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Encoded particles have been used for multiplexed diagnostics, drugs testing, and
anti-counterfeiting applications. Recently, shape-coded hydrogel particles with
amphiphilic properties have enabled an amplified duplexed bioassay. However, a
limitation to read multiple particle shape-codes in an automated manner and
within a reasonable time prevents a widespread adaptation of such potent
diagnostic platforms. In this work, we applied established deep learning based
multi-class segmentation models, such as U-Net, Attention U-Net, and UNet3+,
to detect five or more particle shape-codes within a single image in an automated
fashionwithin seconds. We demonstrated that the testedmodels provided prosaic
results, when implemented on an imbalanced and limited raw dataset, with the
best intersection over union (IoU) scores of 0.76 and 0.46 for six- and eleven-class
segmentation, respectively. We introduced augmentation by translocation (ABT)
technique to enhance the performances of the tested models significantly, where
the best IoU scores for the six and eleven classes increased to 0.92 and 0.74,
respectively. These initial findings to detect multiple shapes of the particles in an
automated manner underscore the potential of shape-coded particles to be used
in multiplexed bioassays. The code is available at: github.com/destgeerlab/shape-
coded-particles.
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1 Introduction

Advances in image processing have successfully transferred to clinical tissue image analysis
with single cell segmentation in digital pathology, whereas numerous other biomedical datasets
are being analyzed with emerging image analysis tools every day de Haan et al. (2021); McQuin
et al. (2018); Schindelin et al. (2012). Over the years, various open source (ImageJ/NIH Image,
CellProfiler, Phyton libraries-Open CV, Scikit-image) and commercial (MATLAB Image
Processing Toolbox, ImagePro plus, Metomorph) software packages have been released to
ease the biologists’ and experimentalists’ hands to evaluate their data and conclude the system-
level results quantitatively in a simpler and shorter workflow Schneider et al. (2012); Pedregosa
et al. (2011); Carpenter et al. (2006); Bradski (2000). Image classification and segmentation,
object tracking, and reconstruction of 3D representations are major benefits of digital image
processing where not only the rule-based algorithms but also deep-learning-based
implementations have transformed the analysis of biomedical images, thus enabling the
researchers to realize spatial variations embedded in the living systems quantitatively. For
instance, from a simple bright field or fluorescent image of a cell, different intracellular organelles,
such as the cell’s nuclei, cytoplasm, or walls, can be identified, segmented, and assigned to a
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separate cell class. Recently, several deep learning models have been
developed that can generalize the image segmentation and make it
applicable to a diverse dataset of cell images Stringer et al. (2021a);
Caicedo et al. (2019); Sommer et al. (2011). Besides cell analysis,
artificially intelligent approaches have been used in microfluidic
droplet generation and on-demand sorting Lashkaripour et al.
(2021); Anagnostidis et al. (2020), image-based cytometry Hu et al.
(2020); Gupta et al. (2019), and predicting three-dimensional (3D)
structures of proteins from amino acid sequences with atomic-level
accuracy Yang et al. (2023). There is an emerging need to apply these
deep-learning models for processing images of encoded microparticles
viz. increasingly being used in multiplexed bioassays, anti-
counterfeiting applications and drugs testing Sahin et al. (2022);
Destgeer et al. (2020); Wu et al. (2020); Eun Chung et al. (2014);
Pregibon et al. (2007); Lee et al. (2014); Song et al. (2019).

In recent years, U-Net, an architecture specifically designed for
biomedical image segmentation, has been extensively used for cell
image segmentation and could potentially be used to segment
images of encoded microparticles Ronneberger et al. (2015).
U-Net’s architecture is based on a fully convolutional network
and features a series of upsampling operations that provide
precise localization. This model’s efficacy has inspired several
improved versions and adaptations, each trying to enhance
different aspects of the original model. For example, the
Attention U-Net Oktay et al. (2018) introduced attention gates
that learn to focus on target structures of varying shapes and
sizes in an image, improving the sensitivity and accuracy of its
predictions. On the other hand, UNet++ Zhou et al. (2018), a
deeply-supervised encoder-decoder network with dense skip
pathways, attempted to reduce the semantic gap between the
feature maps of the encoder and decoder networks, leading to
better segmentation performance. The attention mechanism has
also been employed to improve performance in segmenting neural
cell instances Yi et al. (2019), focusing the model on valuable
features, thereby improving speed and accuracy. Similarly, Multi-

scale Attention Net (MA-Net) Fan et al. (2020) integrates local
features with global dependencies by introducing a self-attention
mechanism. Recent works have introduced novel models like
Cellpose Pachitariu and Stringer (2022); Stringer et al. (2021b)
and CellT-Net Wan et al. (2023), which offer out-of-the-box
results for various image types without the need for model
retraining or parameter adjustments. The latest iterations of these
models also incorporate human-in-the-loop approaches for model
fine-tuning and improved segmentation accuracy. In this work, we
will utilize the selected aforementioned neural network architectures
to segment shape-coded microparticle images for potential
applications in multiplexed bioassays.

The shape-coded microparticles are unique in their ability to
compartmentalize nL-pL scale droplet volumes upon simple mixing
of reagents (Akhtar et al., 2023). An aqueous droplet is
spontaneously retained within the hydrophilic cavity of the
amphiphilic microparticle as the continuous oil phase interacts
with the outer hydrophobic layer of the particle Destgeer et al.
(2020); Wu et al. (2020). Commonly used microfluidic droplet
generators and microwell arrays used for compartmentalization
require a cleanroom-based fabrication of devices and specialized
instruments to operate those devices by an expert user Yelleswarapu
et al. (2019); Rissin et al. (2010). In comparison, the amphiphilic
microparticles offer a user-friendly, cleanroom-independent,
instrument-free, and low-cost solution that relies on the
commonly used lab pipettes to mix reagents and form particle-
templated droplets (or dropicles) Destgeer et al. (2021). Moreover,
the inner layer of these shape-coded microparticles is functionalized
to capture biomolecules of interest, whereas the outer layer is used to
shape-code them, viz. a feature essential to realize multiplexed
bioassays. These shape-coded microparticles, with clearly visible
differences in their shapes, are quantitatively differentiated based on
geometric parameters such as circularity, cross-sectional area, and
perimeter by manually analyzing the particle images acquired by
using a standard laboratory microscope or a portable reader for

FIGURE 1
Work flow of deep learning based segmentation of shape-coded particles: (A) preparation of dataset composed of bright field particle images, and
generation of particle masks based on classes, (B) transfer learning by selected pretrained models, (C) evaluating the performance of different models.
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point-of-care applications Shah et al. (2023); Destgeer et al. (2020).
However, an automated reading and classification of numerous
particle shape codes before recording a colorimetric signal
associated with a bioassay require a deep-learning-based image
analysis approach suitable for use in the lab or the field.

