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These two problems were solved at once deriving the high-
dimensional semantic space from a lexical co-occurrence matrix 
(Deerwester et al., 1990; Lund and Burgess, 1996). The main 
assumption for this derivation is that semantic proximity can be 
inferred by analyzing the statistical regularities in a text corpus. 
For instance, if the word “giraffe” is mentioned in a text, it is likely 
that the words, “neck”, “zebra” and “zoo” (which are semantically 
related) will also be mentioned. The conditional probabilities of 
co-occurrence (i.e. the probability of fi nding “dog” given that “cat” 
was mentioned) are thus likely to determine a good measure of 
semantic proximity. Lund and Burgess demonstrated this relation 
determining that: (1) Near neighbors in the co-ocurrence space 
correspond to related meanings (2) Clusters in this space cor-
responded to semantic categories and (3) Similarity in co-occur-
rence space determined the effect on RT in a semantic priming 
experiment.

This result was in line with prior evidence which had shown 
a correlation between frequency of co-occurrence and free-word 
association probabilities (Spence and Owens, 1990), since the asso-
ciative structure of words plays a central role in recall (Bousfi eld, 
1953; Jenkins et al., 1958; Deese, 1959, 1965), cued recall (Nelson 
et al., 1992), and recognition (Nelson et al., 2001). Recently, Steyvers 
and colleagues showed that free word-association metrics (Nelson 
et al., 1999; Steyvers et al., 2004) performed better than corpus 
based metrics to predict human performance in various experi-
ments of semantic memory.

Assuming that the semantic space has been fully characterized, 
how should a model of retrieval and free-association be deter-
mined from this space? The underlying hypothesis of most  current 

INTRODUCTION
“Apart from the studies to be reported here, there have been a few, if 
any, systematic attempts to subject meaning to quantitative measure-
ment. There are probably several reasons for this even in a period of 
intense objectivity in psychology: For one thing, the term “meaning” 
seems to connote, from most psychologists at least, something inher-
ently nonmaterial, more akin to “idea” or “soul” than to observable 
stimulus and response, and therefore to be treated like the other 
“ghosts” that J.B. Watson dispelled form psychology”.

In their seminal work Osgood et al. (1957) argued that the 
semantic space could be quantitatively measured determining a 
number of principal semantic axes. Each concept could then be 
mapped to a vector in this high-dimensional semantic space. For 
instance, it is relatively easy to position the concepts “mouse”, 
“dog” and “house” in the size-axis. While this approach resulted 
in a metric which could successfully predict performance in various 
experiments, it had theoretical and practical problems (Lund and 
Burgess, 1996): the determination of the principal axis from objec-
tive grounds1 and the number of subjective judgments required, 
which is proportional to the number of axes.
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1A formally similar problem was faced by John Wilkins, when he set to  determine – 
“a general language, organizing and covering all human ideas”. His analytical lan-
guage was organized in a tree-like structure based on categories, further divided in 
sub-categories and so on. Each word indicated the position of a concept in a tree and 
thus meaning could be extracted without prior knowledge. As Borges (1997) men-
tions in ‘El idioma analítico de Wilkins’, a fundamental theoretical problem with 
Wilkins’ approach is the determination of the categories. “Having defi ned Wilkins’ 
procedure, we must examine a problem that is impossible or at least diffi cult to 
postpone: the value of the [forty] genera which are the basis of the language”.
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 studies is that memory retrieval and word-association result from a 
propagation process (concept spreading) in semantic space where 
the high-dimensional neighborhood surrounding each word 
is something akin to a semantic fi eld (Collins and Loftus, 1975; 
McClelland and Jenkins, 1991; Burgess and Lund, 1994; Cancho, 
2001; Sigman and Cecchi, 2002; Cancho and Sole, 2003; Steyvers 
and Tenenbaum, 2005).

In this framework, meanings which are not directly connected, 
can be related through long chains of semantic relationships (for 
instance the sequence lion → feline → tiger → stripes). These 
semantic trajectories can be reconstructed from association pairs 
as the minimal path linking non-connected words (Dijkstra, 1959; 
Nelson and Zhang, 2000). Previous research has explicitly shown 
that the indirect associative strengths play a role in cued recall 
(Nelson and Zhang, 2000) and recognition (Nelson et al., 2001). 
Also, the inclusion of indirect associations in a measure for associa-
tive strength signifi cantly helped in predicting recognition memory 
performance (Steyvers et al., 2004).

This evidence taken together is thus quite consistent with the 
idea that word-association and memory retrieval involve the navi-
gation in a semantic graph. However no previous study has explic-
itly tested this hypothesis by generating long-chains (trajectories) 
of word-associations and exploring how these trajectories embed 
in a co-occurrence graph. Here we set to achieve this task.

