amplitude information is the event set A. 
The result of AMP + FM detection is the event set AF.

The performance of the AMP vs. AMP + FM based detection 
algorithms were quantifi ed by, fi rst, identifying the ripple events 
that were common (A + AF) and those that were mutually exclusive 
for the two detection methods (A − AF and AF − A; see Figure 9A). 
The A + AF set of events were obtained by fi nding temporally over-
lapping events in set A and set AF and keeping only the intersection 
between those events. Next, the events in set A that did not overlap 
with any events in set A + AF constituted the set A − AF. Likewise, 
the events in set AF that did not overlap with any events in set 
A + AF constituted the set AF − A.

Simple set operations dictate that the number of events com-
bined between sets A + AF and A − AF should equal the number 
in set A; this should also be true when the sets A + AF and AF − A 
are compared to set AF. However, this equivalence assumes that 
each ripple event is atomic and cannot be divided further into 
separate events. In practice, sharp-wave ripple complexes that 

Table 2 | Statistical comparison of ripple amplitude and frequency 

dynamics. (A) The percentage of ripple events that have at least one large 

positive FM peak or one large negative FM peak in each partition. (B) The 

percentage of ripple events in each partition where both the positive and 

negative FM peak are large. (C) The proportion of ripple events categorized 

by the relative timing of max. amplitude peak, max. frequency, and min. 

frequency. The categories are (1) both max. and min. iFreq occur before, 

(2) only the min. iFreq occurs before, (3) only the max. iFreq occurs before, or 

(4) both min. and max. iFreq occurs after the amplitude peak of the ripple. For 

panel (C), only events with both large negative and large positive FM were 

used.

 Rat 1 (%) Rat 2 (%) Rat 3 (%) Mouse 1 (%)

PANEL A

QH+ 93.7 89.3 98.1 87.8

QH− 96.0 91.7 96.4 94.9

QL− 86.0 80.3 90.9 83.8

QL+ 76.6 74.4 88.0 76.9

PANEL B

QH+ 57.7 47.9 64.4 49.8

QH− 67.2 52.1 64.4 59.4

QL− 33.5 30.8 43.7 35.4

QL+ 29.9 32.9 47.0 30.2

PANEL C

QH + CAT 1 15.6 19.0 10.7 17.3

QH + CAT 2 67.2 60.3 59.2 53.6

QH + CAT 3 6.3 6.9 11.7 8.2

QH + CAT 4 10.9 13.8 18.5 20.9

QH − CAT 1 10.5 11.9 9.0 12.4

QH − CAT 2 3.8 2.0 3.0 1.7

QH − CAT 3 80.7 80.2 83.5 81.3

QH − CAT 4 5.0 6.0 4.5 4.6

QL − CAT 1 11.8 12.5 9.8 6.7

QL − CAT 2 4.6 4.4 3.1 4.0

QL − CAT 3 76.4 75.7 76.1 77.6

QL − CAT 4 7.3 7.4 11.0 11.7

QL + CAT 1 26.8 31.5 19.2 13.5

QL + CAT 2 56.1 61.1 61.7 68.5

QL + CAT 3 0.0 1.9 12.8 10.1

QL + CAT 4 17.1 5.6 6.4 7.9
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FIGURE 8 | Example of ripple detection using combined frequency and 

amplitude information. (A) The ripple band signal. (B) The amplitude envelope 
of the ripple band signal, which is normally used for ripple detection. The 

horizontal line is the detection threshold. (C) The proposed detection signal that 
contains amplitude and frequency information. The horizontal line is the 
detection threshold.

FIGURE 9 | Performance of ripple detection using amplitude information 

alone “A” and combining amplitude and frequency information “AF”. (A) A 
Venn diagram showing the evaluation of the ripple detection algorithms. (B) 
Considering all ripple events proposed, A and AF, this bar graph shows their 

distribution on the sets of the Venn diagram. (C) For each bar in (B), this graph 
displays the distribution of events in terms of Freq-FM quadrants. (D,E,F) Each 
dot represents a proposed ripple event. (G–J) Feature distributions for each set 
are shown for Rat 1.
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occur close together in time may be lumped as a single “long” 
ripple event. When set A and set AF are combined, the intersec-
tion of the sets may result in the truncation of “long” ripples into 
sub-events. Because “long” ripple events in a set may be counted 
multiple times while merging two sets, the number of events in 
sets A + AF and A − AF may be greater than that of set A, and the 
number of events in sets A + AF and AF − A may be greater than 
that of set AF (Table 3).