In a conventional dropicle-based bioassay, we have to scan 10s of
wells of a 12- or 24-well plate where each well is seeded with several
hundreds of amphiphilic microparticles (Destgeer et al. 2020;
Destgeer et al. 2021). A single scan of a well can result in
25–64 images, which can be analyzed by using a semi-manual
open-source tool (ImageJ) to extract particle-level information.
However, this requires a time-consuming and tedious workflow,
which includes steps like format conversion, thresholding to obtain
each particle mask, and evaluation of desired physical parameters.
Moreover, this semi-manual image analysis approach lacks the
ability to segment multiple shape-coded particles within a single
image. Therefore, we hypothesize that the potential use of deep-
learning-based approaches could offer a highly promising
computer-vision-based workflow to automate the traditional
image analysis of shape-coded particles. However, the limited
availability of particle images in our experimental dataset poses a
challenge in developing robust and high-performing deep-learning
models. A transfer learning approach can address this limitation by
leveraging the knowledge gained from pre-trained models, even if
the desired features between two datasets may not perfectly align.

In this study, we performed the first-ever multi-class
segmentation of shape-coded particles by using the pre-trained
models, such as U-Net, Attention U-Net (A-UNet), and UNet3+
Oktay et al. (2018); Ronneberger et al. (2015); Huang et al. (2020).
The performance of these pre-trained models on our raw datasets
was prosaic, and on-average marginally altered after conventional
augmentation of datasets. Therefore, we developed a new algorithm,
i.e., augmentation by translocation (ABT), to augment our datasets
in a way that negative effects of class imbalance and limited number
of instances can be compensated by evenly distributing shape-coded
particles into the empty positions in an image. The ABT-balanced
datasets resulted in on-average remarkable performances for all
three models in terms of evaluation metrics and convergence speed.

2 Materials and methods

2.1 Fabrication of shape-coded particles and
image data acquisition

As reported in the earlier work, the shape-coded particles were
fabricated using a co-flow lithography technique, where a set of 3D
printed and co-axially stacked structured nozzles sculpt the
precursor flow streams to cure unique particle shapes upon UV
exposure Destgeer et al. (2020). The particle shape codes (SC) were
defined based on the sculpting of the outer or/and inner boundaries
of the particle, resulting in the following particle shapes used in this
work: SC0, SC1, SC2, SC3, SC4, SC13, N, 4H, LL, and TT
(Supplementary Table S1). After washing, the cured particles
suspended in ethanol were seeded in a well plate for image
acquisition using a standard microscope (Nikon, Ti2) equipped
with a camera (Figure 1A). High-resolution images of the particles
captured in ethanol provided a better contrast with the background

than those captured in a continuous oil phase after the dropicle
formation. Therefore, we decided to use ethanol-based images in this
work for segmentation.

2.2 Annotation and ground truth masks
generation

For annotation, we used the Modular Interactive Video Object
Segmentation (MiVOS) Cheng et al. (2021) framework to perform
pixel-level segmentation by separating the particles in the
foreground from the background within a stack of images. With
interactive user inputs to create the initial mask and possibilities to
propagate and refine the mask from one frame to the next within an
image stack, the MiVOS offers a flexible and adaptable solution to
rapid annotation. To prepare the data for annotation using MiVOS,
the original high-resolution particle images were down-sampled
from 2,048 x 2,048 pixels to a resolution of 256 x 256 pixels. This
reduction in image resolution was necessary to manage
computational resources more effectively and streamline the
annotation process. To further aid the annotation process, the
captured images for each specific class of shape-coded particles
were combined into a singleMoving Picture Experts Group (MPEG)
format compressed video file, facilitating the sequential viewing and
annotation of images by MiVOS.

Annotation commenced with the first frame of the MPEG video
analyzed by the MiVOS framework, where a simple click, scribble, or
freehand drawing around a target particle was enough to kick-start the
process. Once the necessary objects were annotated in the first frame,
these annotations were propagated throughout the video. Skimming
through the entire frame sequence was crucial to identify any potential
inaccuracies in the propagated annotations. Should any misannotations
be detected, they were corrected on the spot, and the propagation was
then resumed. Despite the MiVOS originally being designed for videos
with consecutive frames, and trained on dissimilar data, it has
demonstrated remarkable effectiveness in adapting to the unique
characteristics of our dataset comprising images of different shape-
coded particles. The scribble tool within the MiVOS framework was
particularly useful in providing prompt frame-to-frame corrections of the
annotation masks. With the MiVOS framework, we built a reasonable
database of ground truth masks encompassing a total of 325 processed
images, including 1,306 annotated particles’ instances, which were
annotated in approximately 5 hours (Figure 1A).

2.3 Database preparation for experiments
and data splits

Our Database consisted of ten different particles’ shape-codes, each
represented with about 102–165 annotations (Supplementary Table S2).
Every particle image in our database had a corresponding segmentation
mask. We formulated the first dataset (10S2C, ten particle shapes and
only two classes, 325 images), where the mask differentiated only
between the image background and the shape-coded particles
(Supplementary Table S2). The 10S2C dataset was mainly used to
initialize our experiments in the most basic form of binary classification
by U-Net based models. To challenge the models’ ability to differentiate
between multiple particle shape codes, we built our second (5S6C, five
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particle shapes with six classes, 170 images) and third (10S11C, ten
particle shapes with eleven classes, 325 images) datasets for subsequent
experiments. The 5S6C dataset was a subset of the 10S11C dataset. We
selected the five visibly most distinct shape-codes in the 5S6C dataset
based on the inner (4H), outer (SC0 and SC4), and inner-and-outer (LL
and TT) boundary shape-coding of particles.

