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Introduction: Semantic relations are crucial in various cognitive processes,

highlighting the need to understand concept interactions and how such relations

are represented in the brain. Psycholinguistics research requires computationally

grounded datasets that include word similarity measures controlled for the

variables that play a significant role in lexical processing. This work presents a

dataset for noun pairs in Basque and European Spanish based on twowell-known

Natural Language Processing resources: text corpora and knowledge bases.

Methods: The dataset creation consisted of three steps, (1) computing four

key psycholinguistic features for each noun; concreteness, frequency, semantic,

and phonological neighborhood density; (2) pairing nouns across these four

variables; (3) for each noun pair, assigning three types of word similarity

measurements, computed out of text, Wordnet and hybrid embeddings.

Results: A dataset of noun pairs in Basque and Spanish involving three types

of word similarity measurements, along with four lexical features for each of

the nouns in the pair, namely, word frequency, concreteness, and semantic and

phonological neighbors. The selection of the nouns for each pair was controlled

by the mentioned variables, which play a significant role in lexical processing.

The dataset includes three similarity measurements, based on their embedding

computation: semantic relatedness from text-based embeddings, pure similarity

fromWordnet-based embeddings and both categorical and associative relations

from hybrid embeddings.

Discussion: The present work covers an existent gap in Basque and Spanish in

terms of the lack of datasets that include both word similarity and detailed lexical

properties, which provides a more useful resource for psycholinguistics research

in those languages.
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1 Introduction

Semantic similarity is a measure of distance between items determined by the

closeness of their meanings. It represents a type of relationship grounded in shared

characteristics between concepts. For instance, “cat” has more marked semantic similarity

with “tiger” than with “rhinoceros.” In contrast, semantic relatedness, frequently used

interchangeably with semantic similarity, denotes any relation between concepts, not

necessarily taxonomical. For example, “cat” is related to “tiger,” “milk,” and “veterinary.”

In short, semantic similarity offers a metric of categorical semantic relations, whereas

semantic relatedness is closer to depicting associative relations. For now, we will use
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these two concepts interchangeably and show how the metrics used

in the present dataset constitute independent proxies for different

types of semantic relations.

Collins and Loftus (1975) proposed a spreading activation

theory of semantic processing, suggesting that our mental lexicon is

organized into a network of concepts linked by semantic relations.

This network allows for the co-activation of related concepts based

on shared properties. For example, concepts within the same

category (e.g., vehicles or colors) are more closely interlinked than

those with fewer shared properties. They explain that the degree

of relatedness between concepts is determined by the number

and strength of the connections between them. This implies that

concepts with many common properties will activate one another

more readily, facilitating access to related information during

cognitive tasks.

Psycholinguistic research has made significant efforts to

highlight the important role that semantic relations play in various

cognitive processes by helping us understand how concepts interact

and influence each other. For instance, studies show that memory

recall — the ability to remember specific information, such as word

pairs — is strongly modulated by the semantic relations between

the items (Kenett et al., 2017; Kowialiewski and Majerus, 2020).

This suggests that related word pairs are more easily retrieved than

unrelated ones, highlighting the impact of semantic connections

on memory performance. Additionally, semantic relations affect

mental imagery, as individuals often visualize concepts based on

their interconnectedness. For example, when asked to imagine a

“bird,” a person might also visualize “nest” or “feather” due to

the semantic relations they share. Research indicates that mental

imagery plays a significant role in cognitive processes, facilitating

not only recall but also problem-solving and comprehension by

providing a visual representation that aids in organizing and

manipulating information (Kosslyn et al., 2006). Semantic relations

similarly influence language comprehension; the ability to predict

the next word in a sentence is closely tied to the relations between

the elements involved. Stronger semantic relations enhance the

co-activation of related concepts, which promotes anticipatory

processing and increases predictability (Federmeier and Kutas,

1999; Federmeier, 2007). For example, in the sentence “The cat sat

on the...,” the word “mat” is more predictable than “cloud” due to

the stronger semantic association with “cat.”

Taxonomic and associative relations significantly influence how

the brain processes semantic information, affecting processing in

distinct ways. Sass et al. (2009) showed that while both taxonomic

(e.g., “cat” and “dog”) and associative (e.g., “cat” and “wool”)

relations facilitate faster lexical decisions, thematic relations elicit

stronger priming effects and engage distinct neural networks

compared to taxonomic ones. Similarly, evidence from aphasia

studies supports a neural dissociation between these relations.

Schwartz et al. (2011) found that taxonomic errors in post-

stroke aphasia localized to the left anterior temporal lobe, whereas

thematic errors localized to the left temporoparietal junction. These

findings suggest that the brain processes taxonomic and thematic

knowledge through distinct neural pathways, reinforcing the idea

that these semantic relations are represented differently in the

human brain.

Studying semantic relations has become a significant focus in

both Natural Language Processing (NLP) and psycholinguistics.

Computational tools have been developed to gauge the strength

of semantic connections between concepts, facilitating various

cognitive experiments. Two important resources in NLP are

text corpora and knowledge bases (KBs), both of which are

valuable in investigating semantic similarity. In the case of

KBs, they provide a quantitative and structured framework for

representing the meanings of words, enhancing our understanding

of semantic relations.

This work presents two automatically calculated semantic

similarity datasets restricted to nouns, to provide useful material

to build up psycholinguistic experiments; one in Basque and the

other in Spanish. The similarity measurements of noun pairs were

computed using vectors or embeddings built up in text corpora

and KB. To capture different nuances of semantic similarity

between noun pairs, in this work we employed three types of

word representations; text embeddings, KB-based embeddings, and

hybrid embeddings. The selection of noun pairs was conducted

by controlling for length, word frequency, concreteness, and

the number of semantic and phonological neighbors due to the

widely proven effect of these variables in language processing.

Controlling for these linguistic features allows leveraging crucial

lexical properties within pairs of nouns beyond semantic similarity,

broadening the usability of the dataset and the interpretation of

the results.

Additionally, the unique linguistic properties of Basque suggest

the development of materials that may be of key interest for

psycholinguistic research. In particular, Basque (a language isolate)

is an agglutinative language, as opposed to the fusional nature of

Spanish. This implies that in Basque noun formation strategies,

the morphological processes of derivation and compounding

are both productive and involve clear addition and stacking

of morphemes, creating longer but highly transparent words in

meaning (Hualde and De Urbina, 2011). In contrast, Spanish

derivation and compounding processes result in shorter and

less transparent units. Additionally, unlike in Spanish, Basque

compounds are a very frequent strategy for word creation, with

compounds that have their semantic head either first or last in

the compound. This provides an excellent ground for investigating

whether lexical decomposition takes place in lexical access and

whether the position of the semantic head in the compound

has any effect on parsing. Acknowledging these distinct processes

of lexical construction and the different linguistic typologies of

these languages will enhance our understanding of how semantic

relations operate across diverse linguistic contexts, ultimately

enriching the field of psycholinguistics.

The paper is structured as follows: first, a summary of the

related work of the current research; second, motivation of the

inclusion of the linguistic features in the creation of the dataset;

third, material and methods utilized in the paper; fourth, results

obtained in several stages of the dataset creation; fifth, conclusion.

2 Related work

Psycholinguistics and NLP have been closely linked for a

long time. In semantic similarity computation, two methods

have been mainly used; KB-based and embedding-based. The

former treats KBs as graphs and exploits their complete structural

information, so that similarity measurements are based on the KB

taxonomy. The latter encodes word meaning in a numeric vector
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or embedding in a Euclidean space following the Distributional

Hypothesis (Harris, 1954). Thus, embeddings latently encode

the semantic (and also syntactic) features, and therefore, offer

comparable representations for words.

Embeddingmeasurements have revolutionized the field of NLP,

increasing model accuracy significantly in several tasks such as

named entity recognition (Pennington et al., 2014; Lample, 2016),

text classification (Zhang et al., 2015), coreference resolution (Clark

and Manning, 2016) or machine translation (Lample et al., 2017).

Furthermore, they have surpassed KB-based methods in the word

similarity task, proving to be robust resources (Lastra-Díaz et al.,

2019).

In recent years, several works have given meaningful insights

into the correspondence between word-embedding features and

human cognition. Despite the misconceptions in understanding

word embedding from a cognitive perspective (Günther et al.,

2019), they remain the most meaningful proxy for human semantic

representations. Thus, the performance of embeddings in the

semantic similarity tasks has gained attention lately in combination

with a variety of experimental methods, such as semantic priming

(Ettinger and Linzen, 2016; Auguste et al., 2017; Hollenstein et al.,

2019; Farhy and Veríssimo, 2019; Chersoni et al., 2021), brain

imaging (Jain and Huth, 2018; Rodrigues et al., 2018; Toneva and

Wehbe, 2019; Djokic et al., 2020; Zhang et al., 2024), eye-tracking

(Luke and Christianson, 2018; Hollenstein et al., 2019; Kun et al.,

2023; Zhang et al., 2024).

Mandera et al. (2017) proved that word vectors successfully

explain semantic priming data, stating that they equal or

outperform human-rated association datasets or feature norms.

Salicchi et al. (2021) showed a strong correlation between similarity

measurements of contextual and non-contextual embeddings and

eye-tracking data collected from participants reading two English

corpora. Hayes and Henderson (2021) explored the relationship

between the visual scene and attention, grounding the semantic

scene representation with word embeddings and evidencing the

strong relationship between the semantic similarity of a scene

region and the gaze-fixation pattern of the viewers.

Other psycholinguistic research has gauged the semantic

distance of words via KB-based methods, as the latter provides a

means of quantifying the relationships between words and concepts

within the semantic structure of a language. Kenett et al. (2017)

created a Hebrew KB, quantifying semantic distance as the path

length between word pairs by counting the number of steps for

traversing from one word to another in the KB. They stated that

a distance of 4 was the turning point for the performance in the

semantic relatedness judgement task and subsequent recall from

memory. Similarly, Benedek et al. (2017) proved that a KB based

on semantic relatedness judgements was feasible and valuable to

test the associative and executive accounts of creativity. Likewise,

Jelodar et al. (2010) modeled brain activation patterns measured

with fMRI using semantic feature vectors of concrete nouns based

on Wordnet (Miller, 1995). It outperformed previous models.

