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1 Introduction

Every year, bench scientists in the biomedical and agricultural fields consume
approximately 1,000 kg of plastic (Urbina et al,, 2015), 30 times the average person in
Europe (Eurostat, 2018). The climate crisis has urged laboratories to strive to improve
sustainability practices and programs such as ‘My Green Lab’ (Green Lab Certification, 2013)
and “Lab Efficiency Assessment Framework” (LEAF) (LEAF, 2018) are supporting
laboratory changes through education, resources, and certifications. Lab-on-a-chip (LoC)
technologies enable miniaturized laboratory analyses including drug screening, clinical
diagnostics, and environmental and food safety monitoring. By their nature, they bring
important advantages compared to macro-scale counterparts, including low sample volume
and reagent consumption, rapid reactions, high throughput, and small dimensions allowing
to use less material for manufacturing and providing portability (Agrawal et al., 2022).
However, most commercially available microfluidic devices comprise non-biodegradable
plastics with significant carbon dioxide equivalent (CO,-eq) (Eurostat, 2014) footprints.
More than half of the published diagnostic LoC devices are made of polydimethylsiloxane
(PDMS), preventing scaling and efficient production (Ongaro et al., 2022). Their portability
has the potential to facilitate their use in remote areas, outside laboratory settings, raising
concerns around health and environmental risks due to impractical, unavailable, or
challenging waste disposal regulations and practices. Recent studies have investigated
possible sustainable materials and reagent alternatives (Agrawal et al, 2022; Ongaro
et al., 2022), however the environmental burden of LoC devices throughout their life
cycle remains largely unexamined. Whilst substantial efforts in choosing LoC materials to
reduce single-use non-biodegradable plastics are required to enable efficient scalability and
reduce toxic chemicals, similarly, design and (bio)physical principles used to develop LoC
need to be considered. Innovation in manufacturing technologies and the incorporation of
life cycle assessments (LCA) from the outset of new LoC research can reduce downstream
human health and environmental impacts (Visotsky et al., 2017). However, the lack of
systematic studies on the non-green aspects of LoC systems limits our understanding and
ability to improve their environmental performance effectively. Further research is needed to
address this gap and provide guidance for the design and implementation of
sustainable LoCs.

In this paper, I explore recent achievements around LoC sustainability and potential LoC
life cycle sustainable improvements. I also propose that environmental impact analyses and
sustainable materials should take center stage in new LoC research.
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2 Environmental impact analysis

A product’s environmental hotspots can be identified using
several tools (Table 1), but the most comprehensive is LCA (Luz
et al, 2018). LCA quantifies potential impacts on the natural
environment, human health, and resources during each step of
the product life cycle (Caro, 2019). Since the LoC market is
anticipated to grow by 20% year-on-year (Sridhar et al., 2022),
there is an important need for guidelines to develop and dispose
these technologies. The basis of a sustainable ‘self-assessment’ is
incorporated into a ‘Design for Sustainability’ approach (Clark et al.,
2009; Ceschin and Gaziulusoy, 2016) that can be integrated from the
early stages of LoC design. These new initiatives could focus on
reducing non-renewable energy and water consumption, waste
production and harmful chemicals, and on developing longer-
lasting designs (Ongaro et al., 2022). Such approaches, however,
focus mainly on the consumable elements of LoCs (Agrawal et al.,
2022; Ongaro et al., 2022), i.e., the materials and reagents involved,
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and their disposal. Therefore, LCA covering all cradle-to-grave
aspects (Figure 1) should be advocated by the scientific
community and encouraged by policymakers. Usually, LCA
assesses products’ effects after their design and implementation,
but embedding LCA into the initial stage of product design can
significantly enhance the overall product’s sustainability (Visotsky
et al, 2017). Luz et al. (2018) have recently proposed a novel
approach to integrate LCA into the product development
process, which can enhance the strategic planning of activities.