We split each dataset into subsets for training, validation, and
testing where the uneven distribution of shape-coded particles across
images posed a challenge. A naive splitting of the dataset into training,
testing, and validation sets based on images alone resulted in a
significant imbalance concerning the number of annotations per
class. To address this issue, we took a more nuanced approach that
considered each image’s annotation count per class. By scrutinizing the
number of instances per class across our collection of images, we were
able to categorize the images into distinct bins. Each binwas designed to
contain approximately the same number of annotations. For example,
one bin contained images with one to two annotations while another
contained five to eight annotations per image. Having divided the
images into bins, we then distributed the images from these bins across
the training, testing, and validation sets. However, due to a limited total
number of particle instances per class per image, it was still challenging
to generate a balanced dataset with uniform distribution of particle
occurrences across different classes.

2.4 Augmentation of datasets

We employed two different augmentation approaches to
generate an equivalent number of augmented images from the

raw datasets. We upscaled our 5S6C and 10S11C datasets with
132 and 251 raw images to 264 and 502 augmented images,
respectively, by using the basic augmentation (BA) and
augmentation by translocation (ABT) techniques (Figure 2 and
Supplementary Figure S1). For the raw dataset, we simply
duplicated the raw images to match the dataset volume with the
BA and ABT approaches, which included the raw images in addition
to the augmented images. The BA approach, based on the
Albumentations library, combined rigid and non-rigid
transformation options, such as elastic transform, grid distortion,
optical distortion, random brightness contrast, CLAHE (contrast
limited adaptive histogram equalization), random gamma, vertical
flip, and random rotate, for dataset augmentation. Buslaev et al.
(2020) Our in-house developed ABT approach was based on
augmentation by image mixing; however, it was done very
differently here compared to the conventional image mixing
methods reported earlier. Hu et al. (2020); Takahashi et al.
(2020); Shorten and Khoshgoftaar (2019).

The ABT was particularly tailored to uniformly upscale the
random occurrences of shape-coded particles in an image.
Specifically, the ABT extracted a shape-coded particle from one
image and positioned it at a random, non-overlapping location in
another image to increase the particle occurrences per image.

2.5 Training setup

For our experiments, we utilized the Keras-UNet-Collection
repository, selecting U-Net (28M parameters), A-UNet (25M

FIGURE 2
Basic augmentation (BA) and augmentation by translocation (ABT) of the example images from the 5S6C and 10S11C datasets. Two sub classes of the
BA are depicted: Rigid and non-rigid augmentation. ABT Number of raw (r), duplicated (d) or augmented (a) images are indicated along with the total
number of images for the training (t) purpose.
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parameters), and UNet3+ (24M parameters) for comparative
analysis. Detailed model configurations and respective
hyperparameters can be accessed in our GitHub repository in the
source code. For consistency, the hyperparameters were kept the
same for all the three models. We adopted the Visual Geometry
Group with 16 convolutional layers (VGG16), which has been pre-
trained on the ImageNet dataset, as our encoder backbone primarily
due to its compatibility with the A-UNet model. The
VGG16 architecture, which merges same-padding convolution
and max-pooling kernels, is adept at extracting hierarchical
features suitable for attention gates.

For image preprocessing, we employed basic normalization by
adjusting the pixel values between 0 and 1, and also used Keras
VGG16 batch normalization by replicating a similar process that has
been applied to the ImageNet dataset. We investigated the effect of
basic and VGG16 normalizations on the convergence rate for our
model by conducting experiments on the 5S6C dataset
(Supplementary Figure S2). We did not observe a significant
difference in the model performance for the two normalizations.
Therefore, we decided to stay with the basic normalization method
for subsequent experiments.

We selected the Adam optimizer for training purposes. For
training evaluation, we adopted the weighted multi-class Dice Loss
to address class imbalance during training. Moreover, we utilized
standard metrics, including intersection over union (IoU), dice
score, average precision (AP), and average recall (AR), to gauge
the performance of the tested models. Our training routine consisted
of three training steps where, after each training step, the best-
performing weights were picked for the subsequent steps as the
learning rate was reduced by an order of magnitude. The first
training step had 64 epochs with a learning rate of 2.5e-4 and a
batch size of 10 (8 for 10S11C) from the raw, BA or ABT datasets.
The second and third steps were conducted with only the raw images
and consisted of 32 and 16 epochs, respectively.

It is crucial to note that this unique training configuration was
not designed to evaluate, nor did this represent, the potential peak
performance of the tested models. In our training configuration,
instead of employing a grid search for optimal hyperparameters, we
opted for the parameters that had demonstrated strong performance
in our preliminary tests.

In an effort to foster inclusivity and encourage reproducibility,
we intentionally harnessed universally accessible resources for our
experiment. As a primary resource, we utilized Google Colab to train
our models. Google Colab offers a daily amount of free
computational power, thereby providing a readily accessible
platform to anyone with a mail account and a browser with
internet connectivity. The annotation portion of our work,

however, necessitated a more traditional hardware setup due to
the graphical interface requirements of the task. Consequently, we
conducted this part of the experiment on a personal desktop
computer equipped with an Nvidia RTX graphics card.

3 Results

3.1 Five-shape multi-class segmentation

Prior to the multi-class segmentation experiments, we employed
five different U-Net models for the binary classification of particles
against a background in order to ensure our datasets’ compatibility
with the models, and chose the original U-Net, A-UNet, and
UNet3+ for further multi-class analysis (Supplementary Table S3;
Supplementary Figure S3). We aimed to evaluate the performance of
these three models on our raw 5S6C dataset and its augmented
versions (BA and ABT) (Table 1).

