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Almost 20 years ago, Nathan Blow published an article in Nature Biotechnology entitled
“Microfluidics: In Search of the Killer App” (Blow, 2007), surveying efforts to develop
integrated, automated microfluidic systems for nucleic acid, protein, and cell-based assays.
These systems would facilitate customized platforms for high-throughput analysis and
initiate wider adoption of microfluidics technology by life science researchers. At the time,
the future appeared to involve foundries providing made-to-order systems that were
fabricated by soft lithography in PDMS (polydimethylsiloxane) silicon polymer. The
search for a lab-on-a-chip “killer-app” has been a lively topic of discussion. Calcedo
and Brady (2016) surmised that the challenge for microfluidics was instead to bridge
technical gaps so that the adoption of microfluidics would yield significant operational
advantages and/or substantial cost reductions, rather than finding a killer app.

Concurrent to the development of these specialized microfluidic systems as research
tools there have been decades-long efforts to develop microfluidic lab-on-a-chip devices for
point-of-care (POC) diagnostics. Lateral flow strips for immunoassays, such as home
pregnancy tests, COVID-19 antigen tests, and drug-of-abuse tests, are premier examples of
widely used, commercialized POC devices. The challenge lies in implementing more
complicated “molecular” diagnostics (such as nucleic acid amplification tests) that
integrate sample processing, enzymatic amplification, and real-time detection in a low-
cost, streamlined, minimally instrumented device.

Some comparisons between microfluidics and microelectronics, the most consequential
technology of the last half century are instructive. Microelectronics has largely converged
into a consolidated technology base: transistor devices are made of silicon and a handful of
other materials, made using well-established, industry-wide methods, to realize
implementations of a standard set of functions (e.g., logic, data storage, and signal
processing). Microfluidic systems, on the other hand, are still made from a wide variety
of materials and diverse fabrication methods, with no standard device-building block
component similar to a transistor, and are applied to an expanding scope of functions
ranging from immunoassays and sample processing to tissue and cell culture.

Four articles in the Frontiers Research Topic Celebrating 1 Year of Frontiers in Lab-on-
a-Chip Technologies underscore the wide range of applications and characteristics of
microfluidics technology, in ways and areas perhaps not anticipated in the first decades of
the field.
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In “Point-of-care testing: a critical analysis of the market and
future trends” Khan et al. surveyed wearable sensors (e.g., patches,
wristbands, bandages, and contact lenses) in addition to microfluidic
technology. The authors offered several avenues for expanding
microfluidics in the point-of-care diagnostics realm, including
integrating artificial intelligence and machine learning with
point-of-care technology (such as microfluidic lab-on-a-chip
devices and sensors). With improvements in sensitivity and
compliance with more stringent clinical standards, the authors
are optimistic about POC technology making significant inroads
as an alternative to traditional clinical testing. While POC
diagnostics focus on infectious diseases, wider use in non-
communicable diseases and continuous patient monitoring offers
opportunities for dramatic changes in healthcare delivery.

A second article, “An economical self-coalescing microfluidic
device with an observable readout” by Kamat et al., is an example of
exploiting the features of fluid flow phenomena at the microscale to
implement a minimally-instrumented multiplexed assay. Dried
reagents are spotted in the channel of the chip for multiple
assays and are reconstituted by the infusion of a liquid. By
controlling device geometry, self-coalescence phenomena
maintain reagent separation, allowing for multiple simultaneous
colorimetric tests. Further, a simple fabrication technology involving
laser-cut silicone tape over a coverslip with spotted reagents was
used by the authors.

Tissue chips are microfluidic systems used as experimental
platforms that simulate physiological conditions. For example,
they can be used to study the response of cells immobilized in
channels to microgravity, radiation, drug stimulation, toxins, and
blood infusions. In a third article, Taylor et al. (“An analysis of
trends in the use of animal and non-animal methods in biomedical
research and toxicology publications”) surveyed the use of Non-
Animal Models (NAMs) in biomedical research at the intersection
of microfluidics, lab-on-a-chip and in vitro studies that replace in
vivo animal models. The motivation for using NAMs in research is
to avoid the use of animals, shorten study times, and lower costs.
Typically, NAMs are the first phase of projects, after which findings
are confirmed with in vivo studies. Research areas include lung
disease, heart disease, breast cancer, blood cancer, diabetes,
toxicology, and neurodegenerative diseases.

Continuing on the theme of the use of microfluidic platforms for
culturing tissues, in the fourth and final article, Jogdand et al.
(“Organs in orbit: how tissue chip technology benefits from
microgravity, a perspective”) reviewed the use of tissue chips
(also referred to as “organ-on-a-chip”) in space. These systems
have the specific objective of predicting health risks to astronauts,
and have sparked wider interest because microgravity can simulate
accelerated aging and other disease processes. Moreover, low gravity

can increase the permeability of the blood-brain barrier, allowing the
passage of chemotherapeutics. The authors provided a perspective
on microgravity tissue chip technology for the musculoskeletal,
cardiovascular and nervous systems. This research area
exemplifies how microfluidics enables and facilitates the
simulation and probing of model systems to investigate disease
mechanisms and assess therapies. The field of microfluidics may well
further divide into two sectors: a POC sector focused on minimally
instrumented, multiplexed molecular assays made by high-volume
manufacturing processes (“lab-on-a-chip”), and a customized
analytical systems sector (“chip-in-a-lab”) with increasingly
sophisticated designs and ambitious performance aims, including
organ-on-a-chip and high-throughput, highly-instrumented
analysis platforms (Streets and Huang, 2013; Mohammed et al.
, 2015).
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