3 Sustainable consumables for LoC

3.1 Current materials and possible
alternatives

Following the advent of microelectronics in the 1960s, the first
substrate used for fabrication of LoCs was silicon (Foret et al., 2013).

TABLE 1 Summary of environmental analysis tools, including environmental impact analysis (Wackernagel and Rees, 1996), carbon footprint analysis (1ISO, 2018),
carbon emissions reduction potential (Yang, 2010) and LCA (ISO, 2006a; 2006b). LCA offers a global view of the product’s impacts on the natural environment,

human health and resource depletion, and is the most powerful tool to supp

Environmental impact analysis (EIA)

t decision

kers (Luz et al., 2018; Torabi and Ahmadi, 2020).

Scope and Purpose

Advantages

Disadvantages

Systematic assessment of the potential environmental, social and economic
impacts of proposed projects, policies, or plans at a specific location

EIA informs decision-makers, regulators, and stakeholders about the
project’s potential impacts to support the implementation of mitigation
measures

Carbon footprint analysis

® Applicable to a variety of projects
® Can inform economic analysis

® Short assessment period is usually limited to the
project’s lifespan.

® Focused on a specific location.

® Project-oriented

Scope and Purpose

Advantages

Disadvantages

Measure of the amount of greenhouse gases (GHG) released directly and
indirectly within the spatial and temporal boundary of the population,
system, or activity of interest

This indicator can be used to compare the climate-relevant impacts of
different individuals, products, companies, countries by distinguishing
activities, and to identify the activities with a high and low footprint.*

Carbon emissions reduction potential

® Can be reduced to a single score

® Focus only on impacts related to global warming
and climate change (limited view)

Scope and Purpose

Measure of the amount of GHG emissions that can be avoided or reduced by
implementing a specific technology or practice

It can help identify areas where emissions can be reduced and provide a basis
for setting targets for reducing emissions over a specific time-period.*

Life cycle assessment (LCA)

Scope and Purpose

Advantages

® Can be reduced to a single score

Advantages

Disadvantages

® Focus only on impacts related to global warming
and climate change (limited view)

Disadvantages

Systematic analysis of the environmental impacts of a product, process, or | ® Looks at the entire life cycle of a
product or system

system throughout the entire life cycle, from raw material extraction, to
manufacturing, use and end-of-life. LCA can support decision-making and
identify opportunities for improvement

® Considers the long-term
environmental and human impacts

LCA considers a full variety of
environmental impact categories

Can inform economic analysis

® Time-consuming.
® Cannot be reduced to a single score.
® No single method

*Emissions are expressed in carbon dioxide equivalent (CO,-eq). Major GHG, include CO,, CH,, N,O, SFs, HECs, PECs, NF;.
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FIGURE 1

(A). Diagram of the stages of life cycle inventory and impact assessment in a LCA. LCA identifies the inputs and outputs of material flows during each

step of the product life cycle, including the manufacturing processes, distribution, consumption, and waste management practices (Caro, 2019). Each
input and output is assigned to impact categories, and the magnitude of the impacts is obtained via characterisation factors (Guinée, 2002; Thinkstep). (B).
Schematic of the life cycle of LoC devices (European Commission, 2010) and some examples of emissions generated during each phase.

To circumvent the hazardous chemicals involved during fabrication
and fulfil the high demand for low-cost devices, several polymers,
including PDMS and poly (methyl methacrylate) (PMMA) have
been used for their simple prototyping. Most commercially-available
microfluidic devices are currently composed of these (and others)
non-biodegradable plastics that have a large CO,-eq footprints
(Ongaro et al,, 2022). In the past decade, a variety of sustainable
alternatives have been proposed (Ke¢ili and Hussain, 2021; Damiati
et al,, 2022; Ongaro et al,, 2022), but more research on how designs
could be modified to accommodate different material strategies
should take place.