When implemented on the raw dataset (test set), the UNet3+
resulted in the best IoU score of 0.76 compared to the worst score of
0.52 for the A-UNet model. The basic augmentation did not
improve the IoU score for the UNet3+ but significantly enhanced
it to 0.84 for the A-UNet. Counterintuitively, the U-Net
performance dropped with the BA dataset as the IoU score
slipped from 0.7 to 0.44. When used with the ABT dataset, the
UNet3+ performance peaked at an IoU score of 0.92 with a
significant boost in the models’ convergence speed
(Supplementary Figure S2). The A-UNet-ABT model showed a
similar positive trend with an IoU score of 0.91. However, the
IoU score of 0.61 for the U-Net-ABT model did not improve from
the U-Net-raw model (0.71). Overall, in terms of the IoU scores, the
three models performed better with the ABT dataset when
compared to the BA dataset. We observed a relatively similar
trend in the other evaluation parameters, such as dice score, AP,
and AR, without noticeable deviation from the trend in the IoU
scores. Cumulatively, the UNet3+-ABT model resulted in the best
scores for all the evaluation parameters, whereas the A-UNet-ABT
model fell marginally behind.

Based on the best evaluation parameters, we plotted the segmented
multi-class images (5S6C) of particles by using the UNet3+-ABTmodel
(Figure 3). TheUNet3+model successfully segmented and classified the
five different shape-coded particles, i.e., SC0, SC4, 4H, TT, and LL,
within a single image or individual images containing only one shape-
code at a time. The UNet3+ model passed the visual test almost
flawlessly as the shape-codes categorized in different colors, such as
SC0-blue, SC4-yellow, 4H-red, TT-magenta, and LL-green were
predicted correctly against the ground truth (see columns 2 and 3 in

TABLE 1 U-Net, A-UNet, and UNet3+ performance on multi-class 5S6C dataset: The UNet3+ showed best performance when trained on the dataset augmented by
translocation (ABT) compared to the basic augmentation (BA) or raw dataset.

Model IoU Score (0.5) Dice score AP (0.5) AR

Raw—BA—ABT Raw—BA—ABT Raw—BA—ABT Raw—BA—ABT

U-Net 0.70–0.44–0.61 0.46–0.39–0.56 0.89–0.75–0.84 0.85–0.77–0.87

A-UNet 0.52–0.84–0.91 0.49–0.62–0.71 0.79–0.97–0.94 0.86–0.93–0.95

UNet3+ 0.76–0.76–0.92 0.49–0.54–0.71 0.90–0.90–0.96 0.86–0.86–0.97
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Figure 3). Object detection by watershed gave separate instances (each
colored differently here), which is a useful feature for future analysis on
detected particles (see column 4 in Figure 3). Interestingly, object
detection by watershed was mostly able to distinguish particles

touching each other, which is considered a challenging task. For
example, see the center-bottom pair of touching LL shape-coded
particles that were detected as separate objects. The UNet3+ model
could also navigate particles clustered in a crowded scene, but

FIGURE 3
UNet3+ model classifying five shape-coded particles in the 5S6C dataset. A virtually generated image consisted of five best performing shapes,
i.e., SC0, SC4, 4H, TT, and LL shape-codes, was tested (row1). Rows two to six were examples of the individual shape-codes tested, which indicated a
good match between the ground truth and the prediction map, where separate objects were detected successfully.
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occasionally some of the particles were impartially detected as
background or vice versa. However, the portion of such false
detection was minuscule in the tested dataset (please see
Supplementary Figure S4 for all tested 5S6C images).

3.2 Ten-shape multi-class segmentation

Building on the promising outcomes from the testing of 5S6C
dataset, we embarked on a more rigorous test using the raw 10S11C
dataset and its augmented variations. The UNet3+ model achieved a
mediocre IoU score of 0.46 when applied to the raw dataset, whereas
the A-UNet and U-Net models performed even worse with IoU scores
of 0.18 and 0.16, respectively. TheA-UNet andU-Net plateaued in their
performance on the validation set after several training epochs, showing
no further improvements in the training parameters. By training with
the BA dataset, IoU score increased from 0.46 to 0.60 for the UNet3+
model. However, the A-UNet and U-Net models did not respond at all
upon shifting from raw to BA dataset. Remarkably, with the 10S11C-
ABT dataset the trainingmetrics significantly improved for all the three
models. The UNet3+-ABT performance incrementally advanced from
an IoU score of 0.60–0.72. The A-UNet and U-Net, which previously
struggled with the raw and BA datasets, took significant leaps with the
ABT dataset from IoU scores of 0.18 and 0.16 to 0.74 and 0.54,
respectively. Similar trends were observed in the other training
evaluation parameters. This substantial enhancement in the
evaluation parameters can be attributed to the dataset structure
alteration, i.e., transitioning from a single-class per image to a
multi-class representation per image in the ABT dataset, especially
given the smaller batch sizes. Overall, in terms of the IoU scores, the
three models performed much better with the ABT dataset, compared
to the raw and BA datasets. Cumulatively, the A-UNet-ABT model
resulted in the best scores for all the evaluation parameters, whereas the
UNet3+-ABT model fell marginally behind. However, the best-
performing IoU score of 0.74 for the A-UNet-ABT-10S11C model
was much lower than the IoU score of 0.92 achieved with the UNet3+-
ABT-5S6C model. (Table 2).

Based on the best evaluation parameters, we plotted the segmented
multi-class images of particles by using the A-UNet-ABT-10S11C
model. The A-UNet model segmented and classified the ten
different shape-coded particles within a single image or individual
images containing only one shape-code at a time (see Figure 4;
Supplementary Figure S5 for all the tested images). The model
performed reasonably well for most of the shape-codes with an IoU
score of ≥0.70 (see Supplementary Table S4). The A-UNet-ABT model
struggled with the SC13 and N shape-codes, which had the lowest IoU
scores of 0.53 and 0.7, respectively. These shape-codes resulted in low-

performance parameters with a very clean test image dataset consisting
of uniformly distributed particles. This low performance can be
attributed to the non-uniformity of these particle shapes, as it is
evident from their original BF images (see Supplementary Figure
S5). We hope that an advanced post-processing algorithm might
help to merge impartially predicted objects as unique singles.