Recent years have seen increased interest in the relationship

between semantic relations and the human mind, particularly

concerning cognitive aging. Advances in understanding the

linguistic and semantic changes throughout the adult lifespan have

fundamentally shaped the mental lexicon — the repository of

lexical and conceptual representations. A crucial element of this

research is the use of quantitative methods to measure semantic

relations, providing valuable insights into language processing

dynamics. Ongoing debates address the sources of linguistic and

semantic changes, specifically the roles of environmental exposure

and cognitive mechanisms involved in learning, representation,

and retrieval (seeWulff et al., 2019).Wulff et al. (2022) demonstrate

that life experiences influence the structure and flexibility of

semantic knowledge, revealing that individual and age differences

in semantic networks impact cognitive processes. Their findings

indicate that older adults possess lexical networks with smaller

average degrees and longer path lengths compared to younger

adults, leading to greater variability in lexical representations.

These studies underscore the dynamic nature of semantic relations

throughout the lifespan and their implications for cognitive

functioning.

Broderick et al. (2021) reveal that older adults employ different

predictive mechanisms when processing semantic information

compared to younger adults. Their use of semantic dissimilarity

models based on embeddings shows that, while both age groups

rely on context-based lexical predictions, older adults exhibit

reduced pre-activation of semantic features, affecting their ability

to comprehend natural speech effectively. Additionally, Cosgrove

et al. (2021) examine age-related differences in the flexibility of

semantic memory networks through percolation analysis, finding

that older adults’ networks are less adaptable, whichmay contribute

to declines in language production despite a rich store of semantic

knowledge. Collectively, these studies highlight the value of

quantitative methods in elucidating the complexities of semantic

relations and their relevance to cognitive processes across different

age groups.

There has also been substantial progress in developing

psycholinguistic datasets for English that include both word

similaritymeasures and detailed lexical properties. For instance, the

English Lexicon Project (Balota et al., 2007) offers comprehensive

lexical and psycholinguistic data, including word frequency,

orthographic and phonological neighborhood sizes, and lexical

decision times. Similarly, SUBTLEX-US (Brysbaert and New,

2009) provides word frequency data based on U.S. film subtitles,

making it a reliable source for spoken language frequency counts.

The CELEX Lexical Database (Baayen, 1995) further enriches

lexical studies with detailed morphological, phonological, and

frequency information. Other notable English resources include the

Bristol Norms (Stadthagen-Gonzalez and Davis, 2006), which offer

concreteness, imageability, and familiarity ratings. Additionally,

the British Lexicon Project (Keuleers et al., 2012) provides

valuable lexical decision data for British English. Several word

similarity datasets in English have been extended to other

languages, including RG65 (Rubenstein and Goodenough, 1965),

WordSIm353 (Finkelstein et al., 2001), Simlex999 (Hill et al.,

2015),1 MTURK287 (Radinsky et al., 2011), Rarewords (Luong

et al., 2013), and MEN (Bruni et al., 2014).

Despite the increasing interest in psycholinguistic datasets,

there remains a significant gap when it comes to resources available

for Basque and Spanish. For Spanish, EsPal dataset (Duchon

et al., 2013) provides extensive lexical information such as word

frequency, orthographic and phonological neighborhood size, and

1 This dataset also includes concreteness measurements along with the

similarity values.
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concreteness ratings but it does not focus specifically on word

similarity. Additionally, SUBTLEX-ESP (Cuetos et al., 2011) offers

word frequency counts based on Spanish subtitles, providing a

valuable resource for more colloquial language use. There are

also three-word similarity datasets in Spanish, namely, SimLex-

999 (Etcheverry and Wonsever, 2016), Wordsim353 (Hassan and

Mihalcea, 2009) and RG65 (Camacho Collados et al., 2015),

but these lack essential lexical information. For Basque, there

only available word similarity datasets, RG65, and WordSim353

(Goikoetxea et al., 2018), are similarly limited in scope. To date,

no dataset exists in either Spanish or Basque that integrates both

word similarity measures and crucial lexical properties. To address

these gaps, our study introduces computationally grounded word

similarity datasets for both Basque and Spanish that integrate not

only word similarity measures but also crucial lexical properties

such as frequency, concreteness, and neighborhood size. This

combined approach provides a more comprehensive resource for

psycholinguistic research in these languages.

3 Linguistic features included in the
dataset

Although the core of this dataset is word similarity calculation,

the dataset is controlled by four additional features: concreteness,

frequency, semantic neighborhood density and phonological

neighborhood density. The following sections summarize the

scientific evidence highlighting the significant role of these

variables in psycholinguistics and NLP. A somewhat deeper

comprehension of the connections between various linguistic

features and word similarity from a cognitive viewpoint is needed.

This dataset may lead to gaining insight into ongoing studies.

3.1 Concreteness

Concreteness is a term to refer to the degree to which a

word denotes a tangible thing. This measurement was introduced

by Paivio (1971), and has been proven to play a role in several

aspects, such as working memory (Mate et al., 2012), embodied

cognition (Barsalou, 1999; Fischer and Zwaan, 2008; Hauk et al.,

2004), and neural representations on word processing (Wang et al.,

2010). The literature suggests that concrete words show thicker

links to associated semantic information and involve visual imagery

processes. Accordingly, they elicit faster response times and larger

N400 and N700 electrophysiological signals (Schwanenflugel, 2010;

Wang et al., 2010). Remarkably, when contextual information and

mental imageability are controlled, response times become faster

for abstract words. However, the neural correlates do not change,

suggesting that concrete words involve more significant semantic

processing during meaning activation (Barber et al., 2013).

Due to the relevance of concreteness in psycholinguistic

research, several works on NLP have computationally predicted

concreteness values using word embeddings (Ljubešić et al., 2018;

Charbonnier and Wartena, 2019; Incitti and Snidaro, 2021), which

have been proven to be useful in tasks like metaphor detection

(Tsvetkov et al., 2014; Alnafesah et al., 2020) and sentiment

analysis (Rothe et al., 2016; Long et al., 2019). In Long et al.

(2019), for example, the authors propose a cognition-grounded

attention model in sentiment analysis, considering concreteness for

leveraging the model’s attention mechanism. Further, concreteness

seems to be gaining more attention in the NLP field, as some

concreteness norms rated by humans have been published in

various languages lately, the English (Brysbaert et al., 2014b) and

Dutch (Brysbaert et al., 2014a) ones being quite extensive, and the

Croatian (Ćoso et al., 2019), Russian (Solovyev et al., 2022), French

(Bonin et al., 2018) and Spanish (Guasch et al., 2016) ones rather

more reduced.

3.2 Word frequency

Word frequency is a critical factor in both psycholinguistics

and NLP. In psycholinguistics, it is established that the frequency

with which a word occurs in language significantly influences

how individuals process and recall information. This effect has

been extensively studied concerning lexical access and recall tasks,

which are essential for understanding memory usage. Higher word

frequency leads to faster reaction times and increased accuracy in

tasks requiring word recognition and recall (Balota and Chumbley,

1984; Balota et al., 2004; Brysbaert and New, 2009; MacLeod and

Kampe, 1996; Gregg, 1976; Kinsbourne and George, 1974).

Online studies have shown that words with higher frequencies

elicit shorter gaze fixation durations during reading, indicating that

readers can process these words more efficiently (Joseph et al.,

2013; Raney and Rayner, 1995). Raney and Rayner (1995) found

that participants made shorter fixations on high-frequency words

compared to low-frequency words during both the first and second

readings of text passages. The consistent effect across both readings

indicates that even when encountering familiar text, the inherent

frequency of the words continues to influence cognitive processing.

Moreover, this phenomenon extends beyond reading. Both

Dahan et al. (2001) and Magnuson et al. (2007) employed the

visual world paradigm to explore the impact of word frequency on

language processing. Dahan et al. (2001) demonstrated that higher-

frequency names resulted in shorter fixation latencies on referent

pictures, indicating that participants identified and responded to

objects associated with high-frequency words more quickly. In

contrast, Magnuson et al. (2007) revealed that early and continuous

effects of frequency facilitate the activation of high-frequency words

while inhibiting competition from phonologically similar low-

frequency words. Together, these studies underscore the crucial role

of word frequency in guiding attention and processing efficiency

across both spoken language comprehension and reading.

This aligns with electrophysiological data, where earlier and

greater neural responses are recorded for high-frequency words,

reflecting their ease of access in the mental lexicon (Strijkers et al.,

2010). This indicates that word frequency not only affects memory

retrieval but also influences the real-time processing of language.

For a comprehensive review of these effects, see Brysbaert et al.

(2018).

From a computational perspective, word frequency is also a

fundamental feature in Text Meaning, and Information Retrieval

tasks, among others. Language structure provides information

about how important a word is in a text or corpus by measuring

its occurrences. In NLP, it can be used in a wide variety of tasks,

such as to determine the most frequent words in a language

(Spink et al., 2001), to identify rare words (Dave et al., 2003), to
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synthesize information (Haghighi and Vanderwende, 2009) or to

answer questions automatically (Koehn and Knowles, 2017).

3.3 Semantic neighborhood density

The semantic structure of the lexicon has always played an

essential role in psycholinguistics and NLP, as the organization

of knowledge is a pivotal aspect of studying meaning. Semantic

neighborhood density2 (SND) of a word correlates with several

cognitive processes and their respective brain activations but

remains a hitherto poorly explored field.