The AMP + FM detection was able to fi nd a large number of 
candidate events. Across the four subjects, the number of candi-
date events proposed by the AMP + FM detection ranged from ∼86 
to 128% of the number events proposed by the AMP detection 
method. Of the events proposed by the two methods, the number 
of events found to overlap (A + AF) was ∼70 to ∼85% of the AMP 
set, and ∼61 to ∼83% of the AF set (Table 3).

The A − AF set represents the advantage of AMP detection over 
AMP + FM detection and vice versa for the AF − A set. Therefore, by 
examining the characteristics of the A + AF, A − AF, and AF − A sets, 
we may better interpret the output of the two detection methods. In 
Figures 9D–F, we see that the proposed events for the three different 
conditions span all four pre-defi ned quadrants for the data from 
Rat 1. A summary of this partitioning may be found in Figure 9C, 
for each of the four subjects; the structure of the stacked bar graph 
indicates that the A − AF set consisted primarily of events in the 
QL+ and QL− (low frequency) partitions, while the AF − A set 
consisted primarily of events in the QH+, QH−, QL− (negative FM 
or high frequency) partitions. In addition, the largest represented 
partition in the A − AF set is the QL− partition. The AF − A class 
consistently contained a larger percentage of QH− events relative 
to the A + AF set.

Next, we examined the associated feature distributions of event 
set: A, AF, A + AF, A − AF, and AF − A (Figures 9G–J). The distribu-
tion for ripple amplitude clearly shows that the AF − A set contains 
only small amplitude events; this is almost certain given that the 
AMP detection method will have already found all the large ripple 
amplitude events. The ripple amplitude distribution for A − AF has 
a lower mean than that of A, AF, and A + AF. The Freq distributions 
were not signifi cantly different between sets A, AF, A + AF, and 
AF − A; the Freq distribution was signifi cantly shifted to the left 
for the A − AF condition (p < 0.001). The FM distributions were 
signifi cantly different for all set combinations except between the 
A, AF, and A + AF sets (p < 0.001). Additional insight into the dif-
ferences in detection sets may be gained by examining events from 
sets A + AF, A − AF, and AF − A (Figure 10).

We additionally quantify the characteristics of the AMP vs. 
AMP + FM detection by computing two measures of activity: 
(1) MUA, which is a quantity known to be associated with rip-
ple activity but does not depend on the presence of ripples, and 
(2) gamma-ripple score, which compares high gamma-power 
(70–100 Hz) to ripple band power (100–250 Hz) to determine if 
an event may possibly be a high-gamma process. We found across 
subjects that the average MUA rate was not statistically different 
between set A and set AF, between set A and set A + AF, and between 
set AF and set A + AF (p > 0.05). The set A + AF had the largest 
average MUA rate of all fi ve sets. The sets A − AF and AF − A had 
lower average MUA rates compared to set A + AF. The average MUA 
rate for AF − A was either lower than or equal to A − AF (Table 3). 
In our analysis of gamma vs. ripple band power, we report the 
percentage of events where gamma power exceeds ripple power 
(Table 3, Panel D). The set with the largest percentage of positive 
gamma-ripple scoring events is AF − A (∼7.5%, p < 0.005), followed 
by set AF (∼2.3%, p < 0.001). In general, the sets with the lowest 
percentage of events with positive gamma-ripple score are sets A 
(0.74%, p < 0.001), A + AF (0.80%, p < 0.001), and A − AF (0.68%, 
p < 0.001). We systematically altered the bandwidth of the gamma-
band and found that the percentage of gamma-dominated events 
increased for all event sets across all subjects as the bandwidth 
was increased, and decreased for all event sets as the bandwidth 
was decreased. While the percentages here refl ect the specifi c case 
where the gamma-band is 70–100 Hz, the assertion that set AF − A 
contains the largest proportion of gamma- dominated events is gen-
erally true for different gamma bandwidths across all subjects.