4 Discussion

4.1 Challenges of small unbalanced dataset

The nature of the ten-shape data, with its disproportionate
distribution of annotations per class, creates an unbalanced
structure. Limited and unbalanced datasets present several
challenges. One of the primary issues is the risk of overfitting, i.e., a
modeling error that occurs when a function is too closely fit to a limited
set of data points. This might lead to a model which works exceedingly
well on the training data but fails to generalize to unseen data. Another
issue is the under-representation of some classes, which leads to a bias in
the model towards the majority classes, potentially resulting in low
predictive accuracy for the minority classes. The absence of sufficiently
representative data further complicates the selection of suitable
evaluation metrics, as traditional accuracy measures may
inadequately reflect the model’s performance when dealing with
underrepresented classes. Moreover, the overall complexity in
training models increases with limited data availability, as it
constrains the ability to effectively learn the necessary features for
each class. Nevertheless, a variety of methods can be employed to
mitigate these challenges. For instance, re-sampling techniques can be
used to balance the dataset. However, oversampling a minority class or
undersampling amajority class would be counter productive. Therefore,
re-sampling techniques could only by applied with adequate caution.
Moreover, cost-sensitive learning can be implemented, which penalizes
the misclassification of the minority class more than the majority class
during the training phase. Additionally, transfer learning, which
leverages the knowledge from pre-trained models, can be quite
beneficial when dealing with small datasets. These pre-trained
models on larger datasets can provide a good starting point for
feature extraction.

4.2 False predictions on edges, annotation
quality, and inner boundary annotation

Particles that are not fully visible within the boundaries of
images can cause inaccurate outcomes, resulting in either false

TABLE 2 U-Net, A-UNet, and UNet3+ performance onmulti-class 10S11C dataset: The A-UNet showed best performancewhen trained on the dataset augmentation
by translocation (ABT) algorithm compared to the basic augmentation (BA) and raw datasets.

Model IoU Score (0.5) Dice score AP (0.5) AR

Raw—BA—ABT Raw—BA—ABT Raw—BA—ABT Raw—BA—ABT

UNet 0.16–0.16–0.54 0.14–0.11–0.49 0.51–0.51–0.80 0.50–0.50–0.88

A-UNet 0.18–0.18–0.74 0.12–0.12–0.59 0.51–0.51–0.91 0.50–0.50–0.91

UNet3+ 0.46–0.60–0.72 0.34–0.42–0.53 0.72–0.82–0.87 0.81–0.89–0.91
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negatives or false positives. This occurs when at least half of a
particle is present in an image tile. In the case of relatively smaller
particles, the model may fail to recognize them or incorrectly label
them as false positives.While this behavior is acceptable in the object

detection stage, it is important to note that these particles may still be
incorrectly identified. To tackle that problem, a higher overlap ratio
can be used for tiling images, and rule-based algorithms can split the
images to have less underrepresented particles.

FIGURE 4
A-UNet model classifying five shape-coded particles in the 10S11C dataset. A virtually generated image consisted of ten shapes, i.e., SC0, SC1, SC2, SC3, SC4,
SC13, N, 4H, TT, and LL shape-codes, was tested (row1). Rows two to sixwere examples of the selected individual shape-codes tested,which indicated a goodmatch
between the ground truth and the prediction map, where separate objects were detected successfully. See Supplementary Figure S5 for the remaining shapes.
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Another significant limitation is that when the model predicts
the mask of 2 cells that are closely positioned or touching each other,
the watershed algorithm is unable to accurately separate the mask
into two distinct instances. Watershed algorithm may help to
differentiate them based on the topology; however, the larger
dataset with a higher quality of annotation or instance
segmentation instead of semantic segmentation can be a possible
solution to overcome this problem.

Using a video-based object segmentation tool (MiVOS), the
annotation time could be significantly reduced with the mask-
propagation utility; however, propagation does not guarantee
that each frame/image will be annotated flawlessly. High care is
needed to double-check each object and its class, which can
sometimes be overwhelming, and the resulting segmentation
would not be as good quality as expected. Using MiVOS it took
one person to annotate 325 images 5 h. Commercial software
such as Apeer (by Zeiss) could be an alternative to annotating
the data where several hand tools are represented for neat work.
However, the required time will significantly increase
(i.e., approximately 15 minutes per image with five instances,
calculated with our dataset this could mean 65.3 h for
1,306 instances, or 81.25 h for 325 images). Furthermore, in
this work, the annotation is done by only drawing the particles’
outer boundary, where the particle’s inner part is also assigned
as a shape class instead of a background. Utilizing the inner
boundary of the particle just like the outer boundary during the
annotation process may increase the model’s robustness by
depicting the transition region between the inner boundary
and the inner background.

4.3 Augmentation for enhanced dataset
utility

Basic augmentation enhances the dataset in a way that similar
reproduction of raw images results in increased robustness of the
model, mitigation of the risk of overfitting, or improved model’s
generalization ability. In addition to all of these benefits, ABT
naturally addresses class imbalance and, when properly
configured, can fully rectify it. For instance, if the initial dataset
contains ten instances of class one and five of class two, ABT can
prioritize class two during augmentation, thereby balancing the
classes without creating additional image load. A key advantage
of ABT is its ability to transform datasets that usually contain only
single-class images into datasets in which all classes are represented,
provided that dataset integrity and reality are maintained.

4.4 Virtual test-based shape decision
procedure

We noticed during our investigation that specific shapes
proved to be more difficult to fit than others. Our shape
decision procedure could be extended to virtual tests by
digitally creating images of intended shapes to determine the
most practical shapes where model performance might be

reasonably enhanced. This could help formulate a more
effective approach to shape coding, leading to improved
segmentation accuracy. More experiments on what particular
shape attributes commit to better differentiation will contribute
to future work in shape coding. Therefore, including a more
robust shape decision procedure, which evaluates and optimizes
shape configurations, could provide significant advancements in
the accuracy and efficiency of our image segmentation tasks.