We measured, for free-word association trajectories, the 
memory loss (how many word-associations are needed to loose a 
trace of the original seed in the chain) and the cycling probability 
(the probability that after n associations the trajectory returns 
to the original word). As we will show later, these two measures 
taken together provide strong constraints of possible navigation 
models.

We show that the simplest hypothesis – that free-word associa-
tion corresponds to a diffusion process, i.e. a random-walk where 
the probability of associating two meanings is a normally distrib-
uted (gaussian) function of the distance between word pairs – is 
inconsistent with the data. We then show that a transportation 
process based on scale invariant probabilities – where most asso-
ciations relate proximal neighbors and a few associations establish 
long-range relations – provides an accurate description of free-
word association trajectories.

RESULTS
Word association trajectories where collected implementing an 
online game. The game had a very simple structure. Upon regis-
tering, each player received a word (the seed of the trajectory) and 
was instructed to send the fi rst associated word to any other player 
in the game (for a more detailed description see Materials and 
Methods). One association after the other, a chain of associations 
is formed. Here we’d like to stress that each word of the trajectory 
is dependent only on the previous one (and some internal state of 
the player). The game was open for 2 months and generated 1299 
trajectories of mean length 30.

We embedded these trajectories in a weighted graph, which 
was built based on standard methodology of co-occurrence of 
words in a large text corpus (Church and Hanks, 1990; Steyvers 
et al., 2004). The strength of the link between words j and k is 
determined by the conditional probability of fi nding word k given 

that word j occurred at a distance of less than 10 words. Note that 
the conditional probability is not symmetric and thus the graph 
is directed.

As an example, we show a segment of a representative trajectory 
(see Figure 1). For illustration purposes only, we represent this trajec-
tory in a 2D projection which was constructed using a combination 
of a fuzzy clustering algorithm (Hotta et al., 2003) and a Sammon 
projection (Sammon, 1969) (see Materials and Methods).

The segment of the trajectory starts on the word “Egg” (marked 
with a star) and ends on “Sweater” (marked with a square). Some 
aspects of the topology of the trajectory – which we will later quantify 
over the statistics of all trajectories – are evident in this example.

First, most transitions of the trajectory resulted from a short 
step (i.e. an association between two words which are close to each 
other). Second, for several consecutive associations, the trajectory is 
confi ned to a neighborhood (cluster) of word space. Third, within 
each cluster, cycles are very prominent. Indeed, the most frequent 
are order-2 cycles, i.e. two words with an exceedingly high reciprocal 
return probability. (e.g. ball–soccer–ball… | man–woman–man…). 
Finally, in some sporadic instances – a word association results in 
a long jump, relating two words of distinct clusters.

We next quantify this qualitative observations. For each pair of 
words, we defi ne, from the statistics of the written corpus, the dis-
placement between word k and word j as Δ(k, j) = A−1/P(j |k) where 
A is the normalization constant A = Σ∀k,j

1/P(j |k) (see Materials and 
Methods). This measure is often referred as a distance. However, 
note that Δ is not formally a distance since Δ(k, j) ≠ Δ(j, k) and 
thus is not symmetric.

The ensemble of trajectories {T
i
} is a list of sequences. T

i
 is a 

sequence of words { }T T Ti i iLi1 2
, , , where L

i
 is the length of the tra-

jectory T
i
. We defi ne < Δ(n)> as the average of Δ( )T Ti ij j n

,
+

 – the 
displacement between word Tij

 and word Tij n+
 – over all possible 

such pairs in each trajectory and over all trajectories. The second 
measure which we will use to constrain transport models is the 
cycling probability, simply defi ned as the fraction of trajectories 
which return to the original word after n steps).

We observed that the displacement increased monotonically with 
the number of steps, refl ecting the loss of the memory trace after the 
concatenations of a series of word associations (Figure 2A, x-marks). 
This progression reached an asymptotic value of about 0.75. This 
value is lower than 1 (the mean displacement between two words) 
indicating that the words which occurred more frequently in the 
game were closer to the rest of the graph than less-frequent words.

The cycling probability also showed a clear pattern (see Figure 2B 
x-marks). There was a very marked parity effect (even number of 
steps showed a much higher cycling probability) modulated by an 
overall exponential decrease. The parity effect indicates that the 
cyclic structure is dominated by order-2 cycles, i.e. segments of 
the form dog–cat–dog–… are very frequent in trajectories of word-
association. Also note that the probability of fi nding a order-2 cycle 
is very high (around 0.16, indicating that about 1/6 of the words 
return to the original starting point after a pair of word associations 
by two different players). The fact that we do not fi nd order-1 cycles 
simply shows that subjects follow the instruction of not repeating 
the presented word.