Bio-derived and biodegradable (B&B) polymers such as
polylactide (PLA) (Bettinger and Borenstein, 2010; Wang et al,,
2010; Ongaro et al, 2020; 2018), polyDL-lactic-co-glycolide
(PLGA) (Domachuk et al., 2010), zein (maize proteins) (Hsiao
and Luecha, 2011; Luecha et al., 2011), shellac (Lausecker et al.,

2016), and silk fibroin (Bettinger et al, 2007), have been
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successfully used both in biomedical and environmental
applications. Other low-cost and biodegradable materials, such
as paper and cotton, have been extensively used for detection of
bioanalytes and pathogens (Agustini et al., 2021). Gelatin has also
been used as a bio-based and biodegradable microfluidic platform
in cell culture (Paguirigan and Beebe, 2006) and, most recently, as
casing for lateral flow strips in a water-dispersible SARS-CoV-
2 antigen test (Okos diagnostics, 2020). Interestingly, wood has
been introduced in microfabrication processes, but some
limitations around mechanical and chemical properties still

need to be addressed (Ongaro et al., 2022).

3.2 Chemical and waste reduction

The impact of LoC does not simply arise from substrates, casing
and cartridges. Greener options for solvents, like chloroform or
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acetone, and reagents, should be used in the future (Kegili and
Hussain, 2021; Agrawal et al., 2022; Ongaro et al., 2022). For
chemical analysis, green solvents include ionic liquids, deep
eutectic solvents, and supercritical fluids (Keg¢ili and Hussain,
2021; Agrawal et al, 2022). Clinical diagnostic assays often
require chaotropic reagents, highly toxic to humans and
marine life, with specific, high CO,-eq disposal procedures.
Promising new methods have recently been introduced at a
macroscale level in laboratory settings, e.g., by Merck (Merk),
or integrated into microfluidic platforms for DNA extraction
from E. coli or whole blood (Yoza et al., 2002; Nakagawa et al.,
2005; Hagan et al., 2009).

A significant benefit of LoCs is the reduction in sample and
reagents volumes, but also packaging material, compared to
equivalent macroscale analytical processes. Importantly, LoCs
allow automation, and it is critical to increase access to such
capability so that researchers and users are able to harness
benefits arising from increased reproducibility and lower number
of analyses required in optimization processes (Ke¢ili and Hussain,
2021).

4 Beyond consumables for LoC

4.1 Environmental considerations
concerning bio-based and bioderived
plastics, and fabrication methods

Using materials that are recycled or derived from biological
sources for single-use LoCs can help to reduce CO,-eq emissions
and plastic pollution at the point of use. However, material
selection should also consider how the material is produced
and disposed. For example, while B&B polymers, such as PLA,
are praised substitutes for regular plastics, their production
they
conditions for degradation, and generate methane gas during

competes with food production, require specific
composting (Atiwesh et al., 2021). The same applies to cotton,
whose crops are water-intensive and often use fertilizers with
effects (Naderi Mahdei et al, 2022).

Consequently, not all the suggested alternatives are necessarily

ecotoxicological

better for the environment than conventional plastics at all stages
of their life cycle, Supplementary Materials (Walker and
Rothman, 2020; Naser et al.,, 2021; Rosenboom et al., 2022).
Moreover, fabrication processes, such as photolithography, laser
printing, wax printing, hot embossing, and plasma oxidation
(Ongaro et al., 2022; Sridhar et al., 2022), make use of chemicals
and energy sources that contribute to the overall environmental
impact of LoCs. For example, if gelatin represents a natural and
biodegradable alternative to plastics, gelatin devices are often
generated using photolithography (Paguirigan and Beebe, 2006),
which uses chemicals that are toxic, carcinogenic, or derived
from non-renewable sources (Mullen and Morris, 2021).
Substrates’ impact during the whole life cycle should be part
of the design process before integrating specific materials in
LoCs. Nonetheless, this task is complex and, importantly, not
integrated in the training of LoC scientists or in their
collaborative networks. There is therefore a urgent need to

Frontiers in Lab on a Chip Technologies

10.3389/frlct.2023.1239134

identify and compare the environmental hotspots of LoC
substrates, and specific fabrication methodologies through LCA.