Different semantic neighborhood size measures have been

used in lexico-semantic research (e.g., metrics based on feature

semantics, co-occurrence, and categorical relations), showing

diverging effects of SND in lexical processing. For instance, when

SND is measured considering semantic associations between words

(or word co-occurrence is taken as a proxy of it), words with large

semantic neighborhoods generate faster responses than those with

sparse semantic neighborhoods in lexical decision tasks (Yates et al.,

2003; Buchanan et al., 2001; Locker et al., 2003). Conversely, when

featural semantic information is taken as a base for calculating the

density, words with sparse neighborhoods are related with faster

recognition and naming (Rabovsky et al., 2016; Reilly and Desai,

2017). In line with these findings, Abdel Rahman and Melinger

(2007) shows that associative relations facilitate word processing,

whereas categorical connections between words create interference.

Duñabeitia et al. (2008) analyze the influence of the number of

associates of a word in four different visual word recognition

tasks, showing that the words with higher amount of associates

were processed faster. Consequently, different metrics of SND tap

different constructs that need to be understood as complementary.

From an NLP perspective, KBs such as WordNet (Miller,

1995), FrameNet (Baker et al., 1998), BabelNet (Navigli and

Ponzetto, 2010) or even Wikipedia provide a structured and

quantifiable framework for words. These resources capture various

semantic relations (e.g., synonymy, hypernymy, and meronymy)

that strongly correlate with our mental lexicon, particularly in

terms of semantic relatedness (Rogers and McClelland, 2004;

Spivey, 2008; Boden, 2008; Jones et al., 2015). Specifically, this

correlation refers to how these semantic relations inform our

understanding of word meanings and relationships in human

cognition.

While SND appears relevant to cognitive processes, the extent

to which SND specifically impacts model performance in NLP

has not been extensively explored. This lack of research highlights

a significant gap in the literature regarding the implications of

SND for NLP applications, suggesting that further investigation

could yield valuable insights into the relationship between SND and

human language processing.

3.4 Phonological neighborhood density

As with the SND, Phonological Neighborhood Density (PND)

of words affects lexical processing, which indicates a need to

2 Following the terminology in this field, we will refer to the size of

the neighborhood when using the term “density,” both for semantic and

phonological neighborhoods.

control for such variables when designing a study. A word’s

PND refers to the number of words in the lexicon that can be

formed by substituting a single phoneme of the target word.

Likewise, orthographic neighborhood density (OND) is defined by

the number of words that can be formed by replacing a single

letter of the target word (Colheart et al.’s N metric) (Coltheart

et al., 1977). These two measures imply considerable differences

in opaque languages, such as English, Arabic, or French, because

phonemes do not present a one-to-one mapping into graphemes.

Some studies on opaque languages have argued that neighborhood

effects reflect phonological rather than orthographic similarity

(Mulatti et al., 2006; Yates et al., 2004); when orthographic

similarity is controlled, phonological similarity still affects lexical

decision times. In contrast, PND and OND measures can be

used interchangeably in shallow languages such as Basque and

Spanish, as both languages exhibit a direct correspondence between

phonemes and graphemes, with a few exceptions. Consequently, we

adopted OND as a measure of phonological neighborhood density

in our study, using orthographic neighborhood data to effectively

estimate phonological neighborhood density.

The influence of phonologically related words has been

explored in different studies of phonological neighborhood density,

and it has shown relevant effects in task-dependent language

processing. In particular, PND seems to exert competitive effects

on word recognition tasks, but facilitatory effects in production

tasks (Dell and Gordon, 2011; Gahl et al., 2012). In spoken word

recognition, the acoustic stimulus activates potential candidates

that are phonologically similar. Thus, the larger the phonological

neighborhood of a word, the harder it is to recognize the

target word (Luce and Pisoni, 1998). Paradoxically, in word

production, dense phonological neighbors seem to ease production.

For example, (Vitevitch, 2002) found facilitatory effects of

neighborhood density in picture naming in a study that controlled

other key factors such as frequency, neighborhood frequency,

familiarity and phonotactic probability. Although most studies

have attested facilitatory effects in production, such effects are less

consistent than in recognition tasks.

4 Materials and methods

This section is dedicated to describing the materials and

methods used to create the computationally grounded Basque and

Spanish datasets. Section 4.1 summarizes the text- and knowledge-

based corpora and the three types of word representations that

form the foundation of the datasets, while Section 4.2 outlines the

procedure for creating the datasets.

4.1 Materials

Two primary NLP sources of semantic information have been

employed to create the Basque and Spanish semantic similarity

datasets based on embeddings; KBs and text corpora. The former,

the multilingual version of Wordnet (Miller, 1995) being used for

its reliability as a KB in NLP and the abundance of associated

libraries and tools. Table 1 summarizes the corpora and their

derived embeddings which constitute the core of the resources in

this work:

Frontiers in Language Sciences 05 frontiersin.org

https://doi.org/10.3389/flang.2024.1458887
https://www.frontiersin.org/journals/language-sciences
https://www.frontiersin.org


Goikoetxea et al. 10.3389/flang.2024.1458887

TABLE 1 Acronyms along with the description of the main resources used

in this work.

Acronym Description

Corpora txt Text corpora

kb Wordnet-based pseudo-corpora

embeddings FTtxt fasText over text corpora

FTkb fasText over wordnet-based pseudo-corpora

FThyb Combination of previous two embeddings

The first group includes two types of corpora, KB and text corpora (kb and txt, respectively).

The second group describes the types of embeddings, namely fastText over text corpora,

over wordnet pseudo-corpora and the meta-embeddings, which combine the first two types

(TFtxt , TFkb and FThyb , respectively).

The next sections detail the characteristics of the resource

mentioned in Table 1, namely, Wordnet, text and KB-based

corpora and the three types of word embeddings.

4.1.1 Wordnets and NLTK toolkit
Wordnet (Miller, 1995) is an English lexical database organized

by concept and meaning. Specifically, lexical forms of nouns,

verbs, adjectives, and adverbs are grouped into sets of cognitive

synonyms called synsets, each expressing a language-independent

concept. Furthermore, each synset is linked to several synsets via

semantic relations such as hypernymy, hyponymy, meronymy, and

antonymy, thus creating a semantic network.

The semantic structure ofWordnet gives us a robust framework

for the present work. First, the nature of the semantic information

it conveys around words and concepts allows for two of the

aforementioned features to be assigned to each word of the dataset;

SND and concreteness. Second, the semantic structure of the

WordNet grants coding in two of the three types of embeddings

employed in this work, namely wordnet and hybrid embeddings

(see Section 4.1.3).

We have used the Open Multilingual Wordnet (OMW)3 which

is linked to the Princeton WordNet 3.0 (PWN).4 OMW extends

the former English Wordnet to 34 languages, including Basque

and Spanish, and uses the PWN synset structure thus mapping

the lexicalizations of all languages into the same semantic network.

This extension method based on English Wordnet’s structure is

called expand-approach.5 We have used Python NLTK toolkit6 to

extract concreteness and SND features from Wordnet synsets (see

Section 4.2.1), for both Basque and Spanish.

Alongside the KB Wordnet, we have used language corpora

as a complementary semantic information resource, which is

introduced in the next section.

3 https://compling.hss.ntu.edu.sg/omw/

4 https://wordnet.princeton.edu/

5 In this paper, we will refer to the original PWN and the one used in this

work (Wordnet 3.0) as “Wordnet.” In contrast, we will use “wordnet” for the

rest which derive from PWM such as the Spanish and Basque ones.

6 https://www.nltk.org/howto/wordnet.html

4.1.2 Corpora
In the following section, we describe the two

types of corpora used during the construction of the

dataset; the text corpora and the wordnet-based KB

pseudo-corpora.

4.1.2.1 Text corpora

Text corpora are collections of vast amounts of texts,

being usually annotated (e.g., British National Corpus)7 or even

syntactically parsed (e.g., Penn TreeBankMarcus et al., 1993). Plain

text corpora with no structure were used to create this dataset. The

use of plain text has allowed the greater use of text corpora in the

computation of the relationships between words and their contexts

via word occurrence. Thus, from the corpora, we directly calculated

the similarity betweenwords by using word embeddings. In the case

of Basque, it was also been used for extracting word frequencies (see

Section 4.2.1).

In Spanish, we have employed the readily available 2018

Wikipedia dump text corpora,8 extracting the text from the

dump using a script.9 Since the size of Wikipedia is insufficient

for building a large corpus in low-resourced languages such

as Basque, web crawling was used to complement the corpora

in this language, since it is an effective method for collecting

texts to compensate for this deficiency (Leturia, 2012). Thus

for Basque, we have employed the publicly available Euscrawl

corpus10 (Artetxe et al., 2022).

Both Basque and Spanish corpora were pre-processed with the

standard procedure, that is, lowercase and tokenization. Token

sparsity in Basque, as an agglutinative language, was avoided

with an in-house stemmer. The final Spanish and Basque corpus

comprises 608 and 288 million tokens, respectively.

4.1.2.2 Knowledge-based corpora

This kind of corpora is not as known as text corpora, but

it has recently gained some attention in the NLP field (Perozzi

et al., 2014; Xu et al., 2018). The knowledge-based corpora latently

contain the semantic structure of a KB (in our case Basque or

Spanish wordnets), and we have dubbed it as pseudo-corpora

in the present work because it is not human-understandable.

This pseudo-corpora represents concepts and lexicalizations of

knowledge bases in a much more compact format than traditional

methods. As explained in the following section, the pseudo-corpora

were processed by a neural network model to encode the semantic

structure of Basque or Spanish wordnets in a continuous vector

space.

To do this, we applied the monolingual method for English

introduced by Goikoetxea et al. (2015), but in the Basque and

Spanish settings. This technique uses a Monte Carlo method to

compute the PageRank algorithm (Avrachenkov et al., 2007). The

algorithm considers the KB as an undirected graph comprised of

concepts and links among concepts. It needs a dictionary which

associates words with concepts, as well as a damping factor α that

7 https://www.english-corpora.org/bnc/

8 https://linguatools.org/tools/corpora/wikipedia-monolingual-corpora/

9 xml2textx available on the same site. The content of tables and maths

have been deleted.