Table 3 | Comparison of AMP “set A” and AMP + FM “set AF” based 

ripple detection. (A) The number of ripple events in each set (see 

Figure 9A). (B) Average multi-unit rate during ripples in each set. 

(C) Comparison of multi-unit rate distributions for all combination of sets in 

Panel (A) of this table. Signifi cant differences between distributions are 

determined by a p-value threshold of 0.05. (D) Percentage of events with a 

positive gamma-ripple score.

 Rat 1 Rat 2 Rat 3 Mouse 1

PANEL A

# Events A 931 1210 1147 1850

# Events AF 960 1106 1478 1598

# Events A + AF 795  894  895 1294

# Events A − AF 201  362  285  586

# Events AF − A 165  212  583  304

PANEL B

MUA A 673  689 1074  464

MUA AF 657  670  938  493

MUA A + AF 712  746 1176  539

MUA A − AF 487  544  740  297

MUA AF − A 396  349  574  294

PANEL C

A vs. AF p = 0.56 p = 0.51 p < 0.01 p = 0.28

A vs. A + AF p = 0.32 p = 0.12 p = 0.13 p < 0.01

A vs. A − AF p < 0.05 p < 0.05 p < 0.01 p < 0.0001

A vs. AF − A p < 0.001 p < 0.0001 p < 0.0005 p < 0.005

AF vs. A + AF p = 0.13 p < 0.05 p < 0.0005 p = 0.09

AF vs. A − AF p = 0.056 p < 0.05 p = 0.28 p < 0.0001

AF vs. AF − A p < 0.005 p < 0.0001 p < 0.0005 p < 0.001

A + AF vs. A − AF p < 0.01 p < 0.0005 p < 0.0005 p < 0.0001

A + AF vs. AF − A p < 0.0005 p < 0.0005 p < 0.0005 p < 0.0001

A − AF vs. AF − A p = 0.075 p < 0.001 p < 0.01 p = 0.90

PANEL D

% Events A 0.86% 1.32% 0.44% 0.32%

% Events AF 2.50% 2.35% 2.30% 2.00%

% Events A + AF 0.88% 1.57% 0.34% 0.39%

% Events A − AF 1.00% 0.83% 0.70% 0.17%

% Events AF − A 10.30% 5.66% 5.32% 8.88%
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DISCUSSION
The fi ne temporal-spectral analysis of ripple frequency dynamics 
provides a foundation for exploring the neurobiological signifi -
cance of hippocampal ripple activity. We demonstrate this by show-
ing that ripples have consistent variation in frequency structure 
across multiple rat subjects, and in both rat and mouse species. In 
addition, we show that frequency modulation (FM) is a measurable 
quantity that can be used to selectively group ripple events with 
similar frequency characteristics. In order to address the problem 
of ripple detection, we devised a novel ripple detection procedure 
that incorporated the known amplitude signature and the here 
established FM signatures of ripples.

RIPPLE FREQUENCY DYNAMICS
We investigated the variation in ripple frequency structure by 
examining sub-populations of ripple events based on Freq and 
FM features. We chose orthogonal boundaries in the Freq and FM 
dimensions heuristically: the median of the Freq distribution was 
the Freq boundary, and 0 kHz/s was the FM boundary. We choose 
these heuristics for straightforward interpretation of the results. 
We partitioned the Freq-FM plane into four quadrants: QH+, 
QH−, QL−, and QL+ (Figure 5A). We were careful to refer to the 
sub-populations as quadrants or partitions and not “classes”, as 
the word “class” may imply the representation of a distinct physi-
ological process. The number of ripples assigned to each partition 

FIGURE 10 | Examples of ripples from the mutually inclusive (A + AF) and mutually exclusive categories (A − AF and AF − A). The order of the traces for each 
example is (A) Raw LFP, (B) ripple band signal, (C) multi-unit activity, (D) iFreq signal, and (E) FM signal. The horizontal line in (E) marks 0 kHz/s. Each example is 
100 ms in duration.

was consistent across three rats subjects and one mouse subject 
(Figure 5). One criticism of this consistent pattern across data sets 
is the heuristic we use by defi nition divides the population in half 
in the Freq dimension (median). However, the boundary in the FM 
dimension is always fi xed at 0 Hz/s, and, therefore, is not adjusted 
by the distribution of the FM feature. The consistent distribution 
of features across subjects suggests that the variation in amplitude-
frequency dynamics is natural property of neural processing in the 
rodent hippocampus.