4.2 IT and digitalization

The
intelligence potentiates LoC functionality, usability, and

integration of cloud computing and artificial

performance, particularly outside centralized laboratory
facilities. For example, for healthcare applications, mobile
offer

guidelines for treatment, and accelerate the implementation

technologies can support local decision making,
of surveillance programs and global health policies (Fleming
et al., 2021; Guo et al., 2021). Digitally connected LoCs can
minimize the need for transportation, infrastructure, and
logistics commonly associated with transporting individuals
or specialized personnel (doctors, technicians) to centralized
facilities (Ongaro et al., 2022). This potentially reduces the
greenhouse gases emissions of LoC significantly. In the
future, the advancement of wearable devices for continuous
monitoring of biosignals will further reduce transport-related
emissions.

Nevertheless, while mobile solutions are a key part of our
emissions management strategy to achieve the United Nations
Sustainable Development Goals (UN, 2015; Fleming et al., 2021),
internet and digital tools have a significant environmental
footprint, as they require precious/rare metals for production,
consume large amounts of energy for the operation of data
centers, and generate e-waste that is not properly recycled
(UNEP, 2022). Therefore, the environmental impact of digital
platforms, challenges around security, and the interoperability
of data generated by LoC analysis should be key considerations.
It is essential to encourage service providers, users, and
policymakers to adopt more sustainable practices for their
digital platforms.

4.3 Laboratory assessment frameworks

Research laboratories, where LoC devices are first conceived, are
energy intensive and produce high levels of chemical and/or
hazardous waste, when compared to regular office buildings
(Lopez et al., 2017). This has prompted local actions and the
creation of certification programs to incentivize greener practices,
such as minimizing waste, optimizing energy use, choosing greener
alternatives for reagents and consumables, and optimizing people
management and research quality.

A recent report efficiently grouped all the sustainable initiatives
that have been embraced by different research institutes (Winter
et al., 2023), in an effort to increase awareness and education.
Accreditation programs like LEAF and My Green Lab have
boosted the implementation of these sustainable practices and
created positive feedback loops and multiplying effects, that
could reach also higher levels of society (Winter et al, 2023).
Researchers should advocate institutional policies that support
and incentivize sustainability, such as carbon budgeting, green
procurement, and CO,-eq offsetting.
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5 Discussion

Miniaturized LoC technologies have several advantages compared
to their macroscale counterparts, stretching from reducing the amounts
of sample and toxic chemicals, to minimization of packaging materials
and better controlled energy transfer. However, the Lancet Commission
for Pollution and Health reported that as many as one in six deaths
worldwide since 2015 have arisen from a contaminated environment
(with more than 90% of these deaths in low- and middle-income
countries, which have borne the greatest economic and social burden
(Fuller et al., 2022)). If, as a community, we want to increase access to
chemical analysis and diagnostics to promote efficiency and reduce
mortality and morbidity/illness, then we need to commit to a holistic
approach for the reduction of LoC environmental impacts. Advocating
for policy changes could speed up the shift to a low-carbon economy by
promoting environmental practices in companies, through incentives
like subsidies, clear emissions reduction goals that companies must
meet, and strong national waste management infrastructures.
Promoting sustainable informed choices can be institutionally
supported, as illustrated by the European Union digital “product
passport” (CIRPASS, 2023) that will make available to businesses,
governments and consumers the information on a product’s origin,
durability, composition, environmental and carbon footprint, reuse,
repair and dismantling possibilities, and end-of-life handling.

The possibility of creating a circular economy to minimize raw
materials use in LoCs is still a way away, but it would be a game-
changer for waste management in the sector (Ongaro et al., 2022).
As scientists, our mission includes preventing unnecessary deaths
and creating a better planet, not just for ourselves but for future
generations and for all creatures and life. To do this, we need to
stimulate conversation and persist until sustainability becomes an
integral attribute in the delivery of green products.
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