10 https://ixa.ehu.eus/euscrawl/
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TABLE 2 Wordnet sizes for English (EN), Spanish (ES), and Basque (EU).

Lexicalizations Synsets

EN 147,306 136,334

ES 53,039 55,814

EU 26,701 30,464

Number of lexicalizations and synsets in the middle and rightmost columns, respectively.

determines the continuity of the random walk and the maximum

number of walks.

For creating every line of pseudo-corpus, the algorithm starts

in a random concept and launches a random lexical form of the

concept via the dictionary. Afterwards, it decides whether to jump

to another concept11 and to launch a random lexical form of the

latter, or stop the walk and start over a new walk. Finally, if the

number of walks reaches its maximum, the process ends. Note that

the word is fed to a text file whenever the method launches a lexical

form in the walk.

Each line of the following example shows a different walk

of the monolingual algorithm in Wordnet 3.0, which is used by

Goikoetxea et al. (2015). In this case, every walk has a different

length, and each jump from concept to concept has launched a

random lexicalization. It is worth mentioning that this pseudo-

corpus is not human-readable, but every walk gathers semantically

related words, so that implicitly it contains Wordnet’s structure.

The following example shows five random walks from an English

Wordnet pseudo-corpus:

storyteller liar beguiler grifter dissimulation

revitalize strength delicate ethereal

paved patio terrace house living_room home

swimming dive

backlog fire re-afforest forest woods rainforest

As mentioned before, the monolingual version of this method

is adapted to the Basque and Spanish setup, using the dictionaries

of both languages from OMW; hence, aligned with Wordnet 3.0

semantic structure. This means that the former English lexical

forms have been translated to the target language, but the semantic

structure remains intact. While maintaining the original semantic

structure when translating WordNet’s English lexicon into Spanish

and Basque facilitates consistency, it introduces biases that may

overlook language-specific semantic associations; ideally, custom-

built WordNets for these languages would be more accurate, but

we account for this bias in our analysis.

The resulting size of wordnet is not the same for every language,

since expand-approach wordnets do not have the same number of

lexicalizations as the former English Wordnet 3.0. As shown in

Table 2, Basque and Spanish wordnets’ sizes are much smaller than

the original one.

The difference in size of the semantic structure and the

number of lexical forms in Basque and Spanish directly impacts

the dimension of the wordnet-based corpora in both languages.

11 This will depend on the parameter α, which is set to 0.85 as indicated by

Goikoetxea et al. (2015).

To prevent saturation and redundant information as described by

Goikoetxea et al. (2015, 2018), the sizes of the pseudo-corpora in

both languages (see Section 4.1.2) were limited. Even though the

wordnet-based corpus is smaller in Basque, they are big enough to

encode their respective wordnets’ semantic structure (see Section

4.1.3).

English Wordnet 3.0 with glosses consists of 147,306 lexical

forms, and Goikoetxea et al. (2016) reached peak performance

in word similarity task with 200 million random walks, which

created an 1100 million token corpus. In this work, we kept

the same proportion between the number of lexical forms and

random walks as Goikoetxea et al. (2016) in order to ensure good

performance. Thus 72 million and 36.3 million random walks

were performed for Spanish and Basque respectively, resulting in

a corpus of 406 million tokens for the former and 166 million for

the latter.

4.1.3 Embeddings
Three types of static embeddings have been computed: text

embeddings (FTtxt), wordnet-based embeddings (FTkb), and hybrid

embedding (FThyb). These word representations encompass the two

sources of semantic information (text and KB embeddings) related

to word similarity.

In order to compute the static embeddings, a neural network

processes the whole text corpus by traversing the corpus word

by word, computing the representations of words based on the

Distributional Hypothesis. It calculates the representation of a

given word based on the representations of all the neighbors

found within a predefined window while traversing the corpus.

Eventually, every token in the corpus ends up with a vector

representation called embedding.

In this work, the neural-based model fastText (Bojanowski

et al., 2017) was used because of its more robust performance

comparing to the also non-contextual models word2vec

(Mikolov et al., 2013) or Glove (Pennington et al., 2014).

fastText implements a variant of the Distributional Hypothesis

which, instead of exploiting the neighboring words’ information

to compute a representation of a given word as word2vec

and Glove, exploits subword information, which enhances

performance in handling rare words and morphological variations.

Both text-based and wordnet-based embeddings were calculated

using fastText.

In the case of Basque and Spanish text-based embeddings,

we fed fastText with their respective text corpora separately.

Regarding wordnet-based ones, we encoded the semantic structure

of Basque and Spanish wordnets in a vector space following the

method proposed by Goikoetxea et al. (2015), which comprises two

steps. First, the creation of Basque and Spanish Wordnet pseudo-

corpus, as explained in the previous section. Second, processing

of Basque and Spanish pseudo-corpora with a neural-based model

to obtain their respective wordnet embeddings. In the original

proposal, Goikoetxea et al. (2015) used word2vec (Mikolov et al.,

2013), but as mentioned before, in the present work fastText

has been used with the same parameters as in Mikolov et al. (2018).

Recent works show that embeddings which combine semantic

information from both text and KB (i.e., hybrid embeddings) have
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TABLE 3 Embedding quantities in Basque (EU) and Spanish (ES) for three

types of embeddings, namely, text (FTtxt), wordnet-based (FTwn), and

hybrid (FThyb) embeddings.

EU ES

FTtxt 472,166 931,101

FTwn 26,135 52,347

FThyb 12,128 5,316

an overall higher performance in word similarity tasks. Lastra-

Díaz et al. (2019) proved that hybrid embeddings outperformed

most ontology-based measures and the rest of the word embedding

models. Likewise, Goikoetxea et al. (2016) and García et al. (2020)

proved that hybrid embeddings are more explicative of human

perception of semantic distance than text or KB embeddings

separately. In the present work, the method proposed by García

et al. (2020) will be implemented in the computation of hybrid

embeddings. In short, the latter’s proposal consists of four steps:

1. To compute separate text and wordnet embeddings.

2. To map text embeddings space onto the wordnet one.

3. To estimate word embeddings for both spaces.

4. To combine equivalent text and wordnet embeddings.

In the creation of FThyb embeddings, García et al. (2020) were

strictly followed, employing vecmap (Artetxe et al., 2018) for the

mapping of text and wordnet embeddings.

Table 3 shows the embedding sizes for each language.

As expected, the text and wordnet-based Spanish embedding

spaces are larger than those of Basque. However, for the hybrid

embeddings, Basque’s space is twice the size of Spanish’s. This

phenomenon is due to the small overlap between text and wordnet

tokens in Spanish; manymultiword expressions in Spanish wordnet

do not have equivalents in text embeddings, making it impossible

to create corresponding hybrid embeddings. In contrast, Basque

shows a broader overlap between wordnet and text embeddings, as

its WordNet contains fewer multiword expressions.

4.2 Data analysis

This work has sought to create a dataset of noun pairs, matched

by length, that compiles information about the semantic similarity

between them. As already stated, the semantic similarity was

calculated using three types of embeddings; text, wordnet and

hybrid embeddings. The linguistic features controlled in pairing

the nouns were concreteness, word frequency, and semantic and

phonological neighbor density.

Each feature was clustered via KNN classification (Cover and

Hart, 1967) to match pairs of words. That is, each pair of nouns

was set whenever there was a coincidence in the four feature

clusters. Despite maximizing the number of potential noun pairs,

we conducted a two-group clustering (low and high values) for

concreteness, word frequency, semantic and phonological neighbor

density (see Section 5.1).

Each line of the final dataset comprises the values of features of

the noun pairs, their corresponding clusters and the three similarity

measurements. Figure 1 shows the stages of the dataset creation

procedure for both languages, which are described in the following

points:

• KB-based corpus generation: word embeddings are computed

feeding fastText with the aforementioned text and KB-

based corpora.

• Embeddings generation: the final dataset will contain three

types of word pair similarity measurements, computed out of

their corresponding type of embeddings, namely, text-based

(FTtxt), knowledge-based (FTwn), and hybrid (FThyb) word

representations or embeddings.

• Feature dictionaries generation: as mentioned previously,

four extra-linguistic features are added to the similarity

dataset. For each feature, a dictionary of nouns along with

their feature values or values is generated, namely, word

frequency dictionary (DICTfrq), phonological neighborhood

density dictionary (DICTpnd), semantic neighborhood density

dictionary (DICTsnd), and concreteness dictionary (DICTcnc).

• Dataset creation: the datasets in this study are comprised of

noun pairs, along with their three types of word similarity

measurements and the linguistic features associated with each

noun in the pair. Thus the final step consists of finding all

possible noun pairs that match two specific conditions (see

Section 4.2.2), measuring their similarity values and adding a

linguistic feature value for each noun in the pair.

The following sections seek to describe the details of the four

stages mentioned in the above paragraphs to create the final dataset.

4.2.1 Computation of linguistic features
This section describes the details of the calculation of each

linguistic feature before being L2-normalized and clustered in the

final dataset.

4.2.1.1 Concreteness

Concreteness measurements were calculated automatically by

exploiting Wordnet’s taxonomy in Basque and Spanish. In order

to do so, an algorithm proposed by Feng et al. (2011) was

followed. Said algorithm predicts word concreteness via various

lexical resources and features, namely, human ratings, lexical

types, latent semantic analysis dimensions, word frequency and

length, and hypernymy level. For the purposes of this work, of

all these features, only the Hypernymy Level was considered for

computing concreteness. The reason for this is that, with the

exception of ratings and lexical type, which are not included

in this research, the remaining features will be analyzed and

treated separately here later.12 The Hypernymy Level aspect scores

the concreteness of a word following its hypernymy relations in

Wordnet’s hierarchical structure. For every noun in Basque and

Spanish, the aforementioned method does the following in the

corresponding wordnet:

12 Although latent semantic analysis is not used for word representations

in the present word, more advanced techniques of static word embeddings

are included (see Section 4.1.3).