The quadrant with the greatest number of events (QH−) con-
tained events with a strong tendency to increase in frequency 
before the amplitude peak and abruptly decrease in frequency 
during the peak (Figure 7); this quadrant also retained large cor-
relation coeffi cients between MUA vs. Freq and MUA vs. Amp. The 
next populous quadrant was QL−, which contained events that 
kept a constant frequency at the onset of the ripple and dropped 
in frequency during the peak of the ripple. These two partitions 
representing negative FM made up ∼75% of all observed ripples. 
A smaller and signifi cant percentage (∼25%) of ripple events 
belonged to the QH+ and QL+ partitions. These events tended 
to increase their frequency abruptly after the amplitude peak of 
the ripple (QH+), or tended to decrease their frequency abruptly 
before the peak of the ripple and then rebound in frequency during 
the ripple peak (QL+), leading to a positive FM during the peak 
of the ripple (Figure 7).
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Although Figure 2 suggests a single stereotypic frequency 
structure within ripples, we later found that the strong tendency 
for negative FM only applied to a subset of ripples (Figure 5). 
The variable relationship between ripple amplitude, frequency, 
and FM was visualized in Figure 7. These temporal differences 
in amplitude and frequency dynamics are also refl ected in their 
correlations (Table 1); while the correlation between Freq vs. MUA 
and Amp vs. MUA was high, paradoxically, the correlation between 
Freq vs. Amp was low (Table 1). These correlations suggest that 
the amount of MUA activity can explain ∼20–30% of the variation 
in both Amp and Freq, while Amp and Freq may only explain less 
than 1% of each other’s variation. Figure 2 displays a tendency 
for the temporal peak of the MUA to coincide with the temporal 
peak of frequency, which suggests that the peak in ripple frequency 
represents an apex in neural coordination. However, Figures 7C,D 
show that when ripple events are grouped by similar frequency 
and FM properties, the expected peak of frequency dynamics 
need not coincide with that of MUA. Therefore, we focused on 
quantifying the number of positive and negative FM extrema for 
each ripple event. Based on our analyses (Table 2, Panels A,B), 
we concluded that generally four out of fi ve ripples have at least 
one large extrema, one-half of the ripples in the high frequency 
partitions (QH+ and QH−) had two large extrema, while one-third 
of the ripples in the low frequency partitions (QL+ and QL−) had 
two large extrema. In addition, we then categorized ripple events 
based on their amplitude and iFreq dynamics (Table 2, Panel C) 
and found that ripples were dispersed throughout the categories, 
however, different partitions had different biases for categories; 
these biases consistently explained the average iFreq waveforms 
seen in Figure 7C. Thus, while MUA and ripple amplitude are 
highly correlated (Table 1) and maintain a consistent temporal 
relationship (Figures 7A,B), the small timescale correspondence 
between population activity and iFreq is not as straightforward 
(Figure 7). Embedded in the MUA population measure are coor-
dinated spiking activities that are likely variable over time and 
space for each individual ripple event.

These variations in amplitude-frequency dynamics may be 
explained by the phasic, repetitive participation of specifi c interneu-
ron types and pyramidal cells during the start, middle, and end of 
the ripple. For example, oriens lacunosum-moleculare (O-LM) and 
axo-axonic cells are most active at the early stage of each ripple 
event while pyramidal cells are most active at the center of the 
ripple event (Behrens et al., 2005; Klausberger et al., 2003; Maier 
et al., 2003; Spampanato and Mody, 2007). Frequency modulation 
during the ripple peak is most likely determined by synchronous 
spike frequency adaptation of individual units in response to both 
intrinsic receptor dynamics and network properties (Dzhala and 
Staley, 2004; Foffani et al., 2007; Gollisch and Herz, 2004). A char-
acteristic of pyramidal cell bursting is that with each successive 
spike the inter-spike interval is more variable than the fi rst and 
towards the end of the burst the desynchronization of population 
activity emerges. Hence, the tail of the ripple may likely represent 
a decrease in synchrony between pyramidal cells and an increase in 
activity of axo-axonic, O-LM, and radiatum lacunosum-moleculare 
(R-LM) interneurons (Dzhala and Staley, 2004; Klausberger et al., 
2003; Spampanato and Mody, 2007). The variability in amplitude-
frequency dynamics of ripples, therefore, may partly be accounted 

for by neuromodulatory factors that lead to changes in excitation/
inhibition of specifi c interneuron types and pyramidal neurons.