These two curves which characterize the displacement and the 
structure of cycles of the trajectories will become our yardstick to 
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evaluate generative models for word-association. We describe such 
models in the framework of a fi rst order Markov process where each 
word represents a state and a model is completely determined by 
specifying the transition probabilities between states. We iterate this 
procedure, starting in the same words which were used as seeds in the 
experiment, to simulate the trajectories (see Materials and Methods 
for more details) based on different transport models. We then meas-
ure the displacement and cycling probability functions of the simu-
lated trajectories and confront them to the experimental data.

We fi rst explored the simplest spreading model (a Kernel model) 
in which the transition probability from any given word is a step 
function. Let {1…N} be the sorted list of neighbours of a word 
[according to the weights Δ(k, j)], then the probability distribution 
in this set for the Kernels model is:

p i K
i K

i K
( ) =

1

0

if

if

≤

>

⎧
⎨
⎪

⎩⎪
 (1)

where p(i) is the probability of jumping to the ith closest neighbor. 
The limiting behaviors of this model are quite easy to understand. 
K = 1 corresponds to perseveration – only associating to the closest 
word in the graph. Whenever two words are reciprocally the closest 
neighbours (which happens often but not always since the graph 
is not symmetric) the trajectory gets locked up in a cycle. Thus, in 
this limit cycles are very prominent and the displacement rarely 
converges to the mean displacement value. The other limiting case 
corresponds to K = N (the number of nodes in the graph) in which 
transitions are made completely at random. In this situation cycles 
are extremely rare (order 1/N) and the displacement function is 
fl at and equal to the mean displacement. We explored – using a 
least squares metric – whether intermediate values could adjust 
the cycles and displacement function, thus validating the model 
and serving as a measure of the degree of randomness of word 
associations.

The goodness of the fi t is measured by the normalized squared 
errors defi ned as: e ei i i= /μ , where e

i
 is the sums of the squared error 

FIGURE 1 | The plane corresponds to the Sammon projection of a subgraph 

of the word co-occurrence graph. This classifi cation revealed two distinct 
clusters which can be mapped to semantic categories. Within this space, 

word-association trajectories are confi ned to clusters with a highly cyclic 
structure. A fraction of the jumps link words of distinct clusters. *(pelota and 
bola are synonyms of the word ball in Spanish).
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for the displacement (i = 1) and cycles’ (i = 2) curves respectively. 

The μi i i inx x x= 1
2

2
2 2+ + ... +  are normalization factors (x

ij
 are data 

points of curve i).
The cycles and displacement functions can be well fi tted 

 individually but with drastically different parameters as can be seen 
in Figures 2A,B,E,F (in blue). The best fi t for cycles corresponds 
to K = 6 (e e1 20 66 0 11= . ; . = ), which could have simply been pre-
dicted as discussed previously by the return probability. The best fi t 
for displacement corresponds to a much larger value of K [K = 60 
(e e1 2= =0.05  0.68; )]. We could not fi nd intermediate values of K 
which could adjust simultaneously the two curves.

The previous model only incorporated proximity in the co-
occurrence graph in a discrete manner, assigning a uniform prob-
ability to the K closest words. We explored whether weighting this 
associations in a continuous manner could yield better results, 
exploring the best fi ts for a model (Exponential model) in which 
the transition probabilities follow an exponential function of Δ(k, j) 
according to:

p k j Ae
k j
T( )

( )

→ = − Δ ,
 (2)

where A is just a normalization constant and T can be seen as the 
“temperature” of the system – i.e the degree of stochasticity. In 
this model T plays a role comparable to that of K in the previous 
model, with the analogies K = 1 (T → 0) for perseveration and 
K = N (T → ∞) for random behavior. The limit cases are indeed 
identical.

As in the previous model, we found two different parameter val-
ues which could explain reasonably well the cycle and the displace-
ment functions (T = 2 7.  T = .66 6 where the bar denotes that T is 
normalized by the mean Δ of the graph). However, as observed with 
the Kernel model, we could not fi nd a single parameter which could 
explain correctly both functions simultaneously. The values of e1 
and e2 for the exponential model are plotted in Figure 2G. From the 
graph it becomes evident that the minima do not overlap and thus 
both curves cannot be adjusted correctly for any parameter value. 
An attempt to plot an intermediate value – one which minimizes 
e e emax max{ , }= 1 2  – is also not satisfactory (Figures 2C,D). A very 
similar result is obtained for the Kernel model.