Frontiers in Language Sciences 08 frontiersin.org

https://doi.org/10.3389/flang.2024.1458887
https://www.frontiersin.org/journals/language-sciences
https://www.frontiersin.org


Goikoetxea et al. 10.3389/flang.2024.1458887

FIGURE 1

Overview of the dataset creation process. The figure outlines three main stages: generation of feature dictionaries, construction of a

knowledge-based (KB-based) corpus followed by embedding generation, and the creation of the final dataset. First, four feature dictionaries are

created: word frequency (DICTfrq), phonological neighborhood (DICTpnd), semantic neighborhood density (DICTsnd), and concreteness (DICTcnc).

Next, the KB-based corpus is derived from WordNet (WN) as described by Goikoetxea et al. (2015). Three types of embeddings are then computed:

text-based (FTtxt), KB-based (FTkb), and hybrid (FThyb), following García et al. (2020). Finally, the feature dictionaries and embeddings are combined to

generate the final dataset, which includes word similarity measurements and lexical property features. The same procedure is followed in Basque and

Spanish languages.

• Check all of its synsets within a given noun.

• For each synset, the method counts every hypernym from the

source synset until the topmost synset (i.e., Wordnet’s root

node entity), thus scoring the depth of the source synset in

Wordnet’s tree structure.

• Compute the concreteness of a given noun by averaging all the

depths of its synsets.

In order to count the hypernyms in the Wordnet structure up

to the entity node for each of the synsets in a noun, we employed

synset-based semantic relation in the NLTK toolkit.

Note that the higher the depth, the more concrete the word is,

and the lower the depth, the more abstract it will be. For example,

the word car has five synsets in Wordnet 3.0. If we choose the

most common synset for that noun,13 its hypernymy path is the

following:

car → MotorVehicle → SelfPropelledVehicle

→ WheeledVehicle → Container → Instrumentality

→ Artifact → Whole → Object → PhysicalEntity → Entity.

Thus, the depth of the path of the above synset of car is 10.

The word Wheeled Vehicle has a depth of 7, meaning that it is less

concrete than car and ambulance a depth of 11, therefore being

more concrete than car. In order to obtain the final score of the

13 The sense with the following definition in Wordnet: amotor vehicle with

four wheels; usually propelled by an internal combustion engine.

noun, the method computes all the depths of the rest of the synsets

to find the average of all of them.

4.2.1.2 Semantic neighborhood density

The framework proposed in this work for computing SND is

also based on the semantic structure of Wordnet. The semantic

neighbors of every noun are computed by counting all the semantic

relations of its synsets. A procedure similar to the one described in

Section 4.2.1 was used for every noun in Basque and Spanish:

• Check all of its synsets within a given noun.

• For each synset, count all its surrounding synsets linked by a

Wordnet semantic relation. This approach departs from the

source synset and checks all its semantic relations to find its

neighboring synsets.

• Finally, compute the semantic neighbors of a noun averaging

all the counts in its synsets.

Only first-degree semantic neighbors have been considered.

Regarding the Wordnet semantic relations, we have taken every

available synset-based semantic relation in the NLTK toolkit and

discarded the more surface-level lexical relations like derivation

and pertainymy.

Following the same example as in the previous section, the

most common synset for the noun car has 31 hyponyms, 29

meronymparts and one hypernym. That is, 61 first-degree semantic

neighbors.
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4.2.1.3 Phonological neighborhood density

Phonological neighbors are pairs of words that differ in only

one phonological segment, such as cat and bat. For the purpose

of this work, phonological neighborhood size was calculated

using the Levenstein distance method (Levenshtein, 1965). It has

several advantages compared to other alternatives, such as the

Hamming Distance or the Jaro-Winkler distance; it accounts for

both substitution and insertion/deletion operations, so the distance

is more accurately computed, independent of the length of the

strings.

This work assumes that two words are phonological neighbors

if their Levenstein distance equal to one. For example, in the

case of the word car, the number of phonological neighbors

that meet the condition mentioned above is 31, with first-degree

neighboring words such as cat, card, scar, ear, jar, and tar.

Multiword expressions and nouns with less than three characters

in length have been excluded from the dataset.

4.2.1.4 Word frequency

Word frequency measures have been calculated using Zipf

frequencies; a base-10 logarithm of its occurrences per billion

words. Zipf frequency allows for a more comprehensive analysis

than raw noun counts because it accounts for the relative

importance of a word in the corpus.

For Spanish, Python’s wordfreq library was used to obtain

Zipf frequencies because it provides reliable word frequency

data derived from large, diverse corpora, including web texts,

Wikipedia, and subtitles. Given the nature of the 10-base logarithm

scale, Zipf values in this library are within the range of 0-8.

However, it is important to note that Basque is not included

in this library, thus in the case of Basque, Zipf frequencies

were computed from the most extensive Basque public corpus,

Euscrawl (Artetxe et al., 2022). Euscrawl corpus was pre-processed

as described in Section 4.1.2, and raw word counts were

calculated using the fastext model from the gemsim library

in Python. Afterwards, those counts were converted into Zipf

frequencies, limiting their maximum andminimum values between

0 and 8.

4.2.2 Creation of feature dictionaries
As mentioned in previous sections, each noun is accompanied

by four features in the dataset. An independent dictionary was

created for each feature (i.e., concreteness, frequency, SND, and

PND) in Basque and Spanish, so as to assign the measurements of

its feature along with its cluster number to each noun. Once the

feature dictionaries were computed, the next step was to build the

final dataset (see Section 4.2.4).

The lists of single-word nouns from Spanish and Basque

wordnets were extracted via NLTK toolkit, constraining the

candidates to 28,647 and 22,877 in each language, respectively.

Although the Spanish wordnet is nearly double the Basque one

in size (see Table 2), the imbalance is less apparent in the size of the

feature dictionaries because the number of available nouns in the

NLTK toolkit is comparable across these two languages. To improve

the KNN classification of the nouns across each feature, outliers

were removed using the interquartile range, and L2-normalization

has been applied to every raw measurement. Although the latter

strategy diminishes the size of the datasets, we opted to apply it

in order to reduce noisy samples and balance cluster sizes (see

Section 5.1).

4.2.3 Word similarity measurement
In NLP, word similarity is commonly calculated by the cosine

similarity of the angle between two-word embeddings, measuring

the similarity of the words they represent. The cosine similarity

is determined by computing the dot product of the two vectors

and dividing it by the product of the Euclidean norms of the

vectors. The cosine similarity is a measure ranging from 0 to 1,

where 0 means the complete absence of similarity and 1 means

complete similarity (i.e., synonyms). The similarity measurement

is independent of the origins of the embeddings, in the way that

text, wordnet and hybrid representations are processed in the

same way.

In this paper, the term similarity has been used indistinctly,

but the difference between pure similarity and relatedness

has been widely recognized in cognitive sciences for a long

time (Tversky, 1977). Pure similarity measures the degree to

which two concepts share semantic features, while relatedness

is the degree of association between two words. Regarding

the semantic relations involved, pure similarity includes

synonymy and hyponymy/hyperonymy. In contrast, relatedness

encompasses the previous ones and a wider variety of relations,

such as meronymy, functional associations and other unusual

relations. For example, wolf and dog are taxonomically linked by

hypernymy relations in the same semantic structure and share

many features; thus, they have high similarity. In contrast,

wolf and moon do not share any semantic features (low

similarity) but are related by association; hence, they have a

high relatedness.

Cosine similarity measurement does not distinguish between

these two aspects but can be applied to different types of

embeddings to measure distinctive semantic relations. In this

work, we have chosen three types of embeddings, which

perform differently in pure semantic similarity (Hill et al.,

2015; Agirre et al., 2009; Rubenstein and Goodenough, 1965)

and relatedness (Finkelstein et al., 2001; Bruni et al., 2014)

measures. Broadly speaking, wordnet embeddings measure pure

similarity relations more accurately, while text embeddings are

more sensitive to compute relatedness, and hybrid embeddings

have been proven to be more robust for capturing semantic

relations in general (Goikoetxea et al., 2016, 2018; García et al.,

2020). Results in Section 5.3 illustrate the distribution of cosine

measurements for both languages across five different ranges,

revealing a clear tendency toward lower values for all types of

embeddings.

4.2.4 Creation of word pair matrix
The final step in this work consisted of creating the noun pair

dataset out of the feature dictionaries described previously. There

are two conditions for noun pairing:

• First, the two nouns composing the pair must figure in the

three types of embeddings.

Frontiers in Language Sciences 10 frontiersin.org

https://doi.org/10.3389/flang.2024.1458887
https://www.frontiersin.org/journals/language-sciences
https://www.frontiersin.org


Goikoetxea et al. 10.3389/flang.2024.1458887

TABLE 4 Concreteness (CNC), frequency (FRQ), phonological

neighborhood density (PND) and semantic neighborhood density (SND)

dictionaries for Basque (EU) and Spanish (ES).

EU ES

size 19,660 14,771

avg 8.41 8.38CNC

var 3.44 2.99

size 14,380 12,146

avg 6.39 2.95FRQ

var 1.05 1.27

size 18,044 15,534

avg 2.47 2.18SND

var 3.05 2.25

size 14,671 14,608

avg 1.75 1.38PND

var 1.25 0.43

The upper line in each feature shows the size of a specific dictionary, the medium one shows

the average (avg) value of each measurement and the last one the variance (var).

• Second, the two nouns composing the pair must have the same

length and share the same cluster in all four linguistic features.

All the nouns that met the first condition were traversed to

find all possible pairs of nouns that also share the four linguistic

features, as stated in the second condition. Every time a pair was set,

featural values in concreteness, frequency, SND, and PND, as well

as their cluster identification,14 were inserted in the dataset, along

with the three types of similarity measurements. Altogether, each

noun pair is followed by 19 columns which include the three types

of similarity measurements, followed by both nouns’ four features’

cluster numbers and measurements.

5 Results

The present section aims to summarize the main results

obtained during the whole dataset creation process, namely,

feature dictionaries’ sizes, embedding evaluation, similarity values’

distribution and size of final similarity datasets.