In the interpretation of our results, we considered how the fre-
quency dynamics of ripples may change as a function of space. 
We fi rst reasoned that relatively low amplitude ripple events may 
either be due to limited participation of neuronal populations or 
represent a high amplitude event that is generated at a distance from 
the recording electrode. Next we considered the MUA trace to be 
a more global measure of neuronal activity that is less sensitive to 
spatial distortion since MUA is derived from pooling local action 
potentials over several electrodes. If changes in frequency dynam-
ics were caused by volume conduction, then we would expect to 
fi nd a high correlation between ripple amplitude and frequency 
characteristics, while fi nding a low correlation between MUA and 
frequency characteristics. On the contrary, we found in Table 1 that 
the correlation coeffi cient between amplitude vs. frequency, and 
amplitude vs. FM was small. In addition, the correlation between 
MUA vs. frequency was high. Furthermore, we found a marked 
difference in MUA distributions between high frequency and low 
frequency partitions (Figure 5D). This evidence suggests that the 
variation in frequency-FM were not primarily caused by spatial 
distortion of volume conducted oscillations; instead, this variation 
is more likely a function of how many neurons are active during a 
ripple event and the small timescale interactions of neurons that 
underlie ripple activity.

RIPPLE DETECTION USING FREQUENCY DYNAMICS
The problem of ripple detection may be viewed as a classifi cation 
problem, where the goal is to classify the signal (ripples) from the 
background noise. A challenge is to fi rst establish a concrete defi -
nition of the “signal” so it may be properly detected. Here, we do 
not propose to solve this problem of defi ning a ripple. Instead, we 
suggest that frequency modulation profi les observed in Figure 7 
may be harnessed to improve the process of ripple detection. First, 
we noted that regardless of the quadrant of the ripple, the greatest 
magnitude of FM occurred in a ±5 ms window of the ripple peak 
(Figure 7D). By rectifying the FM signal and smoothing it, we were 
able to create a FM information signal. Using this signal alone 
resulted in a large number of false positives. In order to address this, 
we combined amplitude and FM information by multiplying the 
ripple envelope signal with the FM information signal (Figure 8). 
The result was a signal that was large when there was a combination 
of the large amplitude and/or large FM. We referred to this method 
as the AMP + FM method for ripple detection.

We compared the AMP + FM method against the commonly 
used amplitude-based method (AMP). In order to quantify the 
performance of the AMP + FM method, our goal was to understand 
what events the AMP + FM method could and could not iden-
tify relative to the AMP method. The Venn diagram in Figure 9A 
shows a schematic of the analysis we performed. After perform-
ing ripple detection with both methods, we performed a detailed 
investigation of the sets A + AF (events common to both AMP and 
AMP + FM), A − AF (events unique to AMP detection), and AF − A 
(events unique to AMP + FM detection).

The results of the ripple detection were generally consistent 
across subjects. The number of ripple events proposed by the 
AMP + FM method was similar to that proposed by the AMP 
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method on  average (Figure 9B; Table 3). We examined the MUA 
distribution for each event set (Table 3). In comparison, the set 
with the largest mean MUA was the mutually inclusive set A + AF; 
the sets with the next largest average MUA were sets AF and A, 
with set AF having a slightly larger average MUA. The set A − AF 
had the second to lowest average MUA, while AF − A had the 
lowest. In analyses that compared RMS gamma power vs. RMS 
ripple power, we found that the event set AF − A had the great-
est percentage of gamma-dominated events (∼7.5%, p < 0.005, 
gamma band = 70–100 Hz), while other event sets contained much 
smaller percentages (less than 2.5%, Table 3). Visual inspection 
of gamma-dominated events in set AF − A revealed noticeable 
concentrations of power between 80 and 120 Hz. As these events 
straddle the 100 Hz dividing boundary between ripple and gamma 
events, it is not possible to determine by using our analyses if these 
events are distinct within themselves or represent the continuum 
of either the gamma or ripple process. However, if we consider 
gamma-dominated events to be events that are not ripple events, 
the set AF − A contains the largest percentage of false-positives at 
approximately 7.5%.