4.5 Potential model-based improvements

Our work did not incorporate the benefits of instance
segmentation or the use of cutting-edge frameworks like mask-
RCNN (Region-Based Convolutional Neural Network) He et al.
(2017). Unlike semantic segmentation, instance segmentation
differentiates individual instances of the same class, providing
an additional layer of understanding of the images. Deploying
more advanced frameworks, like maskRCNN, might have offered
additional avenues for model performance improvement.
Furthermore, we did not explore the full suite of cell models
available or engage in rigorous hyperparameter tuning. A
comprehensive exploration of different cell models and
meticulous hyperparameter tuning can play a crucial role in
optimizing model performance and should be considered in
future work.

5 Conclusion

We have presented a framework for an automated shape-
based recognition and analysis of encoded particles. By using
three different multi-class segmentation models, up to ten
unique shape-coded particles were classified within minutes
with reasonable model evaluation scores. The proposed
workflow, from the annotation of particles to training the
model, constitutes an encouraging path for researchers who
would like to train their own datasets. For example, the
MiVOS network with a user-friendly interface provided an
accelerated (15x faster) annotation process compared to the
conventional approaches. Moreover, with the use of dataset
augmentation by translocation (ABT), we were able to
significantly enhances the models’ performance compared to
the basic augmentation (BA) or raw datasets. Overall, our results
provided a strong evidence that the shape-coded particles were
an excellent fit for the various segmentation models used in this
study. The particles’ design allowed for straightforward
adaptation by the models, resulting in high-quality
segmentation and classification. Furthermore, by selectively
tailoring our dataset, we were able to leverage the strengths of
these models, illustrating the importance of a carefully curated
datasets for the best results. As a future work, we envision that
the classified particles can be further analyses to obtain specific
information desired for certain bioassays, such as, particles
geometric measurements, shape transformation in different
mediums, fluorescent intensity readings, etc.

Frontiers in Lab on a Chip Technologies frontiersin.org09

Sahin et al. 10.3389/frlct.2023.1248265

https://www.frontiersin.org/journals/lab-on-a-chip-technologies
https://www.frontiersin.org
https://doi.org/10.3389/frlct.2023.1248265


Data availability statement

The raw data supporting the conclusions of this article
will be made available by the authors, without undue
reservation.

Author contributions

MS and GD conceptualized the study. CB and MS built the
initial dataset for training and testing purposes. LE and MS
optimized the dataset and advanced the workflow by
comparing different pretrained models. MS, LE, and GD
wrote the manuscript. GD supervised the project. All
authors contributed to the article and approved the submitted
version.

Acknowledgments

MS acknowledges TUBITAK and DAAD for the support.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/frlct.2023.1248265/
full#supplementary-material

References

Akhtar, M. U., Sahin, M. A., Werner, H., and Destgeer, G. (2023). “Fabrication of size-
coded amphiphilic particles with a configurable 3D-printed microfluidic device for the
formation of particle-templated droplets,” in bioRxiv. Cold Spring Harbor Laboratory.
Available at: https://www.biorxiv.org/content/early/2023/09/22/2023.09.20.558669.
doi:10.1101/2023.09.20.558669

Anagnostidis, V., Sherlock, B., Metz, J., Mair, P., Hollfelder, F., and Gielen, F. (2020).
Deep learning guided image-based droplet sorting for on-demand selection and analysis
of single cells and 3d cell cultures. Lab. Chip 20, 889–900. doi:10.1039/D0LC00055H

Bradski, G. (2000). The OpenCV library. Dr. Dobb’s J. Softw. Tools.

Buslaev, A., Iglovikov, V. I., Khvedchenya, E., Parinov, A., Druzhinin, M., and
Kalinin, A. A. (2020). Albumentations: fast and flexible image augmentations.
Information 11, 125. doi:10.3390/info11020125

Caicedo, J. C., Goodman, A., Karhohs, K. W., Cimini, B. A., Ackerman, J., Haghighi,
M., et al. (2019). Nucleus segmentation across imaging experiments: the 2018 data
science bowl. Nat. Methods 16, 1247–1253. doi:10.1038/s41592-019-0612-7

Carpenter, A. E., Jones, T. R., Lamprecht, M. R., Clarke, C., Kang, I. H., Friman, O.,
et al. (2006). Cellprofiler: image analysis software for identifying and quantifying cell
phenotypes. Genome Biol. 7, R100–R111. doi:10.1186/gb-2006-7-10-r100

Cheng, H. K., Tai, Y.-W., and Tang, C.-K. (2021). “Modular interactive video object
segmentation: interaction-to-mask, propagation and difference-aware fusion,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Seattle, WA, USA, June 14-19, 2020, 5559–5568.

de Haan, K., Zhang, Y., Zuckerman, J. E., Liu, T., Sisk, A. E., Diaz, M. F. P., et al.
(2021). Deep learning-based transformation of h&e stained tissues into special stains.
Nat. Commun. 12, 4884. doi:10.1038/s41467-021-25221-2

Destgeer, G., Ouyang, M., and Di Carlo, D. (2021). Engineering design of concentric
amphiphilic microparticles for spontaneous formation of picoliter to nanoliter droplet
volumes. Anal. Chem. 93, 2317–2326. doi:10.1021/acs.analchem.0c04184

Destgeer, G., Ouyang, M., Wu, C.-Y., and Di Carlo, D. (2020). Fabrication of 3d
concentric amphiphilic microparticles to form uniform nanoliter reaction volumes for
amplified affinity assays. Lab a Chip 20, 3503–3514. doi:10.1039/d0lc00698j

Eun Chung, S., Kim, J., Yoon Oh, D., Song, Y., Hoon Lee, S., Min, S., et al. (2014).
One-step pipetting and assembly of encoded chemical-laden microparticles for high-
throughput multiplexed bioassays. Nat. Commun. 5, 3468. doi:10.1038/ncomms4468

Fan, T., Wang, G., Li, Y., and Wang, H. (2020). Ma-net: a multi-scale attention
network for liver and tumor segmentation. IEEE Access 8, 179656–179665. doi:10.1109/
access.2020.3025372

Gupta, A., Harrison, P. J., Wieslander, H., Pielawski, N., Kartasalo, K., Partel, G., et al.
(2019). Deep learning in image cytometry: a review. Cytom. Part A 95, 366–380. doi:10.
1002/cyto.a.23701

He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). “Mask r-cnn,” in Proceedings
of the IEEE international conference on computer vision, Venice, Italy, October 2017,
2961–2969.