While we did not explore this exhaustively, it is qualitatively 
easy to understand that any model in which the probabilities 

FIGURE 2 | In the upper part we present simulations of the kernel (blue) 

and exponential (green) models for different values of their parameter 

(K and T ). (A) and (B) are simulations for a small value of the parameters 
K = 6, T = .2 7. The cyclic structure is reproduced correctly but the diffusion 
is too slow. In (E) and (F), the converse case is presented (K = 60, T = .66 6) 
now the diffusive behavior is captured correctly but the cyclic structure is not. 

(C) and (D) correspond to intermediate values (K = 18, T = .11 2). These 
values are chosen as to minimize emax = max{e-1, e

-
1} but the result is not 

satisfactory. In (G) we present the normalized errors e-1 and e-2 for the 
exponential model. Here it is clearly seen that the regions in parameter 
space which correctly adjust the displacement and cyclic structure are 
complementary.
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Conversely, for large values of α (Figures 4E,F), trajectories are 
dominated by cycles and diffusion is very slow. However, in the 
power-law model, it is possible to fi nd an intermediate value for α 
which correctly fi ts both curves (see Figures 4C,D). In Figure 4G 
we plot the normalized errors for both curves, this time both 
minima occur for the same parameter value which corresponds 
to α = 0.99 ± 0.05.

It should be noted that the distribution of displacements of the 
simulation of the model depends both on the α of the model and 
on the distribution of weights in the graph. This can be under-
stood with a simple example: In a graph in which all nodes have 
only one neighbor with Δ = 1, all transitions would correspond to 
Δ = 1 regardless of the transport model. We simulated the power-
law model (with α = 0.99) and calculated the distribution of dis-
placement of direct associations (between consecutive words of 
the simulated trajectories). This resulted in a power-law distribu-
tion with an exponent of −1.29 ± 0.05. This is consistent with the 
measured distribution of displacements of word-associations in the 
experiment, which also yielded a power-law distribution with an 
exponent of −1.27 ± 0.03. The fact that α ∼ 1 means that the best 
way in which to transverse the graph – as to best emulate free-word 
association – is according to the conditional probabilities alone. 
Indeed, from the defi nition, Δ(k, j) ∝ 1/p(j |k) and in the power-law 
model p(k → j) ∝ Δ−α then if α = 1, p(k → j) ∝ p(j |k). This means 
that there is no need to alter the probabilities extracted from the 
corpus in any way.

DISCUSSION
We performed a free-word association experiment in a web based 
game. Players passed words to each other in such a way that the 
associated word of a player was the to-be associated word of another 
and so on. This resulted in a large number of sequences of associated 
words, for instance: “sound → light → shadow → tree → wood”.

Our main objective and motivation was to determine whether 
these sequences could be explained in terms of trajectories in a 
semantic graph. Trajectories in a graph are often referred as “tour-
ist walks” or simply as “walks” (Lima et al., 2001).We investigated 
which transport rules, i.e. the algorithm by which the tourist walks 
the graph, generated trajectories which matched two important 
statistical indicators of the experimental sequences; the speed of 
displacement in the graph and the cycling probability.

Doing so required solving two issues in conjunction: the trans-
port model and the structure of the underlying semantic graph. 
Our approach was to work with a unique graph, derived from the 
co-occurrence matrix of a large text corpus. Our results are certainly 
dependent on this choice. Had we constructed the semantic graph 
based on co-occurrences in fl uid speech, or derived it from relations 
in a thesaurus, the results obtained may be different. In this sense, 
our study explores specifi cally the relation between the regularities 
in written text and in free-word associations.

Another specifi c aspect of this study is that subjects are aware 
only of the previous word and thus the trajectories are Markovian. 
Previous psychological experiments have studied consecutive 
associations made by the same subject (Palermo and Jenkins, 
1964) which constitute a non-Markovian process where words 
are produced with large memory window. Since also in written 
corpora words and sentences are generated in a non-Markovian 

of  associations are confi ned to a fi nite kernel (weighted by any 
 function of distance) cannot explain the cycles and displacement 
function simultaneously.

The probability of second order cycles is equal to 1/K (if each 
word can be associated to K words, then the probability of returning 
to the original word is 1/K), this imposes a small and confi ned value 
for K. On the contrary, the displacement function, which shows 
a relatively fast convergence to the asymptotic value, determines 
that the number of neighbors (K in the kernel model, or effective 
neighbors for the exponential model) has to be of ∼60. Thus, word 
association cannot be explained by a simple bounded diffusive 
model. This is in agreement with the intuition which emerged from 
our original example in which we observed that while most asso-
ciations were constrained to a local kernel in a semantic cluster, 
a few associations were long-range, linking words from different 
clusters.