We also examined how the components of the sets A + AF, 
A − AF, and AF − A were divided into quadrants: QH+, QH−, QL−, 
and QL+. We consistently found that the majority of the AF − A set 
belonged to the QH− class, which we established before as the parti-
tion that normally contains the greatest number of ripple events, as 
well as the partition with the largest correlation between Freq vs. 
MUA. Moreover, the distribution of ripple events in the Freq-FM 
plane for set AF − A was consistently more similar to that of set 
A + AF (Figure 9); the same statement cannot be generalized when 
comparing set A − AF to set A + AF.

The AMP + FM method fi nds an additional 17% more events 
compared to the AMP method. These additional oscillatory events 
were lower in amplitude and MUA compared to events found by 
the AMP method of detection. Approximately 7.5% of these addi-
tional events were found to be more gamma-dominated (gamma 
power > ripple power). Assuming these gamma-dominated events 
are false-positives, we conclude that the AMP + FM method, when 
combined with the AMP method, locates 15% more ripple events 
than the AMP method alone.

The AMP and AMP + FM based detection methods may be 
combined in different ways to address Type I (false positive) and 
Type II (false negative) errors. We note that the set A + AF is a set 
with the largest average MUA and is well-distributed in ripple 
amplitude, frequency, and FM. In this case, retaining the events 
set A + AF may help to minimize the possibility of false posi-
tives. Alternatively, the AMP + FM based detection may be used 
to address Type II errors (false negatives) as well; events in the 
AF − A set may represent physiologically meaningful events that 

fall below the detection threshold of the AMP based method, and, 
therefore, would incorrectly be classifi ed as noise. Based on our 
conclusions of the gamma-band analysis above, approximately 
92.5% of the events in AF − A are expected to contribute to the 
reduction of Type II errors.

CONCLUSION
The results presented here may facilitate future work in the decod-
ing of hippocampal network activity in a neurobiological context. 
With more precision in ripple characterization, we gain additional 
ability to distinguish between distinct neural processes. Ripple 
features that are highly correlated help to constrain our thinking 
and infer possible causal mechanisms. These principles may be 
applied in vitro to build a vocabulary for interpreting ripple activity 
in vivo, as in Ponomarenko et al. (2004). Such analytical capabilities 
may prove useful in determining the neural substrates of memory 
related phenomena such as forward or reverse replay (Diba and 
Buzsaki, 2007; Foster and Wilson, 2006).

These variations in ripple amplitude and frequency dynamics 
may be further examined by treating the dynamic frequency trace 
like an action potential waveform, and utilize spike classifi cation 
techniques such as Bayesian mixture model analysis in combination 
with dimension reduction techniques to cluster the ripple events 
(Lewicki, 1998; Nguyen et al., 2003; Shoham et al., 2003). Such 
approaches may provide the ability to precisely target analyses to 
physiologically specifi c events.

In conclusion, the advancements made here directly address 
current challenges in the study of ripple activity with respect to hip-
pocampal function. We demonstrated that the dynamic frequency 
structure of ripple events may be quantifi ed with high spectral 
and temporal resolution. We observed variations in amplitude-
frequency dynamics of ripple oscillations, which were markedly 
consistent between multiple rat subjects and one mouse subject. We 
exploited the dynamic frequency information to explore the varia-
tion of ripple events. We found that the majority of proposed ripple 
events had a strong tendency to be negatively frequency modulated, 
however, a signifi cant population were positively modulated. In 
addition, we found that the relationships between ripple amplitude 
and frequency dynamics were not intimately constrained to one 
template. Finally, we showed that the frequency structure of ripples 
may be used to detect ripples that would not be found otherwise, 
as well as reduce the Type I and Type II errors.
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