5.1 Feature dictionaries’ sizes

In this section, we show the dictionary sizes for each of the four

features described in Section 4.2.1, along with the average value for

each feature, in both languages. Table 4 shows the resulting feature

dictionaries’ size and the mean value for each feature.

Table 4 shows that the Basque feature dictionaries are slightly

larger than the ones in Spanish, due to the higher amount of outliers

14 We used –1 number for 0 neighbor subgroup in phonological neighbor

matching, as that group was not part of a KNN cluster. For the rest of the

linguistic features, clustering was marked with 0 and 1 to indicate low or

high-value clustering.

in the Spanish dataset. Both languages exhibit similar average

concreteness values, with Basque showing slightly higher variance.

Basque nouns have a much higher average word frequency with

lower variance, indicating more consistent and higher frequency

usage. For semantic SND, Basque nouns show higher average

values but also greater variability compared to Spanish. In terms

of PND, Basque has a higher average and significantly larger

variance, reflecting a broader range of phonological similarities.

After conducting the two-sample t-test, it indicates a statistically

significant difference in PND between Basque and Spanish, with a

t-value of t(8,212) = 16.68 and p-value of p < 0.001.

Special mention goes for frequency. On average, Basque

nouns are more frequent than the Spanish ones.15 A reasonable

explanation for this difference may be the size of the corpora used

to calculate word frequencies in each language. The Scrawl corpus

is smaller than the one used for computing Spanish Zipf frequencies

in the NLTK toolkit, and it has far fewer infrequent words. Thismay

bias the Zipf frequency in favor of a higher average value in Basque.

Table 5 shows the token distribution of all previous dictionaries

in KNN-based clusters. Features are clustered in two groups,

differentiating between high and low values. The size of the

dictionary of phonological neighbors features is far smaller than the

rest. This is because nouns with 0 neighbors have been excluded

from the KNN classification (14,671 in Basque and 12,085 in

Spanish) because they tend to unbalance the cluster distribution,

leaving the cluster with high-PND value with almost no content.

Therefore, nouns with 0 neighbors have been extracted into a

subgroup and treated as a separate cluster when creating the final

dataset.

Overall, Table 5 reveals that the cluster distributions for PND

and SND features in both languages tend to be more uneven

compared to concreteness and frequency. Regarding concreteness,

both languages exhibit a similar distribution, predominantly

favoring lower values. There is a slight disparity in frequency

measurements between Basque and Spanish: Basque shows a higher

number of high-valued noun pairs, whereas Spanish exhibits nearly

equal amount of pairs in both clusters. In terms of SND and

PND distributions, while both languages maintain similar cluster

ratios, they show opposite trends: Basque has more high-valued

pairs compared to low-valued ones, whereas Spanish demonstrates

the opposite pattern. Regarding the mean values and variances

observed for each language, Basque shows higher mean values in

all features, while Spanish seems more stable in terms of variance.

5.2 Evaluation of the quality of the
embeddings in similarity task

As mentioned in Section 4.2.3, in order to verify the quality of

the three types of embeddings, we tested them in a word similarity

task, including pure similarity and also relatedness datasets. In

Spanish, we operated with the pure similarity datasets RG65 (RG)

15 Note that the mean Zipf frequency value of the Basque words is 6,

meaning that a word appears once per a thousand words, whereas the mean

Zipf value in Spanish is 2, indicating that a word appears once per million

words.
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TABLE 5 Concreteness (CNC), frequency (FRQ), phonological

neighborhood density (PND) and semantic neighborhood density (SND)

high-valued and low-valued cluster data for Basque (EU) and Spanish (ES).

EU ES

Low High Low High

CNC

size 11,373 8,287 9,692 6,179

avg 7.13 10.16 7.27 10.09

var 0.93 1.59 1.34 0.96

FRQ

size 5,646 8,734 6,103 6,043

avg 5.33 7.08 2.01 3.91

var 0.41 0.25 0.31 0.43

SEM

size 13,915 4,129 4,713 9,836

avg 1.65 5.2 1.31 4.0

var 0.55 1.77 0.25 1.51

PND

size 3,791 974 1,017 2,432

avg 1.24 3.7 1 2.32

var 0.19 0.62 0 0.22

The upper line in each feature shows the size of a specific dictionary, the medium one shows

the average (avg) value of each measurement and the last one the variance (var).

(Camacho Collados et al., 2015) and SimLex999 (SL) (Etcheverry

and Wonsever, 2016), and the relatedness dataset Wordsim353

(WS) (Hassan and Mihalcea, 2009). In the case of Basque, we

used the pure similarity RG dataset and the relatedness dataset WS

created by Goikoetxea et al. (2018).

In both Spanish and Basque, FTtxt , FTkb and FThyb

representations were compared with the baseline, using publicly

available text-based representations fastText.16 All of our

embeddings were computed using the same set of parameters as

those described on the website from which the baseline fastText

embeddings were obtained.

Spearman correlation is a widely used statistical method in

word similarity tasks within NLP, as it assesses the strength and

direction of the monotonic relationship between two variables; in

this case, our embeddings and the human similarity judgments. The

Spearman correlation values between the word similarity scores

obtained from the embeddings and the human-annotated values in

the gold standard datasets is presented in Table 6.

The discussion below describes the findings extracted from

Table 6:

• FTtxt embeddings: FTtxt results perform similarly to the

baseline ones in both languages, with two exceptions. One,

the Basque FTtxt result in the WS dataset is higher than the

baseline, likely due to the greater corpus size Euscrawl. Second,

the Spanish FTtxt in the SL dataset is lower than the baseline.

The only plausible explanation for this result in the Spanish SL

may lie in the differences in the pre-processing of the corpus;

16 https://fasttext.cc/docs/en/crawl-vectors.html

TABLE 6 Spearman correlation results in word similarity task for RG,

Wordsim353 (WS) and SimLex999 (SL) datasets in Basque (EU) and Spanish

(ES).

Dataset

RG WS SL

EU

Baseline 0.7705 0.657 —

FTtxt 0.7786 0.7331 —

FTkb 0.8567 0.6588 —

FThyb 0.8655 0.7457 —

ES

Baseline 0.879 0.578 0.3658

FTtxt 0.8657 0.5728 0.287

FTkb 0.7284 0.5732 0.3993

FThyb 0.8725 0.6345 0.4057

Text (FTtxt), wordnet-based (FTkb) and hybrid embedding (FThyb) representations are

compared to their baselines. The best results for each dataset and language are expressed in

bold.

the baseline text corpus was tokenized with Europarl pre-

processing tools,17 whereas the NLTK tokenizer was used in

the present work.

• FTkb embeddings: this type of embeddings being more suited

to pure similarity datasets (RG and SL) than relatedness

ones (WS), FTkb results are higher than the baseline in the

Basque RG and the Spanish SL, but not in the Spanish RG.

This underperformance in Spanish must be interpreted with

caution, as the RG dataset is small (64 pairs) and it has low

statistical power.

The most noticeable result, though, is in the relatedness WS

dataset, in which FTkb performs at baseline. Note that the baseline

txt-based embeddings are supposed to have a better performance

in WS due to their superior capacity for capturing relatedness

relations, so we expect them to obtain better results than the

FTkb measurement. However, the incorporation of gloss relations

(which are relatedness relations) when creating the wordnet-based

corpora may have enhanced the capability of FTkb embeddings to

measure relatedness.

• FThyb embeddings: comparing the results of FTtxt , FTkb, and

FThyb embeddings, we find that the combination of the first

two into the latter enhances their performance in similarity

tasks for both languages across all datasets. FThyb also

outperforms the baseline in all datasets, with only exception of

RG in Spanish, likely due to its small size, as mentioned above.

In general, the three types of embeddings in this work have

performed as expected with FThyb embeddings offering the best

overall results. The quality of the embeddings in the Basque

language has proven to be the best to date. Note that the excellence

of the embeddings is critical in this work, as they are used to create

the three semantic similarity measurements that constitute the core

features of the dataset. Overall, all embeddings created in this work

were deemed suitable for inclusion in the final dataset.

17 https://www.statmt.org/europarl/
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TABLE 7 Percentages of word similarity values in the Basque and Spanish

dataset across five ranges and three types of embeddings; text (FTtxt),

wordnet (FTkb), and hybrid (FThyb).

EU ES

FThyb FTkb FTtxt FThyb FTkb FTtxt

0.0–0.2 89.1 98.44 84.9 93.52 98.68 89.13

0.2–0.4 10.3 1.48 13.97 6.09 1.24 10.12

0.4–0.6 0.54 0.066 1.045 0.36 0.06 0.71

0.6–0.8 0.025 0.009 0,048 0.015 0.007 0.03

0.8–1.0 0.00135 0.0015 0.0018 0.001 0.0013 0.0014

5.3 Similarity measurement distribution

We also analyzed the similarity measurement values’

distribution across the tree types of embeddings. Table 7 shows

the percentages of semantic similarity values for all possible noun

pairs classified along five different ranks. Only nouns with the

three types of embeddings that match all four linguistic features

are considered. The percentages presented in Table 7 show a bias

toward lower-ranked similarity values for all types of embeddings

in both Basque and Spanish. This is even more evident in the

wordnet embeddings.

This phenomenon was already pointed out in a cross-lingual

setting by Lample and Conneau (2019). The authors observed

that fasText based embeddings’ cosine similarity mean value

was considerably lower than that achieved by XLM (Lample

and Conneau, 2019), a large cross-lingual language model. The

authors suggested that the distinctivemagnitude of themean cosine

similarity based on fasText and XLM relies on the vector space

of the language model, which is more compact in XLM due to its

training in a sentence encoder. This phenomenon only shows that

the non-contextual embeddings like fasText or word2vec are

sparser than the language model ones. As the results in Table 6

demonstrate, the different organization of the lexicon in the vector

spaces does not affect the performance of the embeddings in the

word similarity task.