One possible way to achieve this in the simulation is to imple-
ment the previous models, adding a small probability of produc-
ing random jumps. This approach works – i.e. it is possible to fi t 
both the displacement and cycles curve, however it comes at the 
cost of introducing an additional parameter (the random-jump 
probability).

A better solution is to consider a scale-invariant, power-law 
probability distribution. This distribution is long-tailed, as com-
pared with exponential or step function (see Figure 3 for a com-
parison of the three models). The ratio of small and long-range 
jumps is determined by the exponent of the power-law which is 
the unique parameter in this model. Thus, in the power-law model, 
the transition probabilities would then be:

p(j → k) = AΔ(k, j)−α (3)

This model also exhibits similar limiting regimes for α → 0 and 
α → ∞ as is depicted in Figures 4A,B,E,F. For small values of α 
(Figures 4A,B) transitions are made completely at random, hence, 
the displacement is essentially fl at and there are virtually no cycles. 

FIGURE 3 | Comparison between the three probability distributions (for 

illustration purposes only). Notice the long tail of the power-law compared 
with the other two functions.
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and −3 [p ∝ x−α; α ∈ (1, 3)]. This has a very concise implication: 
the mean (the average step size) is fi nite but the variance (the 
 progressive dispersion) is infi nite. We found that the probability 
distribution of associations measured experimentally and of the 
best fi tting model corresponded to power laws whose exponents 
were respectively −1.29 ± 0.05 and −1.27 ± 0.03 which are within 
the Lévy-fl ight range. However, the semantic graph is bounded and 
thus both the mean and the variance remain fi nite.

Deterministic tourist walks have been explored in a thesau-
rus derived network (Kinouchi et al., 2002; Motter et al., 2002). In 
these studies, the main parameter is the memory of the walker. The 
walker moves according to the following rule: go to the nearest site 
that has not been visited in the preceding N time steps. After a tran-
sient, trajectories drift to cycles of a length which is determined by 
the memory of the walker. If the walker has no memory (only of 
the present, it cannot stay in the same word) trajectories converge 
to 2-order cycles as, for instance, in the sequence: “translation → 
conversion → change → alter → change → …”. Thus excursions are 
not ergodic and 2-order cycles act as attractors. Colloquially, this can 
be interpreted as an erosion process where the semantic richness of 
a meaning collapses after a few iterations to a synthetic pair of words 
which are representative of the semantic category.

way (it is the same subject that produces a long stream of text) it 
may seem that single-subject generated sequences may be a more 
appropriate comparison. However, long trajectories of free word 
association by single subjects are subject to other constraints, such 
as fatigue, semantic satiation (Jakobovits, 1962). Thus, to avoid 
the effect of such factors, we decided to explore here a compara-
tively simpler situation in which each word depends – apart from 
internal states – only on the previous word of the sequence.

We showed that a walk based on a bounded diffusive model algo-
rithm results in trajectories which cannot match the experimental 
sequences, regardless of the parameter choice (i.e. independently of 
the diffusion coeffi cient). On the contrary, walking the graph based 
on a power-law distribution of association can accurately match 
the experimental sequences. The critical aspect of this algorithm is 
that it walks to a close node in the graph with very high probability 
and, in a small but signifi cant number of cases, it associates (walks 
to) words which are far in the graph.

This transport organization is reminiscent of Lévy fl ights, a 
process in which most transitions are short-range, as in a diffu-
sive random-walk, and a small fraction of transitions are arbi-
trarily long jumps (Levy, 1925). Levy fl ights are characterized by 
a power-law distribution with an exponent ranging between −1 

FIGURE 4 | In the upper part we present simulations of the power-law 

model for different values of the parameter (α). (A) and (B) are simulations 
for a small value of α (0.1). Note that jumps are made completely at random, 
hence, the displacement is essentially fl at and there are virtually no cycles. In 
(E) and (F), the converse case is presented (α = 1.2) and we observe that 

trajectories are dominated by cycles and diffusion is very slow. (C) and (D) 
correspond to the best fi t for the power law model (α = 0.99 ± 0.5). In the lower 
part (G) we present the normalized errors e-1 and e- 2 for the power-law model. As 
opposed to what happened in both the kernel and exponential model, here the 
minima of the errors for the two curves coincide.
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Word-association trajectories showed a trace of this 
 phenomenon. First, Δ(n) remained smaller than the mean dis-
tance in the graph, even after many iterations, indicating that 
 trajectories are not ergodic. Second, 2-order cycles were very promi-
nent and dominated the cycling probability function as indicated 
by the parity effect. A crucial difference between deterministic 
thesaurus and free-word associations trajectories is that the latter 
are more stochastic and thus trajectories escape this cycles. For 
instance, a quite peculiar sequence which shows this effect was 
“madre → padre → madre → padre → madre → loca”.