Hu, L., Liang, H., Tang, J., Li, X., Huang, L., and Lu, L. (2022). Cutting-splicing data
augmentation: a novel technology for medical image segmentation. Available from:
https://arxiv.org/abs/2210.09099.

Hu, Z., Tang, A., Singh, J., Bhattacharya, S., and Butte, A. J. (2020). A robust and
interpretable end-to-end deep learning model for cytometry data. Proc. Natl. Acad. Sci.
117, 21373–21380. doi:10.1073/pnas.2003026117

Huang, H., Lin, L., Tong, R., Hu, H., Zhang, Q., Iwamoto, Y., et al. (2020). Unet 3+: a
full-scale connected unet for medical image segmentation. Available from: https://arxiv.
org/abs/2004.08790.

Lashkaripour, A., Rodriguez, C., Mehdipour, N., Mardian, R., McIntyre, D., Ortiz, L.,
et al. (2021). Machine learning enables design automation of microfluidic flow-focusing
droplet generation. Nat. Commun. 12, 25. doi:10.1038/s41467-020-20284-z

Lee, J., Bisso, P. W., Srinivas, R. L., Kim, J. J., Swiston, A. J., and Doyle, P. S. (2014).
Universal process-inert encoding architecture for polymer microparticles. Nat. Mater.
13, 524–529. doi:10.1038/nmat3938

McQuin, C., Goodman, A., Chernyshev, V., Kamentsky, L., Cimini, B. A., Karhohs, K.
W., et al. (2018). Cellprofiler 3.0: next-generation image processing for biology. PLoS
Biol. 16, e2005970. doi:10.1371/journal.pbio.2005970

Oktay, O., Schlemper, J., Folgoc, L. L., Lee, M., Heinrich, M., Misawa, K., et al. (2018).
“Attention u-net: learning where to look for the pancreas,”. arXiv preprint arXiv:
1804.03999. Available from: https://arxiv.org/abs/1804.03999 (Accessed April 11,
2018).

Pachitariu, M., and Stringer, C. (2022). Cellpose 2.0: how to train your own model.
Nat. Methods 19, 1634–1641. doi:10.1038/s41592-022-01663-4

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.
(2011). Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830.
doi:10.48550/arXiv.1201.0490

Pregibon, D. C., Toner, M., and Doyle, P. S. (2007). Multifunctional encoded particles
for high-throughput biomolecule analysis. Science 315, 1393–1396. doi:10.1126/science.
1134929

Rissin, D.M., Kan, C.W., Campbell, T. G., Howes, S. C., Fournier, D. R., Song, L., et al.
(2010). Single-molecule enzyme-linked immunosorbent assay detects serum proteins at
subfemtomolar concentrations. Nat. Biotechnol. 28, 595–599. doi:10.1038/nbt.1641

Ronneberger, O., Fischer, P., and Brox, T. (2015). “U-net: convolutional networks for
biomedical image segmentation,” in Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference, Munich, Germany,
October 5-9, 2015 (Cham: Springer), 234–241. Proceedings, Part III 18.

Sahin, M. A., Werner, H., Udani, S., Di Carlo, D., and Destgeer, G. (2022). Flow
lithography for structured microparticles: fundamentals, methods and applications.
Lab. Chip 22, 4007–4042. doi:10.1039/D2LC00421F

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,
et al. (2012). Fiji: an open-source platform for biological-image analysis.Nat. Methods 9,
676–682. doi:10.1038/nmeth.2019

Frontiers in Lab on a Chip Technologies frontiersin.org10

Sahin et al. 10.3389/frlct.2023.1248265

https://www.frontiersin.org/articles/10.3389/frlct.2023.1248265/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frlct.2023.1248265/full#supplementary-material
https://www.biorxiv.org/content/early/2023/09/22/2023.09.20.558669
https://doi.org/10.1101/2023.09.20.558669
https://doi.org/10.1039/D0LC00055H
https://doi.org/10.3390/info11020125
https://doi.org/10.1038/s41592-019-0612-7
https://doi.org/10.1186/gb-2006-7-10-r100
https://doi.org/10.1038/s41467-021-25221-2
https://doi.org/10.1021/acs.analchem.0c04184
https://doi.org/10.1039/d0lc00698j
https://doi.org/10.1038/ncomms4468
https://doi.org/10.1109/access.2020.3025372
https://doi.org/10.1109/access.2020.3025372
https://doi.org/10.1002/cyto.a.23701
https://doi.org/10.1002/cyto.a.23701
https://arxiv.org/abs/2210.09099
https://doi.org/10.1073/pnas.2003026117
https://arxiv.org/abs/2004.08790
https://arxiv.org/abs/2004.08790
https://doi.org/10.1038/s41467-020-20284-z
https://doi.org/10.1038/nmat3938
https://doi.org/10.1371/journal.pbio.2005970
https://arxiv.org/abs/1804.03999
https://doi.org/10.1038/s41592-022-01663-4
https://doi.org/10.48550/arXiv.1201.0490
https://doi.org/10.1126/science.1134929
https://doi.org/10.1126/science.1134929
https://doi.org/10.1038/nbt.1641
https://doi.org/10.1039/D2LC00421F
https://doi.org/10.1038/nmeth.2019
https://www.frontiersin.org/journals/lab-on-a-chip-technologies
https://www.frontiersin.org
https://doi.org/10.3389/frlct.2023.1248265