5.4 Final datasets’ sizes

Finally, we indicated the number of nouns which fulfill the

conditions defined in Section 4.2.4, that is, the size of the final

similarity datasets for Basque and Spanish. The first condition

defined in Section 4.2.4 filters the pairs of nouns without the three

types of embeddings. The Spanish wordnet contains a high number

of multiword expressions, and the multiword expressions are

discharged from the dataset (see Section 4.2.1). The suppression of

the latter leads to a lower overlap of text and wordnet embeddings

and, therefore, a smaller amount of hybrid embeddings (see

Table 3). The latter phenomenon limits severely the potential noun

pairs for Spanish, as both nouns have to have all three types

of embeddings. As a result, we obtained a Spanish dataset of

136,886 noun pairs and a Basque one with 996,514. Thus, the

substantially higher number of pairs in Basque is only attributed

to the different amounts of available nouns for each language, as

Basque and English clusters seem to be similarly distributed thus

not influencing the matching for creating noun pairs.

6 Conclusions

Psycholinguistic evidence supports the idea that the overlap

of semantic features across concepts is crucial in the computation

of semantic relations, and by extension, in semantic processing.

A comprehensive work on NLP has shown that embeddings or

vectors are a sensitive method for artificially computing similarities

across concepts by accounting for a large number of semantic

properties, which may be applied to different types of linguistic

resources to uncover distinctive semantic relations. This work has

aimed to bridge computational linguistics and psycholinguistics to

automatically build a dataset of vectorised word similaritymeasures

in Basque and Spanish.

We have presented a computationally grounded dataset that

encompasses different aspects of the semantic information present

in both text corpora and knowledge bases. On the one hand,

each dataset includes three similarity measurements based on

their corresponding embedding computations, namely, text-based,

wordnet-based and hybrid embeddings. These measurements

encode different subtleties of meaning. Text-based embeddings are

computed out of word co-occurrence in large natural language

corpora; being prone to better measure relatedness relations.

Wordnet-based embeddings encode the semantic structure of

Wordnet, so that they are considered a measurement of pure

similarity relations. Finally, hybrid embeddings combine both

text-based and wordnet-based embeddings, binding categorical

and associative relations. In addition, all the materials were

controlled for several linguistic features (concreteness, frequency,

and semantic and phonemic neighbor size) to adjust the dataset to

various research interests and requirements.

It is important to acknowledge the potential influence of

the specific characteristics of the corpora used in this study.

Wikipedia, used for Spanish, tends to represent a more formal

and encyclopedic register, which may not fully capture everyday

language use, informal expressions, or dialectal variations. In

contrast, EusCrawl, used for Basque, includes a wider variety of

web content, providing greater domain diversity and a mix of

formal and informal registers. While our focus was on producing

a computationally grounded dataset based on widely available and

robust corpora, alternative sources such as social media or forums

might result in different distributions of word pair similarities,

especially in terms of capturing more colloquial or diverse language

use. Future work could explore these sources to further evaluate

their impact on word similarity measures.

Orthographic neighborhoods enhance visual lexical processing

by reflecting how words are recognized and retrieved in written

contexts, while phonological neighborhoods support auditory

recognition and retrieval during spoken language processing. In

our study, we used orthographic neighborhood density data as a

proxy for phonological neighborhood density, which is appropriate

in transparent languages like Basque and Spanish. This approach is

effective due to the close correspondence between phonemes and

graphemes in these languages, allowing for the analysis of sound
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relationships based on the number of orthographic neighbors a

specific lexical item possesses. However, this method may not

apply to opaque languages, where the mapping between phonemes

and graphemes is less direct, and thus the relationships between

orthographic and phonological neighborhoods may not be as

tightly linked. In such cases, orthographic neighborhoods alone

may not accurately reflect phonological relationships, complicating

lexical processing and recognition. Therefore, future research

should consider employing a combination of both phonological

and orthographic measures to gain a more comprehensive

understanding of lexical processing across different languages. By

integrating these approaches, researchers can effectively account

for the interaction between auditory and visual representations in

language processing, thereby increasing the relevance of findings

across a wider array of linguistic contexts.

A crucial aspect of our dataset is the distinction between

semantic similarity and relatedness measures, which has significant

implications for psycholinguistic research. This database allows

researchers to carefully control semantic similarity and relatedness

between concepts, either separately or together. It facilitates studies

on the semantic organization in both taxonomic and associative

relations through semantic relation judgment tasks, as well as

sentence prediction experiments, where the relationships between

prime and target words can be precisely controlled. Additionally,

it supports vocabulary learning and generalization efforts based on

shared semantic features across lexical terms.

The potential applications of this dataset are extensive,

spanning multiple areas within psycholinguistics and beyond.

It is valuable for researching semantic processing across various

contexts throughout the lifespan, addressing key questions

related to language acquisition, semantic memory retrieval, and

organization in aging populations. Furthermore, it contributes

to bilingualism studies by providing insights into how semantic

relations are processed in diverse linguistic contexts and supports

cross-linguistic comparisons to explore how different languages

encode semantic information under specific circumstances.

Overall, this versatile resource enables thorough control of

important variables while quantifying the degree of semantic

overlap, enhancing our understanding of cognitive processes.

The presented dataset can be applied to several NLP tasks. It

could be relevant for word sense disambiguation, where lexical

features like concreteness and frequency can help distinguish

between multiple word meanings (Navigli, 2009) and also in

machine translation where the dataset can aid in refining meaning

alignment across languages, particularly for the included Basque

and Spanish word pairs (Vaswani, 2017). Additionally, sentiment

analysis can utilize the dataset to capture subtle differences in

word meaning, which is critical for modeling context-dependent

emotional content (Poria et al., 2020).

In relation to the latter task, we also intend to extend the

features of the dataset with the two main emotional dimensions

of words, namely, valence and arousal (Citron et al., 2013). Recent

works (Buades-Sitjar et al., 2021; Planchuelo et al., 2022) have

shown that the strength of word associations is correlated with

both valence and arousal dimensions, indicating that emotionally

charged words tend to be more related. Further, large language

models (LLMs) have been used to capture semantic relationships

and emotional dimensions of language by encoding rich contextual

information (Devlin et al., 2018; Radford et al., 2019). While our

dataset focuses on psycholinguistic features, it could complement

LLMs in tasks requiring disentanglement of context, sentiment, and

word similarity. These psycholinguistic measures could contribute

to fine-tuning LLMs for sentiment analysis, providing a structured

understanding of noun processing and improving context-rich

semantic evaluations.
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Ćoso, B., Guasch, M., Ferré, P., and Hinojosa, J. A. (2019). Affective and
concreteness norms for 3,022 croatian words. Quart. J. Exper. Psychol. 72, 2302–2312.
doi: 10.1177/1747021819834226

Cover, T., and Hart, P. (1967). Nearest neighbor pattern classification. IEEE Trans.
Inf. Theory 13, 21–27. doi: 10.1109/TIT.1967.1053964

Cuetos, F., Glez-Nosti, M., Barbon, A., and Brysbaert, M. (2011). Subtlex-esp:
frecuencias de las palabras espanolas basadas en los subtitulos de las peliculas.
Psicológica 32, 133–144.

Dahan, D., Magnuson, J. S., and Tanenhaus, M. K. (2001). Time course of frequency
effects in spoken-word recognition: evidence from eye movements. Cogn. Psychol. 42,
317–367. doi: 10.1006/cogp.2001.0750

Dave, K., Lawrence, S., and Pennock, D. M. (2003). “Mining the peanut
gallery: opinion extraction and semantic classification of product reviews,” in
Proceedings of the 12th International Conference on World Wide Web, 519–528.
doi: 10.1145/775152.775226

Dell, G., and Gordon, J. (2011). “Neighbors in the lexicon: Friends or
foes?” in Phonetics and phonology in Language Comprehension and Production,
eds. N. O. Schiller and A. S. Meyer (Berlin: Walter de Gruyter), 9–38.
doi: 10.1515/9783110895094.9

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: pre-training
of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805.

Djokic, V. G., Maillard, J., Bulat, L., and Shutova, E. (2020). Decoding brain activity
associated with literal and metaphoric sentence comprehension using distributional
semantic models. Trans. Assoc. Comput. Ling. 8, 231–246. doi: 10.1162/tacl_a_00307

Du nabeitia, J. A., Avilés, A., and Carreiras, M. (2008). Noa’s ark: influence of the
number of associates in visual word recognition. Psychon. Bull. Rev. 15, 1072–1077.
doi: 10.3758/PBR.15.6.1072

Duchon, A., Perea, M., Sebastián-Gallés, N., Martí, A., and Carreiras, M. (2013).
Espal: one-stop shopping for spanish word properties. Behav. Res. Methods 45,
1246–1258. doi: 10.3758/s13428-013-0326-1

Etcheverry, M., and Wonsever, D. (2016). “Spanish word vectors from wikipedia,”
in Proceedings of the Tenth International Conference on Language Resources and
Evaluation (LREC’16), 3681–3685.