Thus, as observed qualitatively in Figure 1, word associations 
are for the most part confi ned to small semantic clusters and are 
thus very stereotyped and cyclic. In a few instances they result in 
long-range transitions which link different semantic clusters.

Of course – as discussed in the preceding paragraphs – the 
notion of close or distant is completely determined by the structure 
of the graph. Thus it is possible that long-range jumps can indeed be 
explained including further links to the graph, for instance relating 
phonologically similar words, and that under this constructions, 
the trajectories could remain purely local.

While this surely plays an important role, we tentatively sug-
gest that, as suggested in Figure 1, long-range associations stem 
from polysemous words which relate – through their multiple 
meanings – different semantic clusters. For instance, one example 
shown in Figure 1 is the word “Boca” (mouth in Spanish) which also 
refers to the most popular Argentinean football club Boca Juniors, 
thus linking sports concepts to body parts. The role of polysemous 
words bridging different semantic clusters is consistent with an 
observation from a complementary study, in which we found that 
polysemous words act as hubs of a semantic graph derived from 
Wordnet (Fellbaum et al., 1998; Sigman and Cecchi, 2002) and 
with the theoretical proposal which suggests that polysemy may 
be crucial for metaphoric thinking, imagery, and generalization 
(Lakoff and Johnson, 1980).

In summary, We embedded this trajectories in a graph of word 
co-occurrences obtained from a large corpus of text, using this 
strategy to compare the highly structured linguistic texts with the 
more random trajectories of free word association. We observed 
that these trajectories could not be accounted by a purely bounded 
diffusive model, since different aspects of the statistics could not be 
reconciled in the same model. We showed that transitions exhibit-
ing a scale-free behavior, could account quite accurately for the 
observed empirical distributions. This was in good agreement with 
the qualitative observation: word associations are, for the most part, 
confi ned to small semantic clusters and are thus very stereotyped 
and cyclic. In a few instances they result in long-range transitions – 
that are probably more prominent in polysemous words – which 
link different semantic clusters.

MATERIALS AND METHODS
GENERATION OF THE CORPUS BASED-METRICS
The corpus was composed of uncopyrighted books, written in 
Spanish, from the Gutenberg Project2 as well as all articles from 
local newspaper “La Nacion” that appeared between years 2000 and 
2008. All texts were cleaned, removing any HTML code or headers 

that they may contain. They were also stripped from accents and 
diaeresis (á, é, í, ó, ú, ü). This was done in order to capture very 
common misspellings (accents are frequently omitted specially in 
online text). Evidently this comes at the cost of confusing two words 
that differ only in accentuation (e.g. te and té). The whole Corpus 
contained around 53 million words.

We then proceeded to count word co-occurrences within a 
window size of 10 words. This allowed us to estimate the condi-
tional probability of fi nding a word A given that another word B 
is present “nearby”. Specifi cally this was done by measuring the 
frequency of co-occurrence of words A and B divided by the 
frequency of appearance of word B within the window size. This 
fraction gives a measure of how strongly linked two words are. 
We also defi ned the displacement between word A and B as the 
multiplicative inverse of the aforementioned conditional prob-
ability. It may happen – and is often the case – that two words 
never appear together. This would result in a null conditional 
probability and thus, an infi nite displacement. One way to solve 
this problem would be to construct a new graph G where the ele-
ment G

ij
 corresponds to the value of the shortest path between 

words i and j in the original ill-defi ned graph. In this new graph 
every possible displacement would be fi nite (provided the original 
graph is connected). We have tried this approach and found it to 
be unsatisfactory. The reason is that we must select the subset of 
words for which we will compute the paths (doing the calculation 
including all the different words in the corpus is computationally 
out of our reach). Evidently the graph G is strongly dependant 
on which words are included in the subset. For that reason we 
decided to calculate all displacements in the original graph, not 
taking into account infi nite jumps. These represent about 20% 
of all fi rst order associations and increase monotonically with 
the order of the jump.

All the cleaning, counting and other text handling algorithms 
were programmed in PERL and are readily available3.

ACQUISITION OF WORD ASSOCIATION DATA
The free association game was programmed using a combination 
of HTML, PHP and JavaScript. The data were recorded in a MySQL 
open source database. The site was divided in three major parts only 
two of which were visible to the players. The fi rst one was where new 
players could register to play in the game. They had to write down 
their name and email address where they received a confi rmation 
of their registration and the instructions to play the game.