Schneider, C. A., Rasband, W. S., and Eliceiri, K. W. (2012). Nih image to
imagej: 25 years of image analysis. Nat. Methods 9, 671–675. doi:10.1038/nmeth.
2089

Shah, V., Yang, X., Arnheim, A., Udani, S., Tseng, D., Luo, Y., et al. (2023).
Amphiphilic particle-stabilized nanoliter droplet reactors with a multi-modal
portable reader for distributive biomarker quantification. bioRxiv. doi:10.1101/
2023.04.24.538181

Shorten, C., and Khoshgoftaar, T. M. (2019). A survey on image data augmentation
for deep learning. J. Big Data 6, 60. doi:10.1186/s40537-019-0197-0

Sommer, C., Straehle, C., Köthe, U., and Hamprecht, F. A. (2011). “Ilastik: interactive
learning and segmentation toolkit,” in 2011 IEEE International Symposium on
Biomedical Imaging: From Nano to Macro, Chicago, Illinois, March - 2 April 2011,
230–233. doi:10.1109/ISBI.2011.5872394

Song, S.W., Kim, S. D., Oh, D. Y., Lee, Y., Lee, A. C., Jeong, Y., et al. (2019). One-step
generation of a drug-releasing hydrogel microarray-on-a-chip for large-scale
sequential drug combination screening. Adv. Sci. 6, 1801380. doi:10.1002/advs.
201801380

Stringer, C., Wang, T., Michaelos, M., and Pachitariu, M. (2021a). Cellpose: a
generalist algorithm for cellular segmentation. Nat. Methods 18, 100–106. doi:10.
1038/s41592-020-01018-x

Stringer, C., Wang, T., Michaelos, M., and Pachitariu, M. (2021b). Cellpose: a
generalist algorithm for cellular segmentation. Nat. methods 18, 100–106. doi:10.
1038/s41592-020-01018-x

Takahashi, R., Matsubara, T., and Uehara, K. (2020). Data augmentation using
random image cropping and patching for deep CNNs. IEEE Trans. Circuits Syst. Video
Technol. 30, 2917–2931. doi:10.1109/tcsvt.2019.2935128

Wan, Z., Li, M., Wang, Z., Tan, H., Li, W., Yu, L., et al. (2023). Cellt-net: a composite
transformer method for 2-d cell instance segmentation. IEEE J. Biomed. Health Inf.,
1–15. doi:10.1109/jbhi.2023.3265006

Wu, C.-Y., Ouyang, M., Wang, B., de Rutte, J., Joo, A., Jacobs, M., et al. (2020).
Monodisperse drops templated by 3d-structured microparticles. Sci. Adv. 6, eabb9023.
doi:10.1126/sciadv.abb9023

Yang, Z., Zeng, X., Zhao, Y., and Chen, R. (2023). Alphafold2 and its applications in the
fields of biology and medicine. Signal Transduct. Target. Ther. 8, 115. doi:10.1038/s41392-
023-01381-z

Yelleswarapu, V., Buser, J. R., Haber, M., Baron, J., Inapuri, E., and Issadore, D. (2019).
Mobile platform for rapid sub–picogram-per-milliliter, multiplexed, digital droplet
detection of proteins. Proc. Natl. Acad. Sci. 116, 4489–4495. doi:10.1073/pnas.1814110116

Yi, J., Wu, P., Jiang, M., Huang, Q., Hoeppner, D. J., and Metaxas, D. N. (2019).
Attentive neural cell instance segmentation.Med. image Anal. 55, 228–240. doi:10.1016/
j.media.2019.05.004

Zhou, Z., Rahman Siddiquee, M. M., Tajbakhsh, N., and Liang, J. (2018). “Unet++: a
nested u-net architecture for medical image segmentation,” in Deep Learning in Medical
Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International
Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in
Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018 (Cham:
Springer), 3–11. Proceedings 4.

Frontiers in Lab on a Chip Technologies frontiersin.org11

Sahin et al. 10.3389/frlct.2023.1248265

https://doi.org/10.1038/nmeth.2089
https://doi.org/10.1038/nmeth.2089
https://doi.org/10.1101/2023.04.24.538181
https://doi.org/10.1101/2023.04.24.538181
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1109/ISBI.2011.5872394
https://doi.org/10.1002/advs.201801380
https://doi.org/10.1002/advs.201801380
https://doi.org/10.1038/s41592-020-01018-x
https://doi.org/10.1038/s41592-020-01018-x
https://doi.org/10.1038/s41592-020-01018-x
https://doi.org/10.1038/s41592-020-01018-x
https://doi.org/10.1109/tcsvt.2019.2935128
https://doi.org/10.1109/jbhi.2023.3265006
https://doi.org/10.1126/sciadv.abb9023
https://doi.org/10.1038/s41392-023-01381-z
https://doi.org/10.1038/s41392-023-01381-z
https://doi.org/10.1073/pnas.1814110116
https://doi.org/10.1016/j.media.2019.05.004
https://doi.org/10.1016/j.media.2019.05.004
https://www.frontiersin.org/journals/lab-on-a-chip-technologies
https://www.frontiersin.org
https://doi.org/10.3389/frlct.2023.1248265

	Deep learning based recognition of shape-coded microparticles
	1 Introduction
	2 Materials and methods
	2.1 Fabrication of shape-coded particles and image data acquisition
	2.2 Annotation and ground truth masks generation
	2.3 Database preparation for experiments and data splits
	2.4 Augmentation of datasets
	2.5 Training setup

	3 Results
	3.1 Five-shape multi-class segmentation
	3.2 Ten-shape multi-class segmentation

	4 Discussion
	4.1 Challenges of small unbalanced dataset
	4.2 False predictions on edges, annotation quality, and inner boundary annotation
	4.3 Augmentation for enhanced dataset utility
	4.4 Virtual test-based shape decision procedure
	4.5 Potential model-based improvements

	5 Conclusion
	Data availability statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