Ettinger, A., and Linzen, T. (2016). “Evaluating vector space models using human
semantic priming results,” in Proceedings of the 1st Workshop on Evaluating Vector-
Space Representations for NLP, 72–77. doi: 10.18653/v1/W16-2513

Farhy, Y., and Veríssimo, J. (2019). Semantic effects in morphological priming: the
case of hebrew stems. Lang. Speech 62, 737–750. doi: 10.1177/0023830918811863

Frontiers in Language Sciences 15 frontiersin.org

https://doi.org/10.3389/flang.2024.1458887
https://doi.org/10.1037/0278-7393.33.3.604
https://doi.org/10.3115/1620754.1620758
https://doi.org/10.18653/v1/2020.figlang-1.28
https://doi.org/10.18653/v1/P18-1073
https://doi.org/10.18653/v1/W17-5304
https://doi.org/10.1137/050643799
https://doi.org/10.3115/980451.980860
https://doi.org/10.1037//0096-1523.10.3.340
https://doi.org/10.1037/0096-3445.133.2.283
https://doi.org/10.3758/BF03193014
https://doi.org/10.1016/j.bandl.2013.01.005
https://doi.org/10.1017/S0140525X99002149
https://doi.org/10.1080/13546783.2016.1278034
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.3758/s13428-018-1014-y
https://doi.org/10.1038/s41598-021-84597-9
https://doi.org/10.1613/jair.4135
https://doi.org/10.1177/0963721417727521
https://doi.org/10.3758/BRM.41.4.977
https://doi.org/10.1016/j.actpsy.2014.04.010
https://doi.org/10.3758/s13428-013-0403-5
https://doi.org/10.3758/BF03196189
https://doi.org/10.3115/v1/P15-2001
https://doi.org/10.18653/v1/W19-0415
https://doi.org/10.1162/coli_a_00412
https://doi.org/10.1016/j.neulet.2012.10.054
https://doi.org/10.18653/v1/D16-1245
https://doi.org/10.1037//0033-295X.82.6.407
https://doi.org/10.4324/9781003309734-29
https://doi.org/10.1016/j.cognition.2021.104631
https://doi.org/10.1177/1747021819834226
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1006/cogp.2001.0750
https://doi.org/10.1145/775152.775226
https://doi.org/10.1515/9783110895094.9
https://doi.org/10.1162/tacl_a_00307
https://doi.org/10.3758/PBR.15.6.1072
https://doi.org/10.3758/s13428-013-0326-1
https://doi.org/10.18653/v1/W16-2513
https://doi.org/10.1177/0023830918811863
https://www.frontiersin.org/journals/language-sciences
https://www.frontiersin.org


Goikoetxea et al. 10.3389/flang.2024.1458887

Federmeier, K. D. (2007). Thinking ahead: the role and roots of
prediction in language comprehension. Psychophysiology 44, 491–505.
doi: 10.1111/j.1469-8986.2007.00531.x

Federmeier, K. D., and Kutas, M. (1999). A rose by any other name: long-
term memory structure and sentence processing. J. Mem. Lang. 41, 469–495.
doi: 10.1006/jmla.1999.2660

Feng, S., Cai, Z., Crossley, S., and McNamara, D. S. (2011). “Simulating human
ratings on word concreteness,” in Twenty-Fourth International FLAIRS Conference.

Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G., et al.
(2001). “Placing search in context: the concept revisited,” in Proceedings of the 10th
international conference on World Wide Web, 406–414. doi: 10.1145/371920.372094

Fischer, M. H., and Zwaan, R. A. (2008). Embodied language: a review of the role
of the motor system in language comprehension. Quart. J. Exper. Psychol. 61, 82–850.
doi: 10.1080/17470210701623605

Gahl, S., Yao, Y., and Johnson, K. (2012). Why reduce? Phonological neighborhood
density and phonetic reduction in spontaneous speech. J. Memory Lang. 66, 789–806.
doi: 10.1016/j.jml.2011.11.006

García, I., Agerri, R., and Rigau, G. (2020). A common semantic space for
monolingual and cross-lingual meta-embeddings. arXiv preprint arXiv:2001.06381.

Goikoetxea, J., Agirre, E., and Soroa, A. (2016). Single or multiple? Combining
word representations independently learned from text and wordnet,” in Thirtieth AAAI
Conference on Artificial Intelligence. doi: 10.1609/aaai.v30i1.10321

Goikoetxea, J., Soroa, A., and Agirre, E. (2018). Bilingual embeddings with
random walks over multilingual wordnets. Knowl.-Based Syst. 150, 218–230.
doi: 10.1016/j.knosys.2018.03.017

Goikoetxea, J., Soroa, A., Agirre, E., and Donostia, B. C. (2015). “Randomwalks and
neural network language models on knowledge bases,” in Proceedings of HLT-NAACL,
1434–1439. doi: 10.3115/v1/N15-1165

Gregg, V. (1976). “Word frequency, recognition and recall,” in Recall and
recognition, ed. J. Brown (New York: John Wiley & Sons).

Guasch, M., Ferré, P., and Fraga, I. (2016). Spanish norms for affective and
lexico-semantic variables for 1,400 words. Behav. Res. Methods 48, 1358–1369.
doi: 10.3758/s13428-015-0684-y

Günther, F., Rinaldi, L., and Marelli, M. (2019). Vector-space models of semantic
representation from a cognitive perspective: a discussion of common misconceptions.
Persp. Psychol. Sci. 14, 1006–1033. doi: 10.1177/1745691619861372

Haghighi, A., and Vanderwende, L. (2009). “Exploring content models for multi-
document summarization,” in Proceedings of Human Language Technologies: the 2009
Annual Conference of the North American Chapter of the Association for Computational
Linguistics, 362–370. doi: 10.3115/1620754.1620807

Harris, Z. S. (1954). Distributional structure. Word. 10, 146–162.
doi: 10.1080/00437956.1954.11659520

Hassan, S., and Mihalcea, R. (2009). “Cross-lingual semantic relatedness using
encyclopedic knowledge,” in Proceedings of the 2009 Conference on Empirical Methods
in Natural Language Processing, 1192–1201. doi: 10.3115/1699648.1699665

Hauk, O., Johnsrude, I., and Pulvermüller, F. (2004). Somatotopic representation
of action words in human motor and premotor cortex. Neuron 41, 301–307.
doi: 10.1016/S0896-6273(03)00838-9

Hayes, T. R., and Henderson, J. M. (2021). Looking for semantic similarity: what
a vector-space model of semantics can tell us about attention in real-world scenes.
Psychol. Sci. 32, 1262–1270. doi: 10.1177/0956797621994768

Hill, F., Reichart, R., and Korhonen, A. (2015). Simlex-999: evaluating
semantic models with (genuine) similarity estimation. Comput. Ling. 41, 665–695.
doi: 10.1162/COLI_a_00237

Hollenstein, N., de la Torre, A., Langer, N., and Zhang, C. (2019). Cognival: a
framework for cognitive word embedding evaluation. arXiv preprint arXiv:1909.09001.
doi: 10.18653/v1/K19-1050

Hualde, J. I., and De Urbina, J. O. (2011). A grammar of Basque, volume 26. Berlin:
Walter de Gruyter.

Incitti, F., and Snidaro, L. (2021). “Fusing contextual word embeddings for
concreteness estimation,” in 2021 IEEE 24th International Conference on Information
Fusion (FUSION) (IEEE), 1–8.. doi: 10.23919/FUSION49465.2021.9626843

Jain, S., and Huth, A. (2018). “Incorporating context into language encoding
models for fMRI,” in Advances in Neural Information Processing Systems, 31.
doi: 10.1101/327601

Jelodar, A. B., Alizadeh, M., and Khadivi, S. (2010). “Wordnet based features for
predicting brain activity associated with meanings of nouns,” in Proceedings of the
NAACL HLT 2010 First Workshop on Computational Neurolinguistics, 18–26.

Jones, M. N., Willits, J., Dennis, S., and Jones, M. (2015). Models of
semantic memory. Oxford Handb. Mathem. Comput. Psychol. 1, 232–254.
doi: 10.1093/oxfordhb/9780199957996.013.11

Joseph, H., Nation, K., and Liversedge, S. (2013). Using eye movements to
investigate word frequency effects in children’s sentence reading. Sch. Psychol. Rev.
42, 207–222. doi: 10.1080/02796015.2013.12087485

Kenett, Y. N., Levi, E., Anaki, D., and Faust, M. (2017). The semantic distance task:
quantifying semantic distance with semantic network path length. J. Exper. Psychol.
43:1470. doi: 10.1037/xlm0000391

Keuleers, E., Lacey, P., Rastle, K., and Brysbaert, M. (2012). The british lexicon
project: lexical decision data for 28,730 monosyllabic and disyllabic english words.
Behav. Res. Methods 44, 287–304. doi: 10.3758/s13428-011-0118-4

Kinsbourne, M., and George, J. (1974). The mechanism of the word-
frequency effect on recognition memory. J. Verbal Lear. Verbal Behav. 13, 63–69.
doi: 10.1016/S0022-5371(74)80031-9

Koehn, P., and Knowles, R. (2017). Six challenges for neural machine translation.
arXiv preprint arXiv:1706.03872.

Kosslyn, S. M., Thompson, W. L., and Ganis, G. (2006). The Case for
Mental Imagery. New York: Oxford Psychology Series. Oxford University Press.
doi: 10.1093/acprof:oso/9780195179088.001.0001

Kowialiewski, B., and Majerus, S. (2020). The varying nature of semantic effects in
working memory. Cognition 202:104278. doi: 10.1016/j.cognition.2020.104278

Kun, S., Qiuying, W., and Xiaofei, L. (2023). An interpretable measure of semantic
similarity for predicting eye movements in reading. Psychon. Bull. Rev. 30, 1227–1242.
doi: 10.3758/s13423-022-02240-8

Lample, G. (2016). Neural architectures for named entity recognition. arXiv preprint
arXiv:1603.01360.

Lample, G., and Conneau, A. (2019). Cross-lingual language model pretraining.
arXiv preprint arXiv:1901.07291.

Lample, G., Conneau, A., Denoyer, L., and Ranzato, M. (2017). Unsupervised
machine translation using monolingual corpora only. arXiv preprint arXiv:1711.00043.

Lastra-Díaz, J. J., Goikoetxea, J., Taieb, M. A. H., García-Serrano, A., Aouicha,
M. B., and Agirre, E. (2019). A reproducible survey on word embeddings and
ontology-based methods for word similarity: linear combinations outperform the
state of the art. Eng. Appl. Artif. Intell. 85, 645–665. doi: 10.1016/j.engappai.2019.
07.010

Leturia, I. (2012). “Evaluating different methods for automatically collecting large
general corpora for basque from the web,” in Proceedings of Coling 2012, 1553–1570.

Levenshtein, V. (1965). Binary codes capable of correcting spurious insertions and
deletion of ones. Probl. Inf. Transm. 1, 8–17.
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