The second and main part of the site was the personal page, 
where each player could see how many new words they had 
received and send their associations to other players. Once in a 
while they were given the choice to send the same association to 
two different players, thus bifurcating the trajectory. This means 
that some associations belong to more than one trajectory. The 
probability of bifurcation could be controlled dynamically to regu-
late the total traffi c of words in the game. Upon registration each 
player would receive a “seed” word from a closed list of 20 nouns. 
Once a player had answered all of his/her words, they could steal 
words from lagging players or see a snapshot of a past trajectory. 
A ranking of the most responding players was also kept available 

3http://neurociencia.df.uba.ar/2http://www.gutenberg.org

http://www.gutenberg.org
http://neurociencia.df.uba.ar/
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to all the subjects. All this was done for motivation purposes. Non 
responding players were given fi rst a yellow and then a red card 
(which entailed the termination of their account). Every couple of 
days an email was sent reminding players how many unanswered 
words they had.

A third part of the site was not visible to players and served as a 
“backdoor” to monitor the development of the game. From there 
the experimenter could check the activity of each player or the 
game as a whole, send reminders, yellow and red cards and set the 
probability of bifurcation of trajectories.

The game was open for 2 months and generated over 11,000 
associations from 120 players.

2D PROJECTION OF THE TRAJECTORY
A fi rst dimensionality reduction was achieved applying a fuzzy clus-
tering algorithm (Hotta et al., 2003) which led to seven  signifi cant 
clusters. This clustering algorithm works directly with weights 

instead of distances and does not assume the matrix to be sym-
metric. It is thus suitable for applications involving directed graphs. 
After applying the algorithm each word can be positioned in a 
7-dimensional space, where each coordinate is determined by the 
degree of membership to each cluster. This was further reduced to 
a two dimensional Sammon projection (Sammon, 1969). This plane 
optimizes the correlation between the pair-wise distances of the 
projection and the original higher dimensional space.

ACKNOWLEDGMENTS
We thank the Argentinean newspaper “La Nacion” for allowing 
us to use their online material to generate a Corpus as well as the 
Gutenberg Project. The participants of the XX Neurotaller for play-
ing the game during the meeting which resulted in the original 
data for this manuscript. This research was funded by the Human 
Frontiers Science Program, by the SECYT and a CONICET fel-
lowship to MEC.

REFERENCES
Borges, J. (1997). Otras inquisiciones. 

Alianza Editorial, Buenos Aires, 
Argentina.

Bousfi eld, W. (1953). The occurrence of 
clustering in the recall of randomly 
arranged associates. J. Gen. Psychol. 
49, 229–240.

Burgess, C., and Lund, K. (1994). 
M u l t i p l e  C o n s t r a i n t s  i n 
Syntactic Ambiguity Resolution: 
A Connectionist Account of 
Psycholinguistic Data. Proceedings 
of the 16th Annual Conference of the 
Cognitive Science Society, Atlanta, 
USA, pp. 90–95.

Cancho, R. (2001). The small world of 
human language. Proc. R. Soc. Lond., 
B, Biol. Sci. 268, 2261–2265.

Cancho, R., and Sole, R. (2003). Least 
effort and the origins of scaling in 
human language. Proc. Nat. Acad. Sci. 
U.S.A. 100, 788–791.

Church, K., and Hanks, P. (1990). Word 
association norms, mutual infor-
mation, and lexicography. Comput. 
Linguist. 16, 22–29.

Collins, A., and Loftus, E. (1975). 
A  spreading-activation theory of 
semantic processing. Psychol. Rev. 82, 
407–428.

Deerwester, S., Dumais, S., Furnas, G., 
Landauer, T., and Harshman, R. (1990). 
Indexing by latent semantic analysis. J. 
Am. Soc. Inf. Sci. Technol. 41, 391–407.

Deese, J. (1959). On the prediction 
of occurrence of particular verbal 
intrusions in immediate recall. J. Exp. 
Psychol. 58, 17–22.

Deese, J. (1965). The Structure of 
Associations in Language and 
Thought. Johns Hopkins University 
Press, Baltimore, USA.

Dijkstra, E. (1959). A note on two 
 problems in connexion with graphs. 
Numerische Math. 1, 269–271.

Fellbaum, C., Al-Halimi, R., Berwick, R. C., 
Burg, J. F. M., Chodorow, M., 
Fel lbaum, C. , Grabowski , J. , 
Harabagiu, S., Hearst, M. A., Hirst, G., 
Jones, D. A., Kazman, R., Kohl, K. T., 
Landes, S., Leacock, C., Miller, G. A., 
Mil ler, K. J. , Moldovan, D. , 
Nomura, N., Priss, U., Resnik, P., St-
Onge, D., Tengi, R., van de Riet R. P., 
and Voorhees, E. (1998). WordNet: 
An Electronic Lexical Database. 
Cambridge, MA, MIT Press.

Hotta, S., Inoue, K., and Urahama, K. 
(2003). Extraction of fuzzy clusters 
from weighted graphs. Electron. 
Comm. Jpn. 86, 80–88.

Jakobovits, L. (1962). Effects of Repeated 
Stimulation on Cognitive Aspects of 
Behavior: Some Experiments on the 
Phenomenon of Semantic Satiation. 
Doctoral Dissertation, McGill 
University, Montreal, Canada.

Jenkins, J., Mink, W., and Russell, W. 
(1958). Associative clustering as a 
function of verbal association strength. 
Psychol. Rep. 4, 127–136.

Kinouchi, O., Martinez, A., Lima, G., 
Lourenco, G., and Risau-Gusman, S. 
(2002). Deterministic walks in random 
networks: an application to thesaurus 
graphs. Physica A 315, 665–676.

Lakoff, G., and Johnson, M. (1980). 
Metaphors We Live By. Chicago 
University Press, Chicago, USA.

Levy, P. (1925). Calcul des Probabilites. 
Gauthier-Villars, Paris, France.

Lima, G., Martinez, A., and Kinouchi, O. 
(2001). Deterministic walks in 
 disordered media. Phys. Rev. Lett. 87, 
10603.

Lund, K., and Burgess, C. (1996). 
Producing high-dimensional seman-
tic spaces from lexical co-occurrence. 
Behav. Res. Methods Instrum. Comput. 
28, 203–208.

McClelland, J., and Jenkins, E. (1991). 
Nature, nurture, and connections: 
implications of connectionist mod-
els for cognitive development. 
Architectures for Intelligence, Hillsdale, 
NJ, USA, pp. 41–73.

Motter, A., de Moura, A., Lai, Y., and 
Dasgupta, P. (2002). Topology of the 
conceptual network of language. Phys. 
Rev. E 65, 65102.

Nelson, D., McEvoy, C., and Schreiber, T. 
(1999). The University of South Florida 
Word Association Norms. Tampa, FL, 
University of South Florida.

Nelson, D., Schreiber, T., and McEvoy, C. 
(1992). Processing implicit and 
explicit representations. Psychol. Rev. 
99, 322–348.

Nelson, D., and Zhang, N. (2000). The ties 
that bind what is known to the recall 
of what is new. Psychon. Bull. Rev. 7, 
604–617.

Nelson, D., Zhang, N., and McKinney, V. 
(2001). The ties that bind what is 
known to the recognition of what is 
new. Learn. Mem. 27, 1147–1159.

Osgood, C., Suci, G., and Tannenbaum, P. 
(1957). The Measurement of Meaning. 
University of Illinois Press, Illinois, USA.

Palermo, D., and Jenkins, J. (1964). Word 
Association Norms: Grade School 
Through College. University of 
Minnesota Press, Minnesota, USA.

Sammon, J. (1969). A nonlinear mapping 
for data structure analysis. IEEE Trans. 
Comput. 18, 401–409.

Sigman, M., and Cecchi, G. (2002). 
Global organization of the Wordnet 

lexicon. Proc. Natl. Acad. Sci. U.S.A. 
99, 1742–1747.

Spence, D., and Owens, K. (1990). Lexical 
co-occurrence and association strength. 
J. Psycholinguist. Res. 19, 317–330.

Steyvers, M., Shiffrin, R., and Nelson, D. 
(2004). Word association spaces 
for predicting semantic similar-
ity effects in episodic memory. 
Cognitive psychology and its appli-
cations: Festschrift in honor of Lyle 
Bourne, Walter Kintsch, and Thomas 
Landauer. Washington, DC, American 
Psychological Association.

Steyvers, M., and Tenenbaum, J. (2005). 
The large-scale structure of semantic 
networks: statistical analyses and a 
model of semantic growth. Cogn. Sci. 
29, 41–78.

Conflict of Interest Statement: The 
authors declare that the research was con-
ducted in the absence of any commercial or 
fi nancial relationships that could be con-
strued as a potential confl ict of interest.

Received: 26 May 2009; paper pend-
ing published: 12 June 2009; accepted: 
06 August 2009; published online: 11 
September 2009.
Citation: Costa ME, Bonomo F and Sigman 
M (2009) Scale-invariant transition prob-
abilities in free word association trajec-
tories. Front. Integr. Neurosci. 3:19. doi: 
10.3389/neuro.07.019.2009
Copyright © 2009 Costa, Bonomo and 
Sigman. This is an open-access article subject 
to an exclusive license agreement between 
the authors and the Frontiers Research 
Foundation, which permits unrestricted 
use, distribution, and reproduction in any 
medium, provided the original authors and 
source are